JPS6345390A - Production of high purity copper by electrolytic refining - Google Patents

Production of high purity copper by electrolytic refining

Info

Publication number
JPS6345390A
JPS6345390A JP61188254A JP18825486A JPS6345390A JP S6345390 A JPS6345390 A JP S6345390A JP 61188254 A JP61188254 A JP 61188254A JP 18825486 A JP18825486 A JP 18825486A JP S6345390 A JPS6345390 A JP S6345390A
Authority
JP
Japan
Prior art keywords
electrolytic
copper
anode
soln
electrolytic refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61188254A
Other languages
Japanese (ja)
Inventor
Naoyuki Hosoda
細田 直之
Makoto Kinoshita
真 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP61188254A priority Critical patent/JPS6345390A/en
Publication of JPS6345390A publication Critical patent/JPS6345390A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To produce high purity copper nearly free from S and other impurities by enclosing the anode of crude electrolytic copper with porous plastics, keeping the concn. of sulfuric acid in an electrolytic soln. low and carrying out electrolytic refining. CONSTITUTION:The anode 3 of crude electrolytic copper is enclosed with an anode bag 5 made of a thin porous plastic film having <=1.0mum pore size. A temp. sensor 8 and a heater 9 placed in a thermostatic bath 1 are connected to a temp. controller C and the temp. of a soln. in the thermostatic bath 1 and that of an electrolytic soln. 6 in an electrolytic cell 2 are kept constant. The concn. of sulfuric acid in the electrolytic soln. 6 is regulated to 5-50g/l and the soln. 6 is circulated with a circulator B. A current controller A is connected to the anode 3 and the cathode 4 and electrolytic refining is carried out at a prescribed current density. Thus, high purity copper can be produced at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ICやトランジスター等の半導体装置のボ
ンディングワイヤ等に使用される高純度銅素材の電解精
製による製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a high-purity copper material used for bonding wires of semiconductor devices such as ICs and transistors by electrolytic refining.

〔従来の技術〕[Conventional technology]

一股に、高純度銅を得る方法としては、(a)硫酸、硫
酸銅混合水溶液中で、電気銅粗銅を陽極とし、種板とし
ての銅箔板を陰極として電解精製全行ない、このように
して得た電気銅をさらに1回〜数回電解精製を繰り返す
ことにより高純度電気銅を得る方法、 Φ)硫酸、硫酸銅混合水溶液中で電解精製して得た電気
銅を、さらにゾーンリファイニング法によシ精製を行な
う方法(特開昭60−244054号公報参照)、 等が知られている。
As a method for obtaining high-purity copper at once, (a) electrolytic refining is carried out in a mixed aqueous solution of sulfuric acid and copper sulfate, using electrolytic blister copper as an anode and a copper foil plate as a seed plate as a cathode. A method for obtaining high-purity electrolytic copper by repeating electrolytic refining one to several times. A method of purification by method (see Japanese Patent Application Laid-Open No. 60-244054) is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記(a)の電解精製を繰シ返す方法では、陽
極と陰極とを隔離していないため、スライムが液中に分
散浮遊し、これが陰極に付着する定めに精製後の不純物
全体の濃度が十分に低下せず、しかも、電解液中の硫酸
濃度が、通常150〜200y/l  であるように電
解液中の83度が高いので、電解精製を何度繰り返して
も陰啄析出銅中のS濃度は1 ppm程度までしか低下
しない。このように不純物全体の@度が十分に低下しな
いと電気伝導度および硬さに影響を及ぼすが、不純物の
中でも特てSは銅の硬さに大きな影響?与え、硬さ全土
げる働きがある。この結果、従来の電解精製により製造
した高純度銅は、ピンカース硬さで35以上となるため
、ボンディングワイヤとして用い次場合、結線時にゼン
デ・rングダメージを与えることが多く、ボンディング
ワイヤの素材として用いることは困難であった。
However, in the method of repeating electrolytic refining in (a) above, since the anode and cathode are not isolated, the slime is dispersed and suspended in the liquid and adheres to the cathode, resulting in the overall concentration of impurities after purification. Moreover, the concentration of sulfuric acid in the electrolyte is usually 150 to 200 y/l, and the temperature in the electrolyte is high, so no matter how many times the electrolytic refining is repeated, The S concentration in this case decreases only to about 1 ppm. In this way, if the @ degree of all impurities is not sufficiently reduced, it will affect the electrical conductivity and hardness, but among impurities, does S in particular have a large effect on the hardness of copper? It has the function of giving and increasing the hardness of the entire body. As a result, high-purity copper produced by conventional electrolytic refining has a Pinkers hardness of 35 or higher, so when used as a bonding wire, it often causes bending damage during connection, so it is not suitable as a bonding wire material. It was difficult to use.

