JPS6344984B2 - - Google Patents

Info

Publication number
JPS6344984B2
JPS6344984B2 JP17783181A JP17783181A JPS6344984B2 JP S6344984 B2 JPS6344984 B2 JP S6344984B2 JP 17783181 A JP17783181 A JP 17783181A JP 17783181 A JP17783181 A JP 17783181A JP S6344984 B2 JPS6344984 B2 JP S6344984B2
Authority
JP
Japan
Prior art keywords
cylinder
crank
cos
sin
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17783181A
Other languages
Japanese (ja)
Other versions
JPS5881250A (en
Inventor
Kazuo Ooyama
Takashi Kitami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP17783181A priority Critical patent/JPS5881250A/en
Priority to US06/440,031 priority patent/US4519344A/en
Publication of JPS5881250A publication Critical patent/JPS5881250A/en
Publication of JPS6344984B2 publication Critical patent/JPS6344984B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/22Compensation of inertia forces
    • F16F15/24Compensation of inertia forces of crankshaft systems by particular disposition of cranks, pistons, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はV型多気筒内燃機関において、ピスト
ンン等の往復質量部の残存不平衡慣性力による振
動を防止するバランシング構造に関するものであ
る。 従来技術 従来のV型多気筒内燃機関においては、通常、
V型に並ぶ1組の気筒に対してクランクピンを共
通とするために、ピストン等の往復質量部の残存
不平衝慣性力の1次の項をクランクに付けたバラ
ンスウエイトで打ち消すことができるように、シ
リンダー挾角は、V型2気筒、4気筒ならば90゜、
またV型8気筒ならば45゜あるいは90゜と気筒数に
より或る決まつたシリンダー挾角が設定されてい
た。 解決しようとする課題 しかし、シリンダー挾角を任意の値に設定し、
V型に並ぶ1組の気筒に対してクランクピン共通
とすると、バランスウエイトをクランクウエイト
に付設しても、往復質量部の残存不平衝慣性力の
1次の項を消去することができず、振動の面で難
点があつた。 またクランクケース圧縮の2サイクル内燃機関
のようにクランク室を各気筒毎に独立させておく
必要性からクランクピンを共通に使うことができ
ない場合には、前記したようにシリンダー挾角を
所定の値に設定しても、往復質量部の残存不平衡
慣性力による振動を防止することができなかつ
た。 課題を解決するための手段および作用 本発明はこのような難点を克服したV型偶数気
筒内燃機関の改良に係り、一方のシリンダー列の
シリンダー数と他方のシリンダー列のシリンダー
数とが等しくクランクの所定個所に所定のバラン
スウエイトを付設したV型多気筒内燃機関におい
て、 2α−β=180゜ (ただしα:シリンダー挾角 β:クランクピン相対角) としたことを特徴とするものである。 以下、第1図を参照して、本発明の原理を説明
する。 シリンダー挾角がαの2サイクル2気筒内燃機
関において、一方のピストン1aの摺動方向を複
素平面の実数座標軸方向X、他方のピストン1b
を摺動方向を同X方向から見て反時計回りにα回
転させた方向にそれぞれ指向させて考察する。 ピストン1a,1bおよびピストンピン等の各
往復運動部の重量をWR、重力加速度をg、クラ
ンク半径をr、機関の各速度をω、一方のピスト
ン1aの摺動方向Xに対する一方のクランクピン
2aの中心角をθ、クランク中心Oより一方のピ
ストンピン2aに向う線OZを基準にしてクラン
ク中心Oより他方のクランクピン2bに向う線
OSのなす角であるクランクピン相対角をβとす
ると、一方のピストン1aおよびピストンピン等
の一方の往復運動部と他方の往復運動部が有する
1次の慣性力Fa,Fbは、複素平面で、 FaWR/grω2cosθ ……(1) Fb=WR/grω2{cos(θ+β−α)}ei〓 ……(2) となる。 これに対してクランク3上の適当な位置に重量
Aのバランスウエイト4を一休に付設すれば、そ
の遠心力FWと前記1次の慣性力Fa,Fbの和とは
バランスする。即ち FW=A/grω2ei〓 ……(3) Fa+Fb=Fw ……(4) (1)式と(2)式とにより、 Fa+Fb=WR/grω2[cosθ+{cos(θ+β−α)}ei
〓] ……(5) また上記〔 〕内は、 cosθ+{cos(θ+β−α)}ei〓=cosθ+{cos(θ
+β−α)}(cosα+i sinα) =cosθ+cos(θ+β−α)cosα+i cos(θ+β
−α)sinα=cosθ+{cosθ cos(β−α) −sinθ sin(β−α)}cosα+i{cosθ cos(β
