JPS634568A - Manufacture of alkali secondary battery - Google Patents

Manufacture of alkali secondary battery

Info

Publication number
JPS634568A
JPS634568A JP61147094A JP14709486A JPS634568A JP S634568 A JPS634568 A JP S634568A JP 61147094 A JP61147094 A JP 61147094A JP 14709486 A JP14709486 A JP 14709486A JP S634568 A JPS634568 A JP S634568A
Authority
JP
Japan
Prior art keywords
positive electrode
nickel
active material
nickel hydroxide
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61147094A
Other languages
Japanese (ja)
Inventor
Koji Isawa
石和 浩二
Kenji Kurihara
栗原 賢次
Kenichi Ochiwa
小知和 謙一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP61147094A priority Critical patent/JPS634568A/en
Publication of JPS634568A publication Critical patent/JPS634568A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain an alkali secondary battery which can be easily manufactured and has good charge and discharge characteristics by blending cobalt powder by 10-30wt% with nickel hydroxide for manufacturing a positive electrode, and by making both electrodes, in the state of being unformed, wound, inserted into a can, injected with an electrolyte and sealed. CONSTITUTION:The secondary battery comprises paste electrodes of nickel hydroxide as an active material for a positive electrode and cadmium oxide as an active material for a negative electrode. Metal cobalt powder is blended with the active material fur the positive electrode by 10-30wt% of nickel hydroxide, and a battery is manufactured by making separately manufactured positive and negative electrodes, in the state of being unformed, wound, inserted into a can, injected with an electrolyte and sealed. Then the battery is charged and discharged. A preferable range of precharge quantity differs depending on specific capacity ratio, but it is generally 20-50% of the capacity of the nickel positive electrode. When this is applied to blending quantity of cobalt, it is 10-30wt% of nickel hydroxide.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアルカリ二次電池の製造法に関し、さらに詳し
くは、水酸化ニッケルを正極活物質とするペースト式正
極と、酸化カドミウムを負極活物質とするペースト式負
極とからなる二次電池であって、ペースト状活物質充填
後の両極の化成処理が不要であシ、かつ良好な充放電特
性を有するアルカリ二次電池に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an alkaline secondary battery, and more specifically, it relates to a method for manufacturing an alkaline secondary battery, and more specifically, a paste-type positive electrode using nickel hydroxide as a positive electrode active material, and a paste-type positive electrode using cadmium oxide as a negative electrode active material. The present invention relates to an alkaline secondary battery comprising a paste type negative electrode, which does not require chemical conversion treatment of both electrodes after filling with a paste active material, and has good charge/discharge characteristics.

〔従来の技術〕[Conventional technology]

従来、ニッケルカドミウム電池と呼ばれる7/’L。 Conventionally, 7/'L is called a nickel-cadmium battery.

カリ二次電池のニッケル正極、カドミウム負極は、カー
ボニルニッケルを成形、焼結して得られた基板に、硝酸
ニッケルあるいは硝酸カドミウムの水溶液を含浸し、つ
いでアルカリ液中で硝酸ニッケルあるいは硝酸カドミウ
ムを、それぞれ水酸化ニッケルあるいは水酸化カドミウ
ムに転化せしめることによって製造された焼結方式を使
用することが一般的であった。しかしこの状態では、基
板中になお少量の硝酸根が存在しているため、これを除
去するため、アルカリ液中にて充放電を繰返すいわゆる
化成処理を行なっている。これらの工程は極めて複雑で
あシ、経済的でない。そこでこの焼結方式に代るものと
して、水酸化ニッケルあるいは酸化カドミウム等の直接
活物質となシ得る物itペースト化し、パンチトメタル
、金網等の二次元的基板、あるいは発泡ニッケル、金属
繊維焼結体等の三次元的基板に直接充填塗布して得られ
るペースト方式が提案され、−部使用されている。
Nickel positive electrodes and cadmium negative electrodes for potassium secondary batteries are made by forming and sintering carbonyl nickel, impregnating a substrate with an aqueous solution of nickel nitrate or cadmium nitrate, and then adding nickel nitrate or cadmium nitrate in an alkaline solution. It has been common to use sintering methods produced by conversion to nickel hydroxide or cadmium hydroxide, respectively. However, in this state, a small amount of nitrate radicals still exist in the substrate, so in order to remove them, a so-called chemical conversion treatment is performed in which charging and discharging are repeated in an alkaline solution. These processes are extremely complex and uneconomical. Therefore, as an alternative to this sintering method, materials that can be directly used as active materials, such as nickel hydroxide or cadmium oxide, are made into an IT paste, and two-dimensional substrates such as punched metal, wire mesh, or nickel foam and sintered metal fibers are used. A paste method obtained by directly filling and coating a three-dimensional substrate such as a solid body has been proposed and has been used in some cases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ペースト方式で製造された正負極中には、自己放電の原
因となる硝酸根等の不純物が混入しないため、焼結方式
のようにアルカリ液中で充放電を行なわなくとも電極と
して使用できる。しかし電池に組込む際、負極は正極に
比べて、ある程度充電状態でなくてはならなかった。こ
れは放電容量を長期にわたって、正極支配状態に置くた
めであり、この負極の充電量をプリチャージ量と言う。
Since the positive and negative electrodes manufactured by the paste method do not contain impurities such as nitrate radicals that cause self-discharge, they can be used as electrodes without charging and discharging in an alkaline solution unlike the sintering method. However, when assembled into a battery, the negative electrode had to be in a somewhat more charged state than the positive electrode. This is to keep the discharge capacity in a positive electrode dominated state for a long period of time, and the amount of charge of this negative electrode is called the precharge amount.

