JPS6345701A - Metal phthalocyanine thin film - Google Patents

Metal phthalocyanine thin film

Info

Publication number
JPS6345701A
JPS6345701A JP61188148A JP18814886A JPS6345701A JP S6345701 A JPS6345701 A JP S6345701A JP 61188148 A JP61188148 A JP 61188148A JP 18814886 A JP18814886 A JP 18814886A JP S6345701 A JPS6345701 A JP S6345701A
Authority
JP
Japan
Prior art keywords
metal phthalocyanine
thin film
metal
phthalocyanine
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61188148A
Other languages
Japanese (ja)
Inventor
二梃木 克洋
昭 田尾本
町田 育彦
浅川 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61188148A priority Critical patent/JPS6345701A/en
Publication of JPS6345701A publication Critical patent/JPS6345701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Non-Insulated Conductors (AREA)
  • Magnetic Record Carriers (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子産業分野において、記録材料、関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to recording materials in the field of electronic industry.

従来の技術 有機物の超薄膜を作成し、かかる状態において有機物の
持つ機能を引き出そうとする試みが、近年活発になって
きた。例えば、真空系を利用した方法(蒸着、分子エピ
タキシー、クラスターイオンビーム等)、LB法(La
ngmuir −Blodgett )法、水平付着法
も含む)、電解重合法等が、それである。この中でも、
LB法は、分子配列の制御が非常に容易であシ、極めて
有効な手段である。
BACKGROUND OF THE INVENTION In recent years, attempts have been made to create ultra-thin films of organic materials and bring out the functions of organic materials in such conditions. For example, methods using a vacuum system (evaporation, molecular epitaxy, cluster ion beam, etc.), LB method (La
Examples include the ngmuir-Blodgett method, the horizontal deposition method), and the electrolytic polymerization method. Among these,
The LB method allows control of molecular arrangement very easily and is an extremely effective means.

LB法に用いられる有機分子は、一般゛に、疎水性の長
鎖の脂肪鎖と親水基とを持ち合せておシ、これを揮発性
の有機溶済に溶かし水面上に展開すると、疎水基を気相
に向け、親水基を液相(水)に向けて配列し、単分子膜
が形成される。この単分子膜を一定方向から圧縮するこ
とによって固体状の単分子膜が得られるが、これを基板
上に累積することによって、任意の膜厚を持つ超膜が作
成される。有機分子が機能性基を持つ物であれば、上述
のLB法により、機能性基を一定配列させることができ
る。
The organic molecules used in the LB method generally have a long hydrophobic fatty chain and a hydrophilic group, and when this is dissolved in a volatile organic solution and spread on the water surface, the hydrophobic group is formed. A monomolecular film is formed by arranging the molecules toward the gas phase and the hydrophilic groups toward the liquid phase (water). By compressing this monomolecular film in a certain direction, a solid monomolecular film can be obtained, and by accumulating this monomolecular film on a substrate, a superfilm having an arbitrary thickness can be created. If the organic molecule has a functional group, the functional groups can be arranged in a fixed manner by the above-mentioned LB method.

発明が解決しようとする問題点 しかしながら上述のLB法による金属フタロシアニジの
超薄膜作成においては、金属フタロシア二ンが種々の有
機溶媒に難溶であるため、側鎖(ブチル基、ビニル基等
)を有する可溶性フタロシアニンを用いた薄膜が作成さ
れているが、データの再現性が余り良くなく、薄膜中の
金属フタロシアニンの配向が一様であるとは言い難い。
Problems to be Solved by the Invention However, when creating an ultra-thin film of metal phthalocyanide using the above-mentioned LB method, metal phthalocyanine is poorly soluble in various organic solvents, so side chains (butyl groups, vinyl groups, etc.) must be removed. Although thin films using soluble phthalocyanine have been created, the reproducibility of the data is not very good, and it is difficult to say that the orientation of the metal phthalocyanine in the thin film is uniform.

本発明は、現在知られている金属フタロシアニン薄膜よ
りも、その構造を制御しやすい超薄膜の金属フタロシア
ニンの超薄膜を得ることを目的とするものである。
An object of the present invention is to obtain an ultra-thin metal phthalocyanine film whose structure is easier to control than the currently known metal phthalocyanine thin films.

問題点を解決するための手段 本発明は上記目的を達成するもので、金属7タロシアニ
ンと金属フタロシアニンの中心金属と絶位しうる1分子
または2分子のリガンドからなる錯体を水面上に展開し
、生成した単分子膜を基板上に累積することによって得
られる薄膜であシ、これにより、従来よりもその分子配
向等の構造を制御しやすい薄膜が得られる。
Means for Solving the Problems The present invention achieves the above-mentioned object by developing a complex consisting of a metal 7-thalocyanine and one or two molecules of ligand capable of disarticulating with the central metal of the metal phthalocyanine on the water surface, A thin film is obtained by accumulating the produced monomolecular film on a substrate, thereby making it possible to obtain a thin film whose structure such as molecular orientation can be more easily controlled than in the past.