−α)−sinθ sin(β−α)}sinα=cosθ {1+cos(β−α)cosα+i cos(β−α)sinα
}−sinθ{sin(β−α)cosα+i sin(β−α)si
nα} ……(6) となる。 一般には、 cosθ=1/2(ei〓+e-i〓) sinθ=1/2i(ei〓−e-i〓) であるため、前記(6)式は ei〓/2[1+cos(β−α)cosα−sin(β−α)sin
α+i{cos(β−α)sinα+sin(β−α)cosα}]
+e-i〓/2[1+cos(β−α)cosα+sin(β−α
)sinα+i{cos(β−α)sinα−sin(β−α)cos
α}] ……(7) となる。 前記(3)式の右辺と(5)式の右辺とが(4)式を満足す
るように等しくなるためには、前記(7)式の第2大
括弧中の実数部分と虚数部分とが0でなければな
らない。 即ち 1+cos(β−α)cosα+sin(β−α)sinα=0 ……(8) cos(β−α)sinα−sin(β−α)cosα=0 ……(9) (8)式より 1+cos(β−α−α)=0 cos(β−2α)=−1 β−2α=−180゜ ……(10) また(9)式より sin(β−α−α)=0 β−2α=±180゜ ……(11) (10)(11)式を同時に両立するには 2α−β=180゜ ……(12) 本発明では、特許請求の範囲項の記載で明らか
なように前記(12)式を満足するため、両方の往復運
動部が有する1次の慣性力Fa,Fbはバランスウ
エイト4の遠心力Fwによりバランスする。 この場合、バランスウエイト4の重量Aは、 A=1/2WR22 ……(13) ただし、 U=1+cos(β−α)cosα−sin(β−α)sinα V=cos(β−α)sinα+sin(β−α)cosα となり、またバランスウエイト4の設置角δは(7)
式より tanδ=V/U ……(14) となる。 実施例 以下第2図に図示された本発明の一実施例につ
いて説明する。 1a,1bはピストンで、同ピストン1a,1
bを摺動自在に嵌装したシリンダー5a,5b
は、60゜のシリンダー挾角でクランク室6にそれ
ぞれ別個に一体に取付けられ、各シリンダー5
a,5b毎に独立したクランクケース圧縮の2サ
イクル2気筒内燃機関が構成されている。 また前記ピストン1a,1bにピストン7a,
7bを介してコネクテイングロツド8a,8bの
小端が枢着され、同コネクテイングロツド8a,
8bの大端がクランクピン2a,2bを介してク
ランク3に枢着されている。 さらにクランク中心oより一方のピストンピン
2aに向う線OZを基準にしてクランク中心oよ
り他方のクランクピン2bに向う線OSのなす角
であるクランクピン相対角βは前記(12)式によりβ
=−60゜に設定されている。 さらにまたバランスウエイト4は、クランクピ
ン2a,2bと同一径上であつて(14)式により
δ=150゜に位置した個所でクランク3に一体に装
着され、その重量Aは(13)式により
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a balancing structure for preventing vibrations due to residual unbalanced inertia of reciprocating mass parts such as pistons in a V-type multi-cylinder internal combustion engine. Prior Art In a conventional V-type multi-cylinder internal combustion engine, normally,
In order to use a common crank pin for a pair of cylinders arranged in a V-shape, the first-order term of the residual unimpulsive inertia force of reciprocating mass parts such as pistons can be canceled out by a balance weight attached to the crank. The cylinder angle is 90° for a V-type two-cylinder or four-cylinder.
Also, for V-8 cylinders, a fixed cylinder angle was set, depending on the number of cylinders, such as 45° or 90°. Problem to be solved However, if the cylinder angle is set to an arbitrary value,