このような問題点を解決すべく開発された方法が上記(
ト))に示した方法で、電解精製して得た電気銅を、さ
らにゾーンリファイニングする方法テするが、かかる方
法は、電解精製とゾーンリファイニングの2工程全含み
、製造工程も複雑で非常にコストがかかるので好ましく
ない。
The method developed to solve these problems is described above (
There is a method of further zone refining the electrolytic copper obtained by electrolytic refining using the method shown in g)), but this method involves two steps, electrolytic refining and zone refining, and the manufacturing process is complicated. This is not preferred because it is very costly.

〔問題点全解決する念めの手段〕[A precautionary measure to resolve all problems]

そこで、本発明者等は、コストのかからない電解精製工
程のみによシ、Sおよびその他の不純物が極めて少ない
高純度銅素材を製造すべく研究を行なった結果、 電気銅粗銅(純度: 99.99%以下)を陽極として
電解8f裂するに当り、上記電気銅粗銅の1陽極を多孔
質合成樹脂で覆い、かつ電解液中の硫酸濃度を低く保持
すると、Sおよびその池の不純物の極めて少い高純度電
気銅(純度: 99.999 s%以上)を得ることが
できるという知見を得たのでちる。
Therefore, the inventors of the present invention conducted research to produce a high-purity copper material with extremely low levels of S, S, and other impurities through an inexpensive electrolytic refining process, and as a result, produced electrolytic copper blister (purity: 99.99). % or less) as an anode, if one anode of the electrolytic copper blister is covered with a porous synthetic resin and the sulfuric acid concentration in the electrolyte is kept low, S and impurities in the pond can be extremely reduced. We have obtained the knowledge that high purity electrolytic copper (purity: 99.999 s% or more) can be obtained.

この発明は、上記知見にもとづいてなされたものであっ
て、 ポアサイズ:1.0μm以下の多孔質合成樹脂製薄膜で
覆った電気銅粗銅全陽極に用い、硫酸良度:5〜50 
?/l  の電解液中で電触精裂することによυ高純度
銅を得ることに特徴を有するものである。
This invention was made based on the above knowledge, and is used in an electrolytic copper blister all-anode covered with a porous synthetic resin thin film with a pore size of 1.0 μm or less, and has a sulfuric acid quality of 5 to 50.
? It is characterized in that high-purity copper can be obtained by electrocatalytic fission in an electrolytic solution of /l.

つぎに、この発明の方法で多孔質合成樹脂製薄膜のポア
サイズおよび電解液中の硫酸)度を上記の通りに限定し
た理由について説明する。
Next, the reason why the pore size of the porous synthetic resin thin film and the degree of sulfuric acid in the electrolytic solution are limited as described above in the method of the present invention will be explained.

(a)  ポアサイズ 陽極付近に生じたスライム等の不純物が分散遊離して陰
極に達しないように隔離するための隔膜として多孔質合
成樹脂製薄膜を用いた場合、七つ薄膜のポアサイズが大
きい方が電解効率は向上するが、大きすぎると上記隔膜
としての作用全なさなくなり、陰極に生ずる高純度銅の
全不純物がボンディングワ・fヤとして許容されるlp
pm1越える7hめに、上記ポアサイズ’i−j、oμ
m以下とした。
(a) Pore Size When a porous synthetic resin thin film is used as a diaphragm to prevent impurities such as slime generated near the anode from being dispersed and released and reaching the cathode, the larger pore size of the seven thin films is Although the electrolytic efficiency improves, if it is too large, it will not function as a diaphragm at all, and all impurities of high-purity copper generated at the cathode will be reduced to a level that is acceptable as a bonding wire.
At the 7th hour beyond pm1, the above pore size 'i-j, oμ
m or less.

fb)  硫酸濃度 電解精製により得られる高純度胴中のS成分の含有率?
少なくするためには、電解液中の硫酸濃度?できる限り
少なくする必要があるが、その濃度が52/l 未満で
は電解液としての作用が弱くなり電解効率も低下するの
で下限f5?/l  とした。
fb) Sulfuric acid concentration content of S component in high-purity shell obtained by electrolytic refining?
What should I do to reduce the sulfuric acid concentration in the electrolyte? It is necessary to reduce the amount as much as possible, but if the concentration is less than 52/l, the action as an electrolytic solution becomes weak and the electrolytic efficiency decreases, so the lower limit is f5? /l.

一方、電解液の硫酸濃度が50り/l を越えると上記
稍製銅中のS濃度が0.5 ppmを越え、デンディン
グワイヤとして実用に供せるビッカース硬さ°35全越
えるのでその上成金5 Q ?/l  としブと。
On the other hand, if the sulfuric acid concentration in the electrolyte exceeds 50 l/l, the S concentration in the fine copper will exceed 0.5 ppm, and the Vickers hardness for practical use as a bending wire will exceed 35 degrees. 5 Q? /l Toshibu.

〔実箔夕11〕 つぎに、この発明の電解精製による高純度銅の製造方法
を実殉し11 ′Lrこより具体的)て説明する。
[Actual Foil Example 11] Next, the method for producing high-purity copper by electrolytic refining of the present invention will be explained in more detail using an actual example.

この発明の実施例で用いる電解精製装置が、第1図に示
されておシ、恒@槽1内に電解槽2全設置し、恒温槽1
内に設けられた温度センサー8およびヒーター9を液温
制御装置Cに接続し、恒温槽の温度全制御すると同時に
電解槽2内の電解液6の温度全恒温に制御する。上記電
解液6ば、電解液循環装置Bによってたえず循環され、
電解液は孔7から供給される。陽極3および陰極4は、
電流制御装置Aに接続されており、上記陽極3は多孔質
合成樹脂製薄膜からなるアノードパック5で包囲されて
いる。
The electrolytic refining apparatus used in the embodiment of the present invention is shown in FIG.
A temperature sensor 8 and a heater 9 provided inside the electrolytic cell 2 are connected to a liquid temperature control device C to control the entire temperature of the constant temperature bath and, at the same time, control the temperature of the electrolytic solution 6 in the electrolytic cell 2 to a constant temperature. The electrolyte 6B is constantly circulated by an electrolyte circulation device B,
Electrolyte is supplied from hole 7. The anode 3 and the cathode 4 are
It is connected to a current control device A, and the anode 3 is surrounded by an anode pack 5 made of a porous synthetic resin thin film.

上記電解精製装置を用い、 陽極:電気銅粗銅板(純度: 99.99%)。Using the above electrolytic refining device, Anode: Electrolytic copper blister plate (purity: 99.99%).

陰画:チタン板。Negative: titanium plate.

7/−Fノ々ッグ:フロロボア(商品名、住友電工製の
炉布、ポアサイズ:第1表に表示)。
7/-F Nogu: Fluorobor (trade name, furnace cloth manufactured by Sumitomo Electric Industries, pore size: shown in Table 1).

電流密度: 1−5 A/ dm” 。Current density: 1-5 A/dm".

連歌時間:24時間。Renga time: 24 hours.

からなる条件で本発明法1〜10および比軟法1〜4を
実施した。
Methods 1 to 10 of the present invention and specific soft methods 1 to 4 were carried out under the following conditions.

電解gは、硫酸銅結晶を純水に溶解し、Cu:609/
1. H2SO4: 5 ?/lの割合で含有させ、B
e(ボーメ比重計による比重値)埃20の硫酸銅水溶液
全つくり、この硫酸銅水溶液に硫酸を添加して第1表に
示されるように電解液の硫酸濃度をいろいろと変化せし
めた。また、アノートノ々ッグも0.1〜2.0μmの
種々のポアサイズのものを使用した。
In electrolysis, copper sulfate crystals are dissolved in pure water, and Cu:609/
1. H2SO4: 5? B
e (Specific gravity value determined by Baume hydrometer) A complete aqueous solution of copper sulfate of dust 20 was prepared, and sulfuric acid was added to the aqueous solution of copper sulfate to vary the sulfuric acid concentration of the electrolyte as shown in Table 1. Moreover, various pore sizes of 0.1 to 2.0 μm were used for Anot Nog.

かかる条件で電解精製して得た精裂銅の不純物N度を測
定し、さらに、これらの精裂銅を真空溶解し、鋳造して
インゴットとし、これらのインゴットのビッカース硬さ
についても測定し、その結果を第1表に示し念。
The impurity N degree of the finely divided copper obtained by electrolytic refining under these conditions was measured, and the finely divided copper was vacuum melted and cast into ingots, and the Vickers hardness of these ingots was also measured, The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

上記第1表の本発明法1〜10にみられるように、電解
液中の硫酸濃度が5〜50 ?/l の範囲内で、かつ
多孔質合成樹脂製薄膜からなるアノードバッグのポアサ
イズが1.0μm以下である条件下で電解精製して得た
精裂銅のS含有率は0.5ppm以下となり、全不純物
の含有率も1.0 ppm以下となっており、かつビッ
カース硬さもボンディングワイヤとして許容される35
以下となるが、上記硫酸濃度およびポアサイズの一方ま
たは双方ともがこの発明の範囲外にある比較法1〜4で
得られた電解精製鋼は、S含有率が0.5 ppmを越
えるかまたはS含有率が0.5 ppm以下であっても
全不純物含有率が非常に多くなり、ボンディングワイヤ
として許容されるピンカース硬さ:35を越えている。
As seen in methods 1 to 10 of the present invention in Table 1 above, the sulfuric acid concentration in the electrolyte is 5 to 50? /l and the pore size of the anode bag made of a porous synthetic resin thin film is 1.0 μm or less. The S content of finely divided copper obtained by electrolytic refining is 0.5 ppm or less, The total impurity content is 1.0 ppm or less, and the Vickers hardness is 35, which is acceptable as a bonding wire.
However, the electrolytically refined steels obtained by Comparative Methods 1 to 4 in which one or both of the sulfuric acid concentration and pore size are outside the scope of the present invention have an S content of more than 0.5 ppm or an S content of more than 0.5 ppm. Even if the content is 0.5 ppm or less, the total impurity content is extremely high and exceeds the Pinkers hardness of 35, which is acceptable as a bonding wire.

したがって、この発明の方法によれば、IC。Therefore, according to the method of this invention, an IC.

トランジスター等の半導体装置結線用の軟質のゼンデイ
ングワイヤーとして使用することができる高純度銅を、
電解精製工程のみによって製造することができ、この結
果従来よシも安価な製造が可能となう、しかもゼンディ
ングワイ゛ヤ以外の高純度銅利用分野にも適用が可能で
ある等工業上有用な効果をもたらすものである。
High-purity copper that can be used as soft bending wire for connecting semiconductor devices such as transistors.
It can be manufactured using only the electrolytic refining process, and as a result, it can be manufactured at a lower cost than conventional methods.It is also industrially useful, as it can be applied to other fields of high-purity copper use other than shending wire. It brings about a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例で使用された電解精製装置
の断面概略図である。 l・・・恒温槽、      2・・・電解槽、3・・
・陽極、       4・・・陰極、5・・・アノー
トノ々ッグ、 6・・・電解液、7・・・孔、  、 
     8・・・温度センサー、9・・・ヒーター
FIG. 1 is a schematic cross-sectional view of an electrolytic refining apparatus used in an embodiment of the present invention. l... Constant temperature bath, 2... Electrolytic bath, 3...
・Anode, 4...Cathode, 5...Annotnog, 6...Electrolyte, 7...Hole, ,
8...Temperature sensor, 9...Heater

Claims (1)

【特許請求の範囲】[Claims] 電気銅粗銅を陽極として電解精製を行なうに当り、電解
液中の硫酸濃度を5〜50g/lとし、上記陽極をポア
サイズ:1.0μm以下の合成樹脂製薄膜で包囲して電
解精製することを特徴とする電解精製による高純度銅の
製造方法。
When performing electrolytic refining using electrolytic copper blister as an anode, the sulfuric acid concentration in the electrolyte should be 5 to 50 g/l, and the anode should be surrounded by a synthetic resin thin film with a pore size of 1.0 μm or less for electrolytic refining. A method for producing high-purity copper using electrolytic refining.
JP61188254A 1986-08-11 1986-08-11 Production of high purity copper by electrolytic refining Pending JPS6345390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61188254A JPS6345390A (en) 1986-08-11 1986-08-11 Production of high purity copper by electrolytic refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61188254A JPS6345390A (en) 1986-08-11 1986-08-11 Production of high purity copper by electrolytic refining

Publications (1)

Publication Number Publication Date
JPS6345390A true JPS6345390A (en) 1988-02-26

Family

ID=16220469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61188254A Pending JPS6345390A (en) 1986-08-11 1986-08-11 Production of high purity copper by electrolytic refining

Country Status (1)

Country Link
JP (1) JPS6345390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214066B2 (en) 2013-03-15 2019-02-26 Indian Motorcycle International, LLC Two-wheeled vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214066B2 (en) 2013-03-15 2019-02-26 Indian Motorcycle International, LLC Two-wheeled vehicle
US11260712B2 (en) 2013-03-15 2022-03-01 Indian Motorcycle International, LLC Two-wheeled vehicle

Similar Documents

Publication Publication Date Title
JP3102177B2 (en) Manufacturing method of high purity copper
JPS6345390A (en) Production of high purity copper by electrolytic refining
US3406108A (en) Regeneration of spent ammonium persulfate etching solutions
ES306422A1 (en) Method of producing pure nickel by electrolytic refining
JPS63307291A (en) Manufacture of high-purity copper
JP2777955B2 (en) Desilvering or silver recovery method
JPH034629B2 (en)
Andrianne et al. Electrocrystallization of copper in chloride aqueous solutions
JP2622559B2 (en) Manufacturing method of high purity copper
CN111378991A (en) Production method of 5N high-purity copper
JP2594799B2 (en) Manufacturing method of low-purity high-purity electrolytic copper
JP3202375B2 (en) Method for producing potassium dicyanoaurate
US3755111A (en) Elimination of floating slime during electrolytic refining of copper
KR100349445B1 (en) Cementation apparatus of high purity copper
US1542265A (en) Process of making aminosalicylic acid
JPH01139789A (en) Production of high purity electrolytic copper having low silver content
CN112941565B (en) Preparation method of high-purity tin
US3753877A (en) Elimination of floating slime during electrolytic refining of copper
WO2001020062A1 (en) High current density electrolytic decomposition process for copper
JPH0247208A (en) Production of fine high purity silver powder
JPS6230615A (en) Production of copper sulfate
SU1668482A1 (en) Electrolyte composition for electrolytic refining of copper
US214344A (en) Improvement in separating metals by electrolysis
de Kay Thompson Applied electrochemistry
US628676A (en) Charles pollar