作用 一般に、分子性結晶は、その気体状態あるいは溶液状態
に比べ、分子間の相互作用が強く、金属フタロシアニン
のような色素であれば、その光吸収スペクトル等の物性
が変化する。したがって、分子配向を任意に制御するこ
とができれば、その物性を任意に変化させることができ
るはずである。
Function Generally speaking, molecular crystals have stronger interactions between molecules than in their gaseous or solution states, and in the case of dyes such as metal phthalocyanine, their physical properties such as their light absorption spectrum change. Therefore, if the molecular orientation can be controlled arbitrarily, it should be possible to arbitrarily change the physical properties.

前に述べた従来の方法に依れば、金属フタロシアニンは
比較的短い側鎖を持つだけであシ、分子配向を任意に変
化させることは比較的難しく、したがって、その物性を
大きく変化させることは非常に難しいと言える。実際、
従来の方法で、金属フタロシアニンの配向状態を大きく
変化させたという報告は未だに無い。
According to the conventional method mentioned above, metal phthalocyanine only has a relatively short side chain, and it is relatively difficult to arbitrarily change the molecular orientation, so it is difficult to change its physical properties significantly. It can be said that it is extremely difficult. actual,
There is no report yet that the orientation state of metal phthalocyanine is significantly changed by conventional methods.

本発明に依れば、金属フタロシアニンに種々のりガント
を配位させることによって、リガントガスペーサ−とな
り、金属フタロシアニン同士の相互作用を変化させるこ
とができ、更に、金属フタロシアニンとリガンドとの相
互作用が加わることKよって、その相互作用は多様に変
化しうる、また、累積時の表面圧等を変化させることに
よって種々の配向状態を実現できる。
According to the present invention, by coordinating various adhesives to metal phthalocyanine, it becomes a ligand gas spacer, and the interaction between the metal phthalocyanines can be changed, and furthermore, the interaction between the metal phthalocyanine and the ligand can be changed. Depending on the amount of K applied, the interaction can be varied in various ways, and various orientation states can be realized by changing the cumulative surface pressure and the like.

実施例 以下に本発明の代表的な実施例を示す。Example Representative examples of the present invention are shown below.

〈実施例1〉 鉄フタロシアニンを大過剰のピリジン中に溶かし込んで
加熱し、鉄フタロシアニン−(ピリジン)2錯体を合成
した。
<Example 1> Iron phthalocyanine was dissolved in a large excess of pyridine and heated to synthesize an iron phthalocyanine-(pyridine) 2 complex.

これを、クロロホルムに溶かして0.3 mg/cc溶
液ぺし、これを2回蒸留水をサブ7エーズとする水面上
に展開し、表面圧−面積特性を測定したところ、1分子
当シの極限占有面積は約90にであった。これを表面圧
約22dYn/cmでガラス基板上に累積を行ない、X
線回折の測定を行なった所、累積膜の面間隔は18Aと
なシ、この結果と極限占有面積の値から、フタロシアニ
ン分子は、ガラス基板に対して約30度の傾きをもって
配向していることがわかった。
This was dissolved in chloroform to make a 0.3 mg/cc solution, and this was spread on the surface of sub-7A double-distilled water, and the surface pressure-area characteristics were measured. The ultimate occupied area was approximately 90 mm. This was accumulated on a glass substrate at a surface pressure of about 22 dYn/cm, and
Linear diffraction measurements showed that the interplanar spacing of the cumulative film was 18A, and from this result and the value of the ultimate occupied area, the phthalocyanine molecules were oriented at an angle of about 30 degrees with respect to the glass substrate. I understand.

〈実施例2〉 鉄フタロシアニンを過剰のn−ブチルアミンと反応させ
、(n−ブチルアミン)2−鉄フタロシアニン錯体を合
成した。
<Example 2> Iron phthalocyanine was reacted with excess n-butylamine to synthesize a (n-butylamine)2-iron phthalocyanine complex.

これをクロロホルムに溶かして0.3 mg/cC溶液
とし、これを2回蒸留水をサブフェーズとする水でガラ
ス基板上に累積を行ない、X線回折の測定を行なった所
、累積膜の面間隔は約8J3 Aであシ、この結果と極
限占有面積の値から、7タロシアニン分子は基板に対し
て約65度の傾きをもって配向していると考えられる。
This was dissolved in chloroform to make a 0.3 mg/cC solution, which was accumulated on a glass substrate with double distilled water as a subphase. When X-ray diffraction was measured, the surface of the accumulated film was The spacing is approximately 8J3 A, and from this result and the value of the ultimate occupied area, it is considered that the 7 thalocyanine molecules are oriented with an inclination of approximately 65 degrees with respect to the substrate.