If the crank pin is common to a set of cylinders arranged in a V-shape, even if a balance weight is attached to the crank weight, it will not be possible to eliminate the first-order term of the residual unimpulsive inertia force of the reciprocating mass part. There was a problem with vibration. In addition, in cases where the crank pin cannot be used in common due to the need to separate the crank chamber for each cylinder, such as in a two-stroke internal combustion engine with crankcase compression, the cylinder angle should be set to a predetermined value as described above. Even if it was set to , it was not possible to prevent vibrations due to the residual unbalanced inertial force of the reciprocating mass part. Means and Effects for Solving the Problems The present invention relates to an improvement of a V-type even-number cylinder internal combustion engine that overcomes the above-mentioned difficulties. This V-type multi-cylinder internal combustion engine is equipped with predetermined balance weights at predetermined locations, and is characterized by 2α-β=180° (where α: cylinder angle, β: relative crankpin angle). The principle of the present invention will be explained below with reference to FIG. In a two-cycle two-cylinder internal combustion engine with a cylinder angle α, the sliding direction of one piston 1a is the real coordinate axis direction X of the complex plane, and the other piston 1b is
will be considered with the sliding direction being oriented in a direction rotated by α counterclockwise when viewed from the same X direction. The weight of each reciprocating part such as the pistons 1a, 1b and the piston pin is W R , the gravitational acceleration is g, the crank radius is r, each speed of the engine is ω, and one crank pin with respect to the sliding direction X of one piston 1a. The center angle of 2a is θ, and the line from the crank center O to the other crank pin 2b is the line OZ from the crank center O to the other piston pin 2b.
If the relative angle of the crank pin, which is the angle formed by OS, is β, then the primary inertial forces Fa and Fb of one reciprocating part such as one piston 1a and the piston pin and the other reciprocating part have a complex plane. , FaW R /grω 2 cosθ ……(1) Fb=W R /grω 2 {cos(θ+β−α)}e i 〓 ……(2). On the other hand, if a balance weight 4 of weight A is attached to an appropriate position on the crank 3, the centrifugal force FW and the sum of the primary inertia forces Fa and Fb will be balanced. That is, F W =A/grω 2 e i 〓 ...(3) Fa+Fb=Fw ...(4) From equations (1) and (2), Fa+Fb=W R /grω 2 [cosθ+{cos(θ+β− α)}e i
〓] ...(5) Also, the above [ ] is cosθ+{cos(θ+β−α)}e i 〓=cosθ+{cos(θ
+β−α)}(cosα+i sinα) =cosθ+cos(θ+β−α)cosα+i cos(θ+β
−α) sinα=cosθ+{cosθ cos(β−α) −sinθ sin(β−α)}cosα+i{cosθ cos(β
−α)−sinθ sin(β−α)}sinα=cosθ {1+cos(β−α)cosα+i cos(β−α)sinα