水酸化ニッケルを正極活物質、酸化カドミウムを負極活
物質として使用した場合、電極製造時においては、正負
極とも完全放電状態であり、この状態では電池に組込む
ことができないため、負極のみアルカリ液中で充電を行
なって、プリチャージ部分を設けており、そのため工程
が焼結方式と同様に複雑なものとなっていた。
When nickel hydroxide is used as the positive electrode active material and cadmium oxide as the negative electrode active material, both the positive and negative electrodes are in a fully discharged state at the time of electrode manufacture, and they cannot be incorporated into a battery in this state, so only the negative electrode is placed in an alkaline solution. A pre-charging section was provided, making the process as complicated as the sintering method.

本発明は従来のかかる問題を解消し、水酸化ニッケルを
正極活物質とするペースト式正極と、酸化カドミウムを
負極活物質とするペースト式負極からなる二次電池であ
って、両極とも化成処理が不要なアルカリ二次電池の提
供を目的とする。
The present invention solves this conventional problem and provides a secondary battery consisting of a paste type positive electrode using nickel hydroxide as the positive electrode active material and a paste type negative electrode using cadmium oxide as the negative electrode active material, both electrodes being chemically treated. The purpose is to provide unnecessary alkaline secondary batteries.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は上記目的を達成すべく鋭意研究を亘ねる中で
、ニッケル正極を製造する際、ペースト状活物質中に水
酸化ニッケルと共に、プリチャージ相当分の金属コバル
ト粉末を配合すれば良いとの着想を得、実際に使用した
ときに優れた効果が得られることを確認して、本発明を
完成するに至った。
In order to achieve the above object, the present inventor conducted intensive research and found that when manufacturing a nickel positive electrode, it is sufficient to mix metal cobalt powder equivalent to the precharge amount with nickel hydroxide in the paste active material. The present invention was completed after obtaining the idea and confirming that excellent effects can be obtained when actually used.

すなわち、本発明のアルカリ二次電池は、水酸化ニッケ
ルを正極活物質、酸化カドミウムを負極活物質とするペ
ースト式電極からなる二次電池であって、正極活物質中
に金属コバルト粉末を、水酸化ニッケル量の10〜30
重量%配合してお夛、各々製造した正負極を、化成処理
を行なわずに、巻回、缶挿入、電解液注入、密閉化して
電池を製造したのち、電池状態で充放電を行なうことを
特徴としている。
That is, the alkaline secondary battery of the present invention is a secondary battery consisting of a paste type electrode using nickel hydroxide as a positive electrode active material and cadmium oxide as a negative electrode active material, and in which metal cobalt powder is mixed with water in the positive electrode active material. Nickel oxide amount of 10 to 30
After mixing the positive and negative electrodes by weight%, winding them, inserting them into a can, injecting an electrolyte, and sealing them without chemical conversion treatment to manufacture a battery, the battery is charged and discharged in the battery state. It is a feature.

