JPS6344783A - Frequency stabilizer of laser light source - Google Patents

Frequency stabilizer of laser light source

Info

Publication number
JPS6344783A
JPS6344783A JP18921386A JP18921386A JPS6344783A JP S6344783 A JPS6344783 A JP S6344783A JP 18921386 A JP18921386 A JP 18921386A JP 18921386 A JP18921386 A JP 18921386A JP S6344783 A JPS6344783 A JP S6344783A
Authority
JP
Japan
Prior art keywords
frequency
scanning
laser light
pulse
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18921386A
Other languages
Japanese (ja)
Inventor
Masuo Suyama
寿山 益夫
Shigefumi Masuda
増田 重史
Hiroshi Onaka
寛 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18921386A priority Critical patent/JPS6344783A/en
Publication of JPS6344783A publication Critical patent/JPS6344783A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To stabilize a frequency by taking frequency fluctuations developed in a laser light source as displacements on a timing axis and developing the displacements of a resonator length variable means of external resonator. CONSTITUTION:A ramp voltage for scanning control is periodically fed to scanning type Fabry-Perot interferometer 2' from a scanning control circuit 3 and its scanning is carried out repeatedly. Simultaneously with scanning, a trigger signal is fed to a monstable multivibrator 4' and then the first pulse is developed. A light output is emitted from the interferometer 2' to a photo detector 9 at a time within a canning period that is determined according to a frequency of a laser light and its detected signal is amplified by an amplifier 10 and then, is impressed to the monstable multivibrator 11, developing the second pulse. Logical product of the first and second pulses is so taken at AND circuit 6 that frequency fluctuations of the laser light are changed into variations of pulse widths. Since an error signal where its pulse is fed by a differential amplifier in comparison with a reference voltage through a low pass filter is impressed to PZT 7' through the amplifier 14, the frequency of the laser light is stable to a reference frequency.

Description

【発明の詳細な説明】 〔概 要〕 レーザ光源に生ずる周波数変動を例えば走査型ファプリ
ペロー干渉計にて時間軸上の変位として取り出し、これ
を用いてレーザ光源外部共振器の共振器長可変手段の変
位を生ぜしめてレーザ光源の周波数安定化を図る。
[Detailed Description of the Invention] [Summary] Frequency fluctuations occurring in a laser light source are extracted as displacements on the time axis using, for example, a scanning Fabry-Perot interferometer, and this is used to adjust the resonator length variable means of the external resonator of the laser light source. This creates a displacement to stabilize the frequency of the laser light source.

〔産業上の利用分野〕[Industrial application field]

本発明はレーザ光源の周波数安定化装置に関し、更に詳
しく言えば、レーザ光源の周波数変動を時間軸上の変位
に変換し、これを用いてレーザ光源の周波数を安定化す
るレーザ光源の周波数安定化装置に関する。
The present invention relates to a frequency stabilization device for a laser light source, and more specifically, the present invention relates to a frequency stabilization device for a laser light source, and more specifically, a frequency stabilization device for a laser light source that converts frequency fluctuations of a laser light source into a displacement on the time axis and uses this to stabilize the frequency of the laser light source. Regarding equipment.

通信の分野においてはそこで取り扱う情報の急激な増大
、通信速度の向上環に対処すべく、従来の電気通信方式
を補完乃至はこれに代わるものとして光通信方式の開発
が活発に行なわれている。
In the field of communications, in order to cope with the rapid increase in the amount of information handled and the increase in communication speed, optical communication systems are being actively developed to complement or replace conventional telecommunication systems.

現在開発中にあるコヒーレント通信方式、とりゎけ時間
的コヒーレンスを利用した通信方式では、中間周波数の
変動を抑えるために光源の周波数安定度を十分に高(す
ることが必要である。例えば、レーザ光源の発振周波数
が200Ttlzとしたときの発振周波数の変動を10
MHz程度としたいとす、れば、その安定度はI X 
10−7のオーダになる。
Coherent communication systems currently under development, especially communication systems that utilize temporal coherence, require the frequency stability of the light source to be sufficiently high in order to suppress fluctuations in the intermediate frequency. When the oscillation frequency of the light source is 200Ttlz, the fluctuation of the oscillation frequency is 10
If you want to set it to about MHz, then its stability is I
It will be on the order of 10-7.