}−sinθ{sin(β−α)cosα+i sin(β−α)si
nα} ...(6). In general, cosθ=1/2 (e i 〓+e -i 〓) sinθ=1/2i (e i 〓−e -i 〓), so the above equation (6) is equivalent to e i 〓/2[1+cos( β−α)cosα−sin(β−α)sin
α+i {cos(β-α)sinα+sin(β-α)cosα}]
+e -i 〓/2[1+cos(β-α)cosα+sin(β-α
) sin α + i {cos (β − α) sin α − sin (β − α) cos
α}] ...(7). In order for the right side of equation (3) and the right side of equation (5) to be equal so as to satisfy equation (4), the real part and imaginary part in the second bracket of equation (7) must be equal. Must be 0. That is, 1 + cos (β - α) cos α + sin (β - α) sin α = 0 ... (8) cos (β - α) sin α - sin (β - α) cos α = 0 ... (9) From equation (8), 1 + cos ( β−α−α)=0 cos(β−2α)=−1 β−2α=−180° ……(10) Also, from equation (9), sin(β−α−α)=0 β−2α=± 180° ...(11) In order to satisfy equations (10) and (11) at the same time, 2α−β=180° ...(12) In the present invention, as is clear from the description of the claims, the above (12) ), the primary inertial forces Fa and Fb of both reciprocating parts are balanced by the centrifugal force Fw of the balance weight 4. In this case, the weight A of the balance weight 4 is A=1/2W R2 + 2 ...(13) However, U=1+cos(β-α)cosα-sin(β-α)sinα V=cos(β −α) sin α + sin (β − α) cos α, and the installation angle δ of the balance weight 4 is (7)
From the formula, tanδ=V/U...(14). Embodiment An embodiment of the present invention illustrated in FIG. 2 will be described below. 1a and 1b are pistons, and the same pistons 1a and 1
cylinders 5a and 5b in which cylinders b are slidably fitted;
are separately and integrally installed in the crank chamber 6 with a cylinder angle of 60°, and each cylinder 5
A, 5b each constitute a two-stroke, two-cylinder internal combustion engine with independent crankcase compression. Further, the pistons 1a and 1b include a piston 7a,
The small ends of the connecting rods 8a, 8b are pivotally connected via the connecting rods 8a, 8b.
The large end of 8b is pivotally connected to the crank 3 via crank pins 2a and 2b. Furthermore, the crank pin relative angle β, which is the angle formed by the line OZ from the crank center o toward the other crank pin 2b, based on the line OZ from the crank center o toward the other crank pin 2b, is determined by the equation (12) above.
= -60°. Furthermore, the balance weight 4 is integrally attached to the crank 3 at a location on the same diameter as the crank pins 2a and 2b and located at δ=150° according to equation (14), and its weight A is calculated according to equation (13).

【式】 に設定されている。 第2図に図示の実施例は前記したように構成さ
れているので、一方のピストン1aおよびピスト
ンピン7aの一方の往復運動部と他方のピストン
1bおよびピストン7bの他方の往復運動部とが
有する1次の慣性力Fa,Fbは、 Fa=WR/grω2cosθ Fb=WR/grω2cos(θ−π/3)ei〓 であり、またバランスウエイト4の遠心力Fは、
(3)式と(13)式とより である。 前記慣性力Fa,Fbの和は(5)式(6)式および(7)式
から明らかなように、 Fa+Fb=WR/grω21/4(3−√3i)ei〓 であり、その複素数3−√3iの絶対値は√12で
あるので、 となり、(15)式と(16)式とは等しく、従つて
第2図に図示の実施例では、一方の往復運動部と
他方の往復運動部とが有する1次の慣性力Fa,
Fbはバランスウエイト4の遠心力Fwと釣合い、
振動が少なくなる。 前記実施例ではシリンダー挾角を60゜としたが、
シリンダー挾角を60゜以外の角度に自由に設定す
ることができ、(12)式によりクランクピン相対角β
が決定される。 この場合、クランクウエイト4の重量Aおよび
設置角δは(13)式および(14)式により決定さ
れる。 前記実施例では、バランスウエイト4を1個所
に集中して配置したが、バランスウエイト4を2
個以上に分散して配置することもできる。 発明の効果 本発明は、前記したように一方のシリンダー列
のシリンダー数と他方のシリンダー列のシリンダ
ー数とが等しくクランクの所定個所に所定のバラ
ンスウエイトを付設したV型多気筒内燃機関にお
いて、2α−β=180゜としたため、シリンダー挾角
をどのように設定しても、往復質量部の残存不平
衡慣性力の1次の項をクランクに付設したバラン
スウエイトで打消すことができ、振動の少ない内
燃機関を得ることができる。 従つて本発明によれば、V型多気筒のシリンダ
ー挾角を自由に選定することができ、内燃機関を
設計する際の制限条件を少なくすることができ
る。 また本発明においては、クランクピンを共通に
使わなくてよいため、クランク室を各気筒毎に独
立させたクランクケース圧縮の2サイクルエンジ
ンの如き内燃機関に特に適している。
[Formula] is set. Since the embodiment shown in FIG. 2 is constructed as described above, one reciprocating portion of one piston 1a and piston pin 7a and the other reciprocating portion of piston 1b and piston 7b have The first-order inertial forces Fa and Fb are Fa=W R /grω 2 cosθ Fb=W R /grω 2 cos (θ−π/3)e i 〓, and the centrifugal force F of the balance weight 4 is,
From equation (3) and equation (13) It is. As is clear from equations (5), (6), and (7), the sum of the inertial forces Fa and Fb is Fa+Fb=W R /grω 2 1/4 (3−√3i) e i 〓, The absolute value of the complex number 3−√3i is √12, so Therefore, in the embodiment shown in FIG. 2, the first-order inertial force Fa, which is possessed by one reciprocating part and the other reciprocating part, is
Fb balances the centrifugal force Fw of balance weight 4,
Vibration is reduced. In the above embodiment, the cylinder angle was 60°, but
The cylinder angle can be freely set to an angle other than 60°, and the crankpin relative angle β can be determined by equation (12).
is determined. In this case, the weight A and installation angle δ of the crank weight 4 are determined by equations (13) and (14). In the embodiment described above, the balance weights 4 were concentrated in one place, but the balance weights 4 were arranged in two places.
It is also possible to distribute and arrange more than one. Effects of the Invention As described above, the present invention provides a V-type multi-cylinder internal combustion engine in which the number of cylinders in one cylinder row is equal to the number of cylinders in the other cylinder row, and a predetermined balance weight is attached to a predetermined position of the crank. Since −β = 180°, no matter how the cylinder angle is set, the first-order term of the residual unbalanced inertia force of the reciprocating mass can be canceled out by the balance weight attached to the crank, which reduces vibration. You can get less internal combustion engine. Therefore, according to the present invention, the cylinder angle of the V-type multi-cylinder can be freely selected, and the restrictive conditions when designing an internal combustion engine can be reduced. Furthermore, since the present invention does not require the use of a common crank pin, it is particularly suitable for internal combustion engines such as two-stroke engines with crankcase compression in which each cylinder has an independent crank chamber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るV型偶数気筒内燃機関の
原理を説明した説明図、第2図は本発明の一実施
例を図示した概略断面図である。 1……ピストン、2……クランクピン、3……
クランク、4……バランスウエイト、5……シリ
ンダー、6……クランク室、7……ピストンピ
ン、8……コネクテイングロツド。
FIG. 1 is an explanatory diagram illustrating the principle of a V-type even-numbered cylinder internal combustion engine according to the present invention, and FIG. 2 is a schematic sectional view illustrating an embodiment of the present invention. 1... Piston, 2... Crank pin, 3...
Crank, 4... Balance weight, 5... Cylinder, 6... Crank chamber, 7... Piston pin, 8... Connecting rod.