発明の効果 以上要するに本発明は、金属フタロシアニンの中心金属
に1分子または2分子のリガンドを配位た錯体を展開し
て単分子膜をつくり、これを基板上に累積させることに
より、従来の金属フタロシアニン分子膜よりも容易に構
造の制御された金属7タロシアニンLB膜を得ることが
できた。
Effects of the Invention In short, the present invention develops a complex in which one or two molecules of ligand are coordinated to the central metal of a metal phthalocyanine to form a monomolecular film, and by accumulating this on a substrate, it is possible to It was possible to obtain a metal 7-thalocyanine LB film with a more controlled structure than a phthalocyanine molecular film.

Claims (1)

【特許請求の範囲】[Claims] 金属フタロシアニンと、前記金属フタロシアニンの中心
金属と配位しうるリガンドとからなり、金属フタロシア
ニン1分子に対して配位しうるリガンドが1分子または
2分子であるところの錯体化合物を水面上に展開するこ
とによって生成された単分子膜を基板上に累積して得ら
れる金属フタロシアニン薄膜。
A complex compound consisting of a metal phthalocyanine and a ligand capable of coordinating with the central metal of the metal phthalocyanine, with one or two molecules of the ligand capable of coordinating with one molecule of the metal phthalocyanine, is developed on the water surface. Metal phthalocyanine thin film obtained by accumulating the monomolecular film produced by this method on a substrate.
JP61188148A 1986-08-11 1986-08-11 Metal phthalocyanine thin film Pending JPS6345701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61188148A JPS6345701A (en) 1986-08-11 1986-08-11 Metal phthalocyanine thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61188148A JPS6345701A (en) 1986-08-11 1986-08-11 Metal phthalocyanine thin film

Publications (1)

Publication Number Publication Date
JPS6345701A true JPS6345701A (en) 1988-02-26

Family

ID=16218588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61188148A Pending JPS6345701A (en) 1986-08-11 1986-08-11 Metal phthalocyanine thin film

Country Status (1)

Country Link
JP (1) JPS6345701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119012U (en) * 1991-02-04 1992-10-23 日之出水道機器株式会社 Waterproof sealing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119012U (en) * 1991-02-04 1992-10-23 日之出水道機器株式会社 Waterproof sealing material

Similar Documents

Publication Publication Date Title
Elbert et al. Hydrophilic spacer groups in polymerizable lipids: formation of biomembrane models from bulk polymerized lipids
US4828917A (en) Layer of metallomacrocyclic polymer on substrate
Hann Molecular structure and monolayer properties
DE3710569C2 (en)
JPH06211997A (en) Layer element and its preparation
US4968524A (en) Process for producing a polyacetylene
JPS6345701A (en) Metal phthalocyanine thin film
US4886685A (en) Layer elements and their production
Kawabata et al. Formation and deposition of monolayers of amphiphilic β-cyclodextrin derivatives
Endisch et al. Monomolecular Leaflets of 2, 8, 12, 18-Tetraethyl-3, 7, 13, 17-tetrapyridin-4-ylporphyrin in Bulk Aqueous Media
Kenny et al. Organized monolayers of polycyclic aromatic quinones
Yamagishi et al. Stereochemical effects on monolayer formation of a chiral amphiphilic ruthenium (III) complex
Davis et al. Langmuir and Langmuir-Blodgett films of poly (vinylpyridine) s quaternized with long-chain alkyl halides
BARRAUD et al. NONLINEAR OPTICAL PROPERTIES OF ORGANIC MOLECULES AND CRYSTALS, VOL.
JPS6344963A (en) Metal phthalocyanine membrane
DE69123371T2 (en) Method for producing an optical recording medium
Carter et al. Clay modified electrodes: Part VII. The electrochemical behavior of tetrathiafulvalenium-montmorillonite modified electrodes
Sun et al. A Comparative Langmuir− Blodgett Study on a Set of Covalently Linked Porphyrin-Based Amphiphiles: A Detailed Atomic Force Microscopic Study
US5304583A (en) Process for producing polyacetylene or polyacene type long conjugated polymers
Berzina et al. Langmuir-Blodgett films of bipolar lipids from thermophilic archaea
JPH0348842A (en) Manufacture of optical recording medium
Kobayashi et al. Monolayers and Langmuir-Blodgett films of amphiphilic tetracyano ruthenium (II) complex: towards two-dimensional Prussian Blue analogue
Samha Preparation and characterization of novel Langmuir-Blodgett (LB) films of transition metal complexes
Sotnikov et al. Deposition peculiarities of Langmuir-Blodgett films of some charge transfer salts
JP2589845B2 (en) Method for producing photochromic thin film