〔作用〕[Effect]

コバルト粉末をニッケル正極に添加した場合、活物質で
ある水酸化ニッケルの利用率が向上するが、その理由は
充電時にβ−Ni(oH)、が可逆性の大きい、y−N
iooHに充電されたのち、可逆性の小さい高次酸化物
であるγ−NiOOHに転化するのを抑える働きがある
ためである。同時ンζコバルトは金属と2価間の可逆性
が非常に小さく、金属コバルトは容易に水酸化コバルト
に酸化されるが、水酸化コバルトは金属コバルトにほと
んど還元されない。
When cobalt powder is added to the nickel positive electrode, the utilization rate of the active material nickel hydroxide improves, but this is because β-Ni(oH) is highly reversible during charging,
This is because, after being charged to iooH, it has the function of suppressing conversion to γ-NiOOH, which is a higher-order oxide with low reversibility. Cobalt has very low reversibility between metal and divalent cobalt, and metallic cobalt is easily oxidized to cobalt hydroxide, but cobalt hydroxide is hardly reduced to metallic cobalt.

よって、水酸化ニッケル中に金属コバルトを配合してニ
ッケル正極を作成した場合、最初の充電時には、第1図
のように、水酸化ニッケルの充電電位B (Nl (O
H)z→Nj00H)に先立って、+1.0VvsCd
/Cd”+付近の電位Aで、金属コバルトの酸化(Co
→Co(OHt))が見られる。反面放電時には水酸化
コバルトの反応がないため、オキシ水酸化ニッケルの放
電電位C(N 1oOH−+ N i (OH)z )
のみが見られる。そこで、酸化カドミウムを負極活物質
とするペースト式カドミウム負極と、該ニッケル正極と
組合せて充1i!Lを行なった場合、カドミウム陰極は
、コバルトの酸化および水散化ニッケルの充電に使用さ
れた合計の容量が充電されるが、放電時はオキシ水酸化
ニッケルの放電しか行なわれないため、充電時にコバル
ト酸化に使用された容量がプリチャージ量として、カド
ミウム負極に残留することになる。好ましいプリチャー
ジ量の範囲は、正極と負極の固有容量比によって異るが
、−般にニッケル正極容量の20〜50%であ夛、これ
をコバルト配合量に適用すると、水酸化ニッケルとの重
量比で10〜30重量%という値になる。プリチャージ
量が小さすぎると、充放t’を繰返してカドミウム負極
が不活性化して容量減少した際に1負極が正極よシ先に
完全放電状態となる容量負極支配の状態罠なってしまう
。反面プリチャージ量が過大であると、同様にカドミウ
ム負極が容量減少した際、負極が正極よシも先に完全充
電状態となってしまい、電池内で吸収できない水素ガス
を発生し、電池内圧を著しく高めてしまう等の不具合が
ある。
Therefore, when a nickel positive electrode is created by blending metallic cobalt into nickel hydroxide, the charging potential of nickel hydroxide B (Nl (O
H) z→Nj00H), +1.0V vs Cd
/Cd''+ oxidation of metal cobalt (Co
→Co(OHt)) can be seen. On the other hand, since there is no reaction of cobalt hydroxide during side discharge, the discharge potential of nickel oxyhydroxide C (N1oOH-+Ni(OH)z)
only can be seen. Therefore, a paste-type cadmium negative electrode using cadmium oxide as the negative electrode active material was combined with the nickel positive electrode to achieve 1i! When performing L, the cadmium cathode is charged with the total capacity used for cobalt oxidation and dispersion of nickel, but only nickel oxyhydroxide is discharged during discharging, so when charging The capacity used for cobalt oxidation remains in the cadmium negative electrode as a precharge amount. The preferred range of precharge amount varies depending on the specific capacitance ratio of the positive electrode and negative electrode, but it is generally 20 to 50% of the nickel positive electrode capacity, and if this is applied to the cobalt content, the weight with nickel hydroxide The ratio is 10 to 30% by weight. If the precharge amount is too small, when charging and discharging t' are repeated to inactivate the cadmium negative electrode and the capacity decreases, one negative electrode becomes completely discharged before the positive electrode, resulting in a state where the negative electrode dominates the capacity. On the other hand, if the precharge amount is too large, when the capacity of the cadmium negative electrode decreases, the negative electrode will reach a fully charged state before the positive electrode, generating hydrogen gas that cannot be absorbed within the battery, causing the internal pressure of the battery to decrease. There are problems such as a marked increase in the temperature.