Claims (1)

【特許請求の範囲】 1 一方のシリンダー列のシリンダー数と他方の
シリンダー列のシリンダー数とが等しくクランク
の所定個所に所定のバランスウエイトを付設した
V型多気筒内燃機関において、 2α−β=180゜ (ただし、α:シリンダー挾角 β:クランクピン相対角) としたことを特徴とするV型多気筒内燃機関のバ
ランシング構造。
[Claims] 1. In a V-type multi-cylinder internal combustion engine in which the number of cylinders in one cylinder row is equal to the number of cylinders in the other cylinder row, and a predetermined balance weight is attached to a predetermined position of the crank, 2α−β=180 A balancing structure for a V-type multi-cylinder internal combustion engine characterized by ゜ (where α: cylinder angle, β: crankpin relative angle).
JP17783181A 1981-11-07 1981-11-07 V-type internal-combustion engine with an even number of cylinders Granted JPS5881250A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17783181A JPS5881250A (en) 1981-11-07 1981-11-07 V-type internal-combustion engine with an even number of cylinders
US06/440,031 US4519344A (en) 1981-11-07 1982-11-08 V-type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17783181A JPS5881250A (en) 1981-11-07 1981-11-07 V-type internal-combustion engine with an even number of cylinders

Publications (2)

Publication Number Publication Date
JPS5881250A JPS5881250A (en) 1983-05-16
JPS6344984B2 true JPS6344984B2 (en) 1988-09-07

Family

ID=16037867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17783181A Granted JPS5881250A (en) 1981-11-07 1981-11-07 V-type internal-combustion engine with an even number of cylinders

Country Status (1)

Country Link
JP (1) JPS5881250A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113646A (en) * 1981-12-26 1983-07-06 Honda Motor Co Ltd Motorcycle
JPH0672549B2 (en) * 1986-04-18 1994-09-14 マツダ株式会社 V-6 engine
US5187129A (en) * 1987-12-21 1993-02-16 Eaton Corporation Process for making silicon nitride and powders and articles made therefrom
US5213729A (en) * 1990-07-24 1993-05-25 Eaton Corporation Process for preparing a densified beta-phase silicon nitride material having at least one densification aid, and the material resulting therefrom
US5079198A (en) * 1990-07-24 1992-01-07 Eaton Corporation Ceramic phase in sintered silicon nitride containing cerium, aluminum, and iron
US5252248A (en) * 1990-07-24 1993-10-12 Eaton Corporation Process for preparing a base nitridable silicon-containing material
US5160719A (en) * 1990-07-24 1992-11-03 Eaton Corporation Process for nitriding silicon containing materials
US5085582A (en) * 1990-07-24 1992-02-04 Eaton Corporation Silicon nitride containers for the sintering of silicon nitride ceramics
US5055432A (en) * 1990-07-24 1991-10-08 Eaton Corporation Process for preparing a nitridable silicon-containing material having at least one densification aid including alumina, and the material resulting therefrom
US5156830A (en) * 1990-07-24 1992-10-20 Eaton Corporation Process for preparing an alpha-phase silicon nitride material and thereafter converting to non-densified beta-phase material
US6007789A (en) * 1992-11-03 1999-12-28 Eaton Corporation Method of nitriding silicon

Also Published As

Publication number Publication date
JPS5881250A (en) 1983-05-16

Similar Documents

Publication Publication Date Title
JPS6344984B2 (en)
US4569316A (en) Balancer structure for three-cylinder engines
US4517933A (en) Crank shaft of V-type internal-combustion engine
JP5696741B2 (en) engine
US4565169A (en) Balancer structure for three-cylinder engines
US4658777A (en) Balancer structure for three-cylinder engines
US4519344A (en) V-type internal combustion engine
CA2099677A1 (en) Crankshaft of V-Type 6-Cylinder Internal Combustion Engine
JP7393973B2 (en) 2 cylinder internal combustion engine
JPS5881251A (en) V-type internal-combustion engine with a threefold number of cylinders
JP2772769B2 (en) V-type 8-cylinder engine
JPS6323625Y2 (en)
JPH0220518Y2 (en)
JP2591224B2 (en) Engine crankshaft
JPH0774661B2 (en) Balancer device for V8 cylinder engine
JPH09166126A (en) Crank construction for in-parallel multicylinder engine
JP2998472B2 (en) Vibration reduction device for 2-cycle 4-cylinder engine
KR960011923B1 (en) Crankshaft of v-type 6-cylinder internal combustion engine
JPS6123956Y2 (en)
KR960011922B1 (en) Crankshaft of v-type 6-cylinder internal combustion engine
JPH0252099B2 (en)
JPS6145091B2 (en)
JPH08193643A (en) Balancer for v-type eight-cylinder four-cycle engine
JP3033121B2 (en) V-type engine crankshaft device
JPH0396733A (en) Balancer device for engine