〔従来の技術〕[Conventional technology]

従来におけるコヒーレント通信方式の光源の代表的なも
のとして、半導体レーザがあり、その周波数安定化方式
の1つの例は第4図に示す如きものである。この方式は
第5図に示す如き光透過特性を有する光フアイバ型リン
グ共振器4oを用いてレーザ光の発振周波数の変化度合
を透過光強度の変化として得、これを発振周波数の安定
化に供せんとするものである。部ち、光フアイバ型リン
グ共振器40の出力光信号を光検出器422反転反転器
44.差動増幅器46.フィルタ48及びバッファ増幅
器50を介して、電/A源52から半導体レーザ54に
給電される電流制御に用いてし一ザ光源の周波数を安定
化せんとするものである。
A semiconductor laser is a typical light source for conventional coherent communication systems, and one example of its frequency stabilization system is shown in FIG. This method uses an optical fiber ring resonator 4o having light transmission characteristics as shown in Fig. 5 to obtain the degree of change in the oscillation frequency of the laser beam as a change in transmitted light intensity, and uses this to stabilize the oscillation frequency. This is what I am trying to do. The output optical signal of the optical fiber ring resonator 40 is transmitted to a photodetector 422 and an inverter 44 . Differential amplifier 46. This is used to control the current supplied from the power/A source 52 to the semiconductor laser 54 via the filter 48 and the buffer amplifier 50 to stabilize the frequency of the laser light source.

従来の他の周波数安定化方式は第6図に示されるが、こ
の方式はエタロン板60を周波数基準として用い、この
周波数基準からレーザ光源の発振周波数がずれた度合に
応じて外部共振器長を制御してレーザ光源の周波数安定
化を行なわんとするものである。即ち、厚さ数11の光
学ガラスの両面に反射膜をコーティングしたエタロン板
(ファプリーペロー)60は、第6図に示すように、光
の干渉効果により入力レーザ光の周波数に応じてその透
過光強度が周期的な尖鋭特性を示すものである。その特
性の半値付近(第7図中のν0付近)に周波数を固定す
れば、発振周波数の変動は透過光の強度変化となって現
れる。その透過光をホトダイオード62で電気信号に変
換し、該電気信号を比較564で基準電圧と比較してP
ZT制御器66を介してPZT68に印加し、グレーテ
ィング70に変位を与えて外部共振器長を制御し、レー
ザ光源の周波数安定化を図ろうとするものである。
Another conventional frequency stabilization method is shown in FIG. 6, which uses an etalon plate 60 as a frequency reference, and adjusts the external resonator length according to the degree to which the oscillation frequency of the laser light source deviates from this frequency reference. The objective is to control the frequency of the laser light source and stabilize it. That is, as shown in FIG. 6, the etalon plate (Fapley-Perot) 60, which is made of optical glass with a thickness of several eleven and coated with reflective films on both sides, changes its transmission according to the frequency of the input laser beam due to the optical interference effect. The light intensity exhibits periodic sharp characteristics. If the frequency is fixed near the half value of the characteristic (near ν0 in FIG. 7), the fluctuation in the oscillation frequency will appear as a change in the intensity of the transmitted light. The transmitted light is converted into an electric signal by a photodiode 62, and the electric signal is compared with a reference voltage by a comparison 564.
This is applied to the PZT 68 via the ZT controller 66 to displace the grating 70 to control the external resonator length and stabilize the frequency of the laser light source.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述前者の周波数安定化方式は半導体レーザ54の駆動
電流を制御してその発振周波数を安定化するのに光フア
イバ型リング共振器4oの出方信号を用いるが、この出
力信号にはレーザ光パワー自体の変動も又周波数自体の
変動も含まれてしまうため、周波数変動のみについての
制御を行なうのは難しい。
The former frequency stabilization method described above uses the output signal of the optical fiber ring resonator 4o to control the drive current of the semiconductor laser 54 and stabilize its oscillation frequency, but this output signal is based on the laser light power. It is difficult to control only the frequency fluctuations, since this includes fluctuations in the frequency itself as well as fluctuations in the frequency itself.

これに対して、上述後者の周波数安定化方式においても
エタロン板60から得られる透過光の強度変化の中には
、レーザ光の周波数変化に伴う強度変化成分の他に、も
しレーザ光自体に強度ゆらぎが生じている場合にはその
成分も透過光強度変化成分として含まれて来るが、レー
ザ光自体のゆらぎ成分検出のためのホトダイオード72
と、その検出信号でホトダイオード62の出力信号(ゆ
らぎ成分×周波数変動成分)を除算する除算器74とに
より上述後者の透過光強度成分を除き得る。
On the other hand, even in the latter frequency stabilization method mentioned above, in the intensity change of the transmitted light obtained from the etalon plate 60, in addition to the intensity change component accompanying the frequency change of the laser beam, if the intensity of the laser beam itself is If fluctuation occurs, that component is also included as a transmitted light intensity change component, but the photodiode 72 is used to detect the fluctuation component of the laser beam itself.
The latter transmitted light intensity component can be removed by a divider 74 that divides the output signal (fluctuation component x frequency fluctuation component) of the photodiode 62 by the detection signal.

しかしながら、2つのホトダイオードを用いることは、
光学系及び電気系の複雑化となる。
However, using two photodiodes
This complicates the optical system and electrical system.

本発明は、斯かる問題点に鑑みて創作されたもので、レ
ーザ光の周波数安定化に、レーザ出力光パワーの影響を
可及的に排してレーザ光周波数の安定化を為し得るレー
ザ光源の周波数安定化装置を提供することを目的とする
The present invention was created in view of such problems, and provides a laser that can stabilize the frequency of laser light by eliminating the influence of the laser output light power as much as possible. The purpose of the present invention is to provide a frequency stabilization device for a light source.

C問題点を解決するための手段〕 第1図は本発明の原理構成図を示す。本発明は、外部共
振器1を有するレーザ光源において、外部共振器1に光
学的に結合された走査型光学系2と、該走査型光学系2
の走査を生ぜしめる走査制御回路3と、該走査制御回路
3による走査と同期してその走査周期内の所定期間の間
パルスを発生する第1のパルス発生回路4と、前記走査
型光学系2の出力に応答して前記所定期間を超える期間
に亘ってパルスを発生する第2のパルス発生回路5と、
前記第1及び第2のパルス発生回路4.5の出力に接続
されたアンド回路6と、該アンド回路6の出力に接続さ
れ前記外部共振器1の共振器長可変手段7に変位を生ぜ
しめる変位制御回路8とを設けて周波数安定化装置を構
成したものである。
Means for Solving Problem C] FIG. 1 shows a diagram of the principle configuration of the present invention. The present invention provides a laser light source having an external resonator 1, including a scanning optical system 2 optically coupled to the external resonator 1, and a scanning optical system 2 that is optically coupled to the external resonator 1.
a first pulse generating circuit 4 that generates a pulse for a predetermined period within the scanning period in synchronization with the scanning by the scanning control circuit 3; and the scanning optical system 2. a second pulse generating circuit 5 that generates pulses for a period exceeding the predetermined period in response to the output of the second pulse generating circuit 5;
An AND circuit 6 connected to the outputs of the first and second pulse generating circuits 4.5 and a resonator length variable means 7 connected to the output of the AND circuit 6 of the external resonator 1 to cause displacement. A displacement control circuit 8 is provided to constitute a frequency stabilizing device.

〔作 用〕[For production]

レーザ光源のレーザ光周波数に変化が生ずると、走査型
光学系から出力する信号の発生時刻が変化する。この出
力信号に応答する第2のパルス発生回路5から予め決め
られた持続期間の第2のパルスが出力される一方、走査
型光学系2の走査と同期して第1のパルス発生回路4か
らその走査開始時刻から所定持続期間の第1のパルスが
出力される。
When a change occurs in the laser light frequency of the laser light source, the generation time of the signal output from the scanning optical system changes. A second pulse of a predetermined duration is output from the second pulse generation circuit 5 in response to this output signal, while a second pulse of a predetermined duration is output from the first pulse generation circuit 4 in synchronization with the scanning of the scanning optical system 2. A first pulse of a predetermined duration is output from the scan start time.

これら第1及び第2のパルスがアンド回路6を経て変位
制御回路8に供給されることにより、レーザ光源の周波
数が安定化される。
By supplying these first and second pulses to the displacement control circuit 8 via the AND circuit 6, the frequency of the laser light source is stabilized.

〔実施例〕〔Example〕

第2図は本発明の一実施例を示す。この図において、l
は半導体レーザ光源の外部共ti器で、7゜は外部共振
器1内に設けられて外部共振器長を変えるPZT(第1
図の共振器長可変手段7の例)である、2”は走査型フ
ァブリベロー干渉計(第1図2の例)で、これは外部共
振器に光学的に結合されている。3は走査型ファブリベ
ロー干渉計2゛に接続され、そのミラーの走査制御を行
なう走査制御回路である。4゛は走査制御回路3による
走査開始時刻から走査周期内の所定期間の間持続する第
1のパルスを発生するモノマルチバイブレーク(第1図
の第1のパルス発生回路4の例)である。9は走査型フ
プブリペロー干渉計の光出力に光学的に結合された光検
出器で、10は光検出器9の出力信号を増幅する増幅器
で、11は増幅器出力信号に応答して所定期間持続する
第2のパルスを発生するモノマルチバイブレークであり
、これら9〜11から成る部分が第1図の第2のパルス
発生回路5の例である。6はアンド回路である。12は
アンド回路6の出力に接続された低域フィルタ(LPF
) 、13は低域フィルタ12の出力を基準電圧と比較
する差動増幅器、14は比較出力信号を増幅する増幅器
であり、これら12〜14から成る部分が第1図の変位
制御回路8の例である。増幅器14の出力電圧がPZT
7’ に印加される。
FIG. 2 shows an embodiment of the invention. In this figure, l
7° is the external resonator of the semiconductor laser light source, and 7° is the PZT (first
2" is a scanning Fabry-Bero interferometer (example shown in FIG. 1 and 2), which is optically coupled to an external resonator. 3 is a scanning This is a scan control circuit that is connected to the Fabry-Bello interferometer 2' and controls the scanning of its mirror. 4' is a first pulse that lasts for a predetermined period within the scan period from the time when the scan by the scan control circuit 3 starts. (an example of the first pulse generating circuit 4 in Fig. 1). 9 is a photodetector optically coupled to the optical output of the scanning Fubvli-Perot interferometer, and 10 is a photodetector. The amplifier 11 amplifies the output signal of the amplifier 9, and the reference numeral 11 is a mono-multi-by-break that generates a second pulse that lasts for a predetermined period in response to the amplifier output signal. 2 is an example of the pulse generating circuit 5. 6 is an AND circuit. 12 is a low-pass filter (LPF) connected to the output of the AND circuit 6.
), 13 is a differential amplifier that compares the output of the low-pass filter 12 with a reference voltage, 14 is an amplifier that amplifies the comparison output signal, and the portion consisting of these 12 to 14 is an example of the displacement control circuit 8 in FIG. It is. The output voltage of amplifier 14 is PZT
7' is applied.

上述構成になる本発明回路の動作態様を説明する。The operation mode of the circuit of the present invention configured as described above will be explained.

本発明回路の動作が始まると、走査制御回路3から第3
図の0)に示す如き走査制御用ランプ電圧が走査型ファ
ブリペロ−干渉計2゛に周期的に供給されてその走査を
反復する。この走査と同期したトリガ信号(第3図の1
))がモノマルチバイブレーク4°に供給されてそこか
ら第3図の3)に示すような持続期間t1の第1のパル
スが発生される。
When the operation of the circuit of the present invention starts, the scan control circuit 3
A scanning control lamp voltage as shown at 0) in the figure is periodically supplied to the scanning Fabry-Perot interferometer 2' to repeat its scanning. A trigger signal synchronized with this scanning (1 in Figure 3)
)) is applied to the monomulti-bibrake 4° from which a first pulse of duration t1 as shown in 3) of FIG. 3 is generated.

上記走査が行なわれている走査型ファブリペロ−干渉計
2゛からレーザ光の周波数に応じて決まる走査周期内の
時刻に光出力が光検出器9に照射され、その検出信号が
増幅器10で増幅されて(第3図の2))モノマルチバ
イブレータ11に印加される。そのモノマルチバイブレ
ータ11からは第3図の4)に示されるような第2のパ
ルスが発生される。この第2のパルスも又第3図の4)
からも明らかな如くレーザ光の周波数変化によってその
発生時刻を異にする。
The optical output from the scanning Fabry-Perot interferometer 2 in which the above scanning is performed is applied to the photodetector 9 at a time within the scanning period determined according to the frequency of the laser beam, and the detection signal is amplified by the amplifier 10. (2 in FIG. 3)) is applied to the mono-multivibrator 11. The mono-multivibrator 11 generates a second pulse as shown in 4) in FIG. This second pulse is also 4) in Figure 3.
As is clear from the above, the time of occurrence varies depending on the frequency change of the laser beam.

上述の第1及び第2のパルスの論理積をアンド回路6で
とることにより、レーザ光の周波数変化は第3図の5)
に示すように、パルス幅の変化に転化される。
By calculating the logical product of the above-mentioned first and second pulses using the AND circuit 6, the frequency change of the laser beam is determined by 5) in Fig. 3.
This is converted into a change in pulse width, as shown in .

そのパルスが低域フィルタ12を介して差動増幅器13
で基準電圧(基準周波数相当の電圧)と比較されて出力
される誤差信号が増@器14を介してPZT7°に印加
されることによって、レーザ光の周波数は基準周波数に
安定化される。
The pulse passes through a low-pass filter 12 to a differential amplifier 13.
The frequency of the laser beam is stabilized to the reference frequency by applying the error signal which is compared with a reference voltage (voltage corresponding to the reference frequency) and output to the PZT 7° via the amplifier 14.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、レーザ光の周波数変
化が時間軸上の変化に変換されているから、レーザ光の
周波数安定化にレーザ出力光パワーの影響を可及的に排
し得て、より安定したレーザ光の発生を可能にする。
As described above, according to the present invention, the frequency change of the laser beam is converted into a change on the time axis, so the influence of the laser output light power can be eliminated as much as possible on the frequency stabilization of the laser beam. This makes it possible to generate more stable laser light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成図、 第2図は本発明の一実施例を示す図、 第3図はタイミングチャート、 第4図は従来の1つの周波数安定化方式を示す図、第5
図は光フアイバ型リング共振器の光る過特性図、 第6図は従来の他の周波数安定化方式を示す図、第7図
はエタロン板の光透過特性図を示す図である。 第1図及び第2図において、 1は外部共振器、 2は走査型光学系、 3は走査制御回路、 4は第1のパルス発生回路、 5は第2のパルス発生回路、 6はアンド回路、 7は共振器長可変手段、 8は変位制御回路である。 本発明の原理構成図 第1図 5) p関/” tk X  −一付−L−一一タイミ
ングチヤード 第3図 第4図
Figure 1 is a diagram showing the principle configuration of the present invention, Figure 2 is a diagram showing an embodiment of the present invention, Figure 3 is a timing chart, Figure 4 is a diagram showing one conventional frequency stabilization method, and Figure 5 is a diagram showing one conventional frequency stabilization method.
FIG. 6 is a diagram showing an optical fiber type ring resonator's luminous excess characteristics, FIG. 6 is a diagram showing another conventional frequency stabilization method, and FIG. 7 is a diagram showing a light transmission characteristic diagram of an etalon plate. 1 and 2, 1 is an external resonator, 2 is a scanning optical system, 3 is a scanning control circuit, 4 is a first pulse generation circuit, 5 is a second pulse generation circuit, and 6 is an AND circuit. , 7 is a resonator length variable means, and 8 is a displacement control circuit. Principle configuration diagram of the present invention Fig. 1 5) p/tk

Claims (1)

【特許請求の範囲】 外部共振器(1)を有するレーザ光源において、外部共
振器(1)に光学的に結合された走査型光学系(2)と
、 該走査型光学系(2)の走査を生ぜしめる走査制御回路
(3)と、 該走査制御回路(3)による走査と同期してその走査周
期内の所定期間の間パルスを発生する第1のパルス発生
回路(4)と、 前記走査型光学系(2)の出力に応答して前記所定期間
を超える期間に亘ってパルスを発生する第2のパルス発
生回路(5)と、 前記第1及び第2のパルス発生回路(4、5)の出力に
接続されたアンド回路(6)と、 該アンド回路(6)の出力に接続され前記外部共振器(
1)の共振器長可変手段(7)に変位を生ぜしめる変位
制御回路(8)とを設けたことを特徴とするレーザ光源
の周波数安定化装置。
[Claims] A laser light source having an external resonator (1), comprising: a scanning optical system (2) optically coupled to the external resonator (1); and a scanning optical system (2). a first pulse generating circuit (4) that generates a pulse for a predetermined period within the scanning period in synchronization with the scanning by the scanning control circuit (3); a second pulse generating circuit (5) that generates a pulse for a period exceeding the predetermined period in response to the output of the optical system (2); and the first and second pulse generating circuits (4, 5). ) and an AND circuit (6) connected to the output of the AND circuit (6); and an AND circuit (6) connected to the output of the AND circuit (6) and connected to the external resonator (
1. A frequency stabilizing device for a laser light source, characterized in that the resonator length variable means (7) of 1) is provided with a displacement control circuit (8) for causing displacement.
JP18921386A 1986-08-12 1986-08-12 Frequency stabilizer of laser light source Pending JPS6344783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18921386A JPS6344783A (en) 1986-08-12 1986-08-12 Frequency stabilizer of laser light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18921386A JPS6344783A (en) 1986-08-12 1986-08-12 Frequency stabilizer of laser light source

Publications (1)

Publication Number Publication Date
JPS6344783A true JPS6344783A (en) 1988-02-25

Family

ID=16237441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18921386A Pending JPS6344783A (en) 1986-08-12 1986-08-12 Frequency stabilizer of laser light source

Country Status (1)

Country Link
JP (1) JPS6344783A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362388A (en) * 1986-09-03 1988-03-18 Hitachi Ltd Semiconductor laser device
EP0336308A2 (en) * 1988-03-31 1989-10-11 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Method and device for automatic frequency control of semiconductor lasers
CN102738694A (en) * 2012-06-25 2012-10-17 中国科学院上海技术物理研究所 Method for realizing laser frequency stabilization by utilizing Fabry-Perot (F-P) interferometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362388A (en) * 1986-09-03 1988-03-18 Hitachi Ltd Semiconductor laser device
EP0336308A2 (en) * 1988-03-31 1989-10-11 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Method and device for automatic frequency control of semiconductor lasers
EP0336308A3 (en) * 1988-03-31 1991-02-27 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. Method and device for automatic frequency control of semiconductor lasers
CN102738694A (en) * 2012-06-25 2012-10-17 中国科学院上海技术物理研究所 Method for realizing laser frequency stabilization by utilizing Fabry-Perot (F-P) interferometer

Similar Documents

Publication Publication Date Title
US5073331A (en) Modulation method for use in a semiconductor laser and an apparatus therefor
JP2914748B2 (en) Semiconductor laser frequency stabilization device
KR910003217B1 (en) Semiconductor laser driving method and apparatus
ES2020559B3 (en) MONITORING AND CONTROL OF THE STABILITY OF A RADIATION SOURCE.
CA1281367C (en) Method and device for automatic frequency control of semiconductor lasers
US4513422A (en) CO2 Laser stabilization and switching
CA1287113C (en) Laser temperature modulation and detection method
JP2002033548A (en) Method and apparatus for driving mode-locked semiconductor laser
JP2715206B2 (en) Laser recording device
JPS6344783A (en) Frequency stabilizer of laser light source
JP2937418B2 (en) Semiconductor laser device
JP3207211B2 (en) Measurement and control device for optical frequency shift of semiconductor laser
JPS5821832B2 (en) Hand tie laser touch
JPS61205848A (en) Crib coupling cavity laser driving system for measuring small signal
KR940010168B1 (en) Laser frequency controlling apparatus and method the same
US4872173A (en) Method and apparatus for stabilizing the spectral characteristics of a semiconductor laser diode
JPH0117614B2 (en)
JPH026236B2 (en)
JP2701718B2 (en) Laser oscillation wavelength stabilization method
JPS5868250A (en) Optical modulating device
JP2699818B2 (en) Laser device
JPH07109927B2 (en) Semiconductor laser module and operating method thereof
JPH0654133A (en) Optical scanning and recording device
CN113471806A (en) Multi-feedback laser stepping frequency sweep driving device and method
Buholz et al. CO 2 Laser stabilization and switching