〔実施例〕〔Example〕

(1)  本発明のアルカリ二次電池、の製造法の実施
例水酸化ニッケル1003に対し、金属コバルト粉末5
,9,10g、20.!i’、30.!i’、40.9
を各々配合した活物質をペースト化し、これを発泡ニッ
ケル基板に塗布、乾燥、加圧を行ないペースト式ニッケ
ル正極を得た。また酸化カドミウムをペースト化し、パ
ンチトメタルに塗布、IIi、燥、加圧を行なって、ペ
ースト式カドミウム負極を得た。ニッケル正極容量】に
対し、カドミウム負極容量が2となるように、両極を切
断加工したのち、未化成の状態でセパレータを介して巻
回し、缶挿入、電解液注入、密閉化を行ない、単3サイ
ズのアルカリ二次電池を製造した。電池を60mAの電
流で24時間充電した後、120 mAの電流で放電を
行ない、正負極活物質の活性化を行なった。
(1) Example of the manufacturing method for the alkaline secondary battery of the present invention: 1003 nickel hydroxide, 55% metal cobalt powder
,9,10g,20. ! i', 30. ! i', 40.9
The active materials containing each of these were made into a paste, and this was applied onto a foamed nickel substrate, dried, and pressed to obtain a paste-type nickel positive electrode. Further, cadmium oxide was made into a paste, applied to a punched metal, dried, and pressurized to obtain a paste-type cadmium negative electrode. After cutting both electrodes so that the capacity of the cadmium negative electrode is 2 compared to the capacity of the nickel positive electrode, the electrodes are wound in an unformed state through a separator, inserted into a can, injected with electrolyte, and sealed. An alkaline secondary battery of the same size was manufactured. After charging the battery with a current of 60 mA for 24 hours, it was discharged with a current of 120 mA to activate the positive and negative electrode active materials.

(2)  アルカリ二次電池の充放電特性評価(1)の
方法で製造した各種コバルト配合のアルカリ二次電池に
対して、200mAの電流にて40.5時間充電したの
ち、600mAの電流にて電池電圧1.0■まで放電し
て、】サイクルとする充放電サイクル試験を行なった。
(2) Evaluation of charging and discharging characteristics of alkaline secondary batteries Alkaline secondary batteries containing various cobalt compounds produced by the method in (1) were charged with a current of 200 mA for 40.5 hours, and then with a current of 600 mA. A charge/discharge cycle test was conducted in which the battery was discharged to a voltage of 1.0 ■ and then cycled.

その結果を第2図に示す。コバルト5%配合した電池は
、250サイクル以後徐々に容量低下し、500サイク
ルで初期容量の1/2以下となった。反面コバルト40
%配合した電池は、初期容量から他の電池と比較して容
量が小さいが、これは正極に多量のコバルトを配合した
ため正極活物質である水酸化ニッケルの配合量が少ない
ことによる。この電池は600サイクルで漏液を起こし
たため、試験から除外した。これら劣化の原因は、コバ
ルト5%の場合は、サイクル途中に放電容量が負極支配
となシ、徐々に容量減少したためである。またコバルト
40%の場合は、サイクル途中に充電時負極より水素発
生を起こし、電池内圧が上昇したためと思われる。それ
以外のコバルト粉末10〜30重量%配合したニッケル
正極を組込んだ電池は、700サイクルまでは良好な充
放′WL%性が得られた。これはコバルト配合による負
極プリチャージ量が適正であったためと思われる。
The results are shown in FIG. The capacity of the battery containing 5% cobalt gradually decreased after 250 cycles, and reached 1/2 or less of the initial capacity after 500 cycles. On the other hand, cobalt 40
The initial capacity of the batteries containing 100% of nickel hydroxide is smaller than that of other batteries, but this is because a large amount of cobalt is blended into the positive electrode, resulting in a small amount of nickel hydroxide, which is the positive electrode active material. This battery leaked after 600 cycles and was excluded from the test. The cause of these deteriorations is that in the case of 5% cobalt, the discharge capacity was dominated by the negative electrode during the cycle, and the capacity gradually decreased. Moreover, in the case of 40% cobalt, it is thought that hydrogen was generated from the negative electrode during charging during the cycle, and the internal pressure of the battery increased. Other batteries incorporating a nickel positive electrode containing 10 to 30% by weight of cobalt powder had good charge/discharge WL% properties up to 700 cycles. This seems to be because the amount of negative electrode precharge due to the cobalt content was appropriate.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、正極にコバルト粉末を
水酸化ニッケルに対し10〜30重量%配合し、両極と
も未化成状態で巻回、缶挿入、電解液注入、密閉化を行
なった本発明のアルカリ二次電池は、容易な製造方法で
あり、かつ良好な充放電特性を有する浸れたものである
As is clear from the above description, the present invention involves mixing 10 to 30% by weight of cobalt powder with respect to nickel hydroxide in the positive electrode, and winding, inserting into a can, injecting electrolyte, and sealing both electrodes in an unformed state. The alkaline secondary battery is a submerged one which is easy to manufacture and has good charge and discharge characteristics.

【図面の簡単な説明】 第1図は本発明のニッケル正極の充放電時のCdに対す
る電位図で、放電容量を100Sとした時の各充放’I
C電気量の電位曲線である。第2図は金属コバルト粉末
を各種配合したニッケル正極を組込んだアルカリ二次電
池の充放電サイクルに対する放電々気量の変化図である
。 人・・・Coの充電4位
[Brief explanation of the drawings] Fig. 1 is a potential diagram for Cd during charging and discharging of the nickel positive electrode of the present invention, and shows the potential diagram for each charge and discharge when the discharge capacity is 100S.
It is a potential curve of C quantity of electricity. FIG. 2 is a diagram showing changes in the amount of discharged air with respect to charge/discharge cycles of an alkaline secondary battery incorporating a nickel positive electrode containing various types of metal cobalt powder. People...Co charging 4th place

Claims (1)

【特許請求の範囲】[Claims] 水酸化ニッケルの正極活物質に、金属コバルト粉末を水
酸化ニッケルに対して10〜30重量%配合してなるペ
ースト式正極と、酸化カドミウムを負極活物質とするペ
ースト式負極とから構成され、両極とも未化成の状態で
巻回、缶挿入、電解液注入、密閉化により電池としたの
ち、該電池を充放電して正負極活物質の活性化を行なう
ことを特徴とするアルカリ二次電池の製造法。
It consists of a paste-type positive electrode made of a nickel hydroxide positive electrode active material mixed with metallic cobalt powder in an amount of 10 to 30% by weight based on nickel hydroxide, and a paste-type negative electrode made of cadmium oxide as a negative electrode active material. An alkaline secondary battery characterized by forming a battery in an unformed state by winding, inserting a can, injecting an electrolyte, and sealing, and then charging and discharging the battery to activate positive and negative electrode active materials. Manufacturing method.
JP61147094A 1986-06-25 1986-06-25 Manufacture of alkali secondary battery Pending JPS634568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61147094A JPS634568A (en) 1986-06-25 1986-06-25 Manufacture of alkali secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61147094A JPS634568A (en) 1986-06-25 1986-06-25 Manufacture of alkali secondary battery

Publications (1)

Publication Number Publication Date
JPS634568A true JPS634568A (en) 1988-01-09

Family

ID=15422342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61147094A Pending JPS634568A (en) 1986-06-25 1986-06-25 Manufacture of alkali secondary battery

Country Status (1)

Country Link
JP (1) JPS634568A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284333A2 (en) * 1987-03-25 1988-09-28 Matsushita Electric Industrial Co., Ltd. Sealed type nickel-hydride battery and production process thereof
US5212261A (en) * 1990-12-17 1993-05-18 Henkel Research Corporation Latent, heat-curable epoxy resin compositions containing metal carboxylate curing systems
JPH0737610A (en) * 1992-12-10 1995-02-07 Furukawa Battery Co Ltd:The Manufacture of sealed alkaline storage battery using paste type nickel positive electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284333A2 (en) * 1987-03-25 1988-09-28 Matsushita Electric Industrial Co., Ltd. Sealed type nickel-hydride battery and production process thereof
US5212261A (en) * 1990-12-17 1993-05-18 Henkel Research Corporation Latent, heat-curable epoxy resin compositions containing metal carboxylate curing systems
JPH0737610A (en) * 1992-12-10 1995-02-07 Furukawa Battery Co Ltd:The Manufacture of sealed alkaline storage battery using paste type nickel positive electrode

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
US5405714A (en) Method for activating an alkaline storage cell employing a non-sintered type nickel positive electrode
JP4556315B2 (en) Alkaline storage battery
JPS62287568A (en) Manufacture of alkaline storage battery
JPH08222213A (en) Alkaline storage battery and its manufacture
JPS634568A (en) Manufacture of alkali secondary battery
JPH0221098B2 (en)
JPH0247824B2 (en)
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP5399285B2 (en) Manufacturing method of nickel metal hydride storage battery
JP3663071B2 (en) Sealed alkaline zinc storage battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2003077469A (en) Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JPH02267872A (en) Manufacture of metal-hydrogen alkaline storage battery
JP2001266886A (en) Non-sintering type positive electrode for alkaline storage battery and alkaline storage battery
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2003031216A (en) Method of manufacturing nickel positive electrode and method of manufacuring alkaline storage battery
JPH02262244A (en) Sealed alkaline battery
JP4120762B2 (en) Nickel electrode and nickel metal hydride storage battery using the same
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate