JPS634444B2 - - Google Patents

Info

Publication number
JPS634444B2
JPS634444B2 JP593583A JP593583A JPS634444B2 JP S634444 B2 JPS634444 B2 JP S634444B2 JP 593583 A JP593583 A JP 593583A JP 593583 A JP593583 A JP 593583A JP S634444 B2 JPS634444 B2 JP S634444B2
Authority
JP
Japan
Prior art keywords
solid
suspension
melt
dispersion medium
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP593583A
Other languages
Japanese (ja)
Other versions
JPS59132929A (en
Inventor
Shigemi Shiraki
Atsushi Deguchi
Yoshiaki Kamimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP593583A priority Critical patent/JPS59132929A/en
Publication of JPS59132929A publication Critical patent/JPS59132929A/en
Publication of JPS634444B2 publication Critical patent/JPS634444B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Description

【発明の詳細な説明】 本発明は、形状及び粒径の均一な球状粉体を製
造する方法に関する。 比較的低温度で溶融することが可能な易溶融性
固体の粉体を得るために、該固体を一旦溶融させ
た後造粒する方法があり、すでにいくつかの方法
が知られている。その一つとして該固体の溶融物
を実質的に非溶媒である分散媒中に懸濁させた
後、急冷して溶融物を固化させる方法がある。こ
の方法を利用して、高品質のオレフイン重合用触
媒担体を工業的に有利に製造する方法として、本
発明者らはすでに細管中で上記懸濁を行う簡単か
つ効果的な方法を特開昭56−67311号において提
案した。 この提案によれば、固体溶融物と分散媒を高速
で細管中を通過させることによつて均一な懸濁液
を作り、これを急冷して固体溶融物を固化するこ
とにより粉体を得ることができる。かかる方法を
粒径の比較的小さい粉体の製造に利用する場合に
は形状及び粒度分布の良好な粉体を得ることがで
きたが、さらに粒径の大きい粉体を得ようとした
場合には、いびつな形状の粉体が少なからず生成
する傾向にあつた。 本発明者らは、上記欠点を改善し、比較的大き
い粒径のものでも真球又はそれに近い形状の粉体
を簡単かつ容易に製造しうる方法を検討した結
果、上記提案の方法に僅かな付加的操作を加える
ことによつてその目的が達成できることを知つ
た。すなわち本発明は、固体の溶融物と、該溶融
物を懸濁させ得る分散媒の少なくとも二者を、高
速度で細管中を通過させつつ混合して該分散媒に
該固体溶融物を分散させた後、該細管より径の大
きい管中を通過させ、次いで急冷して該溶融物を
固化させることを特徴とする球状粉体の製造方法
に関する。 本発明において使用される前記固体としては、
例えば50ないし200℃の如き比較的低温度で溶融
するものが好ましく、無機質のものでも有機質の
ものでもよい。また混合操作時の温度においてそ
の溶融粘度が1ないし300センチポアズ程度の値
を示すものが好ましい。例えば常温で固体であつ
てかつ上述の温度近辺で溶融する高級炭化水素、
高級アルコール、高級脂肪酸、フエノール類、エ
ステル類、各種芳香族化合物などの有機化合物、
各種低融点無機化合物、無機化合物と有機化合物
の錯化合物などを具体的として挙げることができ
る。 また本発明で使用することのできる分散媒とし
ては、上記固体の溶融物を懸濁することが可能な
ものであつて、上記固体の種類に応じ、無機又は
有機の液状物から選択することができる。該分散
媒としては、また固体溶融物との混合操作時にお
ける粘度が0.2ないし10センチポアズ程度のもの
が好ましい。好適な分散媒は、水、各種炭化水素
類、各種ハロゲン化炭化水素類などであるが、他
の極性溶媒を使用することもできる。またこれら
分散媒として混合溶媒を用いてもよく、あるいは
上記固体溶融物とは異なる固体化合物を溶解した
溶液を用いてもよい。 固体溶融物を分散媒に懸濁させるに際し、懸濁
安定性を高めるために種々の界面活性剤を使用す
ることができる。 本発明においては先ず固体の溶融物、該溶融物
を懸濁させ得る分散媒、必要に応じ界面活性剤な
どを、予備混合した後、あるいは予備混合せずに
高速度で細管中を通過させることによつて混合
し、溶融固体が分散媒に懸濁した懸濁液を生成さ
せる。固体及び分散媒の種類、界面活性剤の使用
の有無などによつても異なるが、良好な懸濁液を
得るためには、懸濁条件下において分散媒100容
量部当り、溶融固体が5ないし300容量部、こく
に10ないし200容量部となるような割合で細管に
供給するのが好ましい。 また界面活性剤を使用する場合には、その種類
その他によつても異なるが、溶融固体1重量部当
り、例えば0.1重量部以下、好ましくは0.01ない
し0.1重量部の如き割合で使用することができる。 上記混合懸濁に用いられる細管としては、原料
の種類によつても異なるが、内径が約0.3ないし
約5mm、好ましくは約0.5ないし約3mm程度とす
るのが好ましい。管内径があまり大きすぎると、
懇濁液中の溶融固体の形状の悪化が顕著になつた
り粒度分布が広くなつたりする傾向がある。また
細管長さは、望ましい懸濁液を得るために、内径
の100倍以上、とくに300倍以上あることが好まし
いが、あまり長くなつても効果の増大は期待でき
ず、却つて細管中の圧損失が大きくなるという弊
害がでてくるので、管内径の7000倍以下程度に抑
えるのが好ましい。 溶融固体と分散媒を良く混合し、良好な懸濁液
を得るために、液体原料を高速で通過させる必要
がある。一般には液体原料の流速は、流速/管内
径の比が約2000sec-1以上、とくに好適には、約
2000ないし約16000sec-1とするのがよい。この比
が約2000sec-1より小さすぎると形状及び粒径の
揃つた液滴の懸濁液とすることが難かしく、また
その比をあまり大きくすると圧損失が大きくなる
という欠点が出てくるので上記の如き範囲を選択
するのが望ましい。 かくして細管中において溶融固体と分散媒が混
合し、分散媒中に溶融固体の液滴が分散した懸濁
液が生成する。この液滴の大きさは、管内径の大
きさや液流速などによつて調整することができ
る。この際比較的小さい液滴の懸濁液を製造する
場合には、粒度分布が狭くしかも真球状の液滴の
懸濁液を得やすいが、比較的大きい液滴の懸濁液
を製造する場合には、液滴形状が完全な球状を示
すものが減少し、いびつな形状のものが増大する
傾向が大きく、これをそのまま冷却固化して粉体
を製造した場合には、形状及び粒径の均一なもの
が得難く、またそのような粉体は流動性が悪く、
取り扱いに難がある。 本発明では、このようないびつになつた液滴の
形状を真球状又はこれに近い形状に整形するため
に、前記細管を通過して形成した懸濁液をより管
径の大きい管中を通過させるものである。この目
的に使用される管の径としては、細管の径より大
きく、例えば細管内径の1.2ないし10倍、とくに
1.3ないし5倍であることが好ましく、かつ1.0な
いし30mm、とくに2ないし10mmとするのが好まし
い。この大きい径の管を通過させる場合、その長
さがあまり短かいと実質的に効果が認められず、
またあまり長すぎると大きい液滴同志の合一が起
こり、粒度分布が広がるとともに合一した液滴の
形状悪化なども認められるようになるので、適当
な長さのものを選択する必要がある。その長さ
は、懸濁液の種類、管径、液流速などによつて実
験的に決定されるべきであるが、通常この部分の
長さが0.03ないし1.0m、とくに0.05ないし1.0m
の範囲とするのが好ましい。 本発明によれば、かくして得られる液滴形状が
矯正された懸濁液を急冷することによつて液滴
(溶融固体)を固化させる。懸濁液を急冷する方
法としては、例えば冷却ジヤケツトを備えた冷却
槽中に前記管からの懸濁液を噴出させる方法、前
記管の下流側に設置された外部冷却された管中を
通過させる方法などを採用することができる。 本発明の原理は次のように考えられる。一般に
溶解しあわない2種類の液体を強力な撹拌力下で
乳化分散させる場合、一方の液体が分散相Aとな
り、他の一方が連続相Bとなる。この場合AはB
との界面張力により、丸く球状になろうとする傾
向を有する。しかしながらA,Bが本発明にある
一段目の乳化パイプのような強力な乱流撹拌場に
ある場合は、Aは***と会合を繰り返すという平
衡状態にあり、その移動過程においては、ダルマ
状の液滴や砲弾状の液滴となつたものが多数存在
する。またAは界面張力が一定の系においては、
その界面張力に由来する内部圧力を有し、その圧
力は、 P=4σ/d(P;内圧、σ;界面張力、d;粒
径) となる事は知られている。この式からわかるよう
にAの粒子径が小さい程、内圧が高くなるのでA
は球状に成り易い。本発明で述べているごとく、
Aの粒子径が大きくなると、形状がいびつになつ
たまま冷却固化される割合が増えてくるわけであ
る。従つて本発明者らは、比較的大きな粒径を有
する分散相の球状化を果すために、一段目のパイ
プより内径の大きな二段目のパイプを設置し、乱
流撹拌場における液体内の剪断応力を開放すると
共に、分散液体が***会合になるいびつな形状か
ら球状となるまでの時間を確保する事により生成
する殆んどの粒子が真球状となる事を発見したも
のである。この事を考えると、二段目の内径のよ
り大きなパイプの長さが長すぎると二段目パイプ
内のある撹拌平衡状態となつて、形のいびつなA
が生成することになるので、本発明のように最適
な長さが必要となつてくる。 また、本発明の原理を考えれば、一段目の乳化
パイプを出た二液相の熱時状態のまま長く滞空さ
せて、球状化を計ることもできないわけではない
が、細管内径の1.2ないし10倍の内径を有する二
段目のパイプを使うのと同等の理論的効果を出そ
うとすれば、一段目のパイプの出口から冷却液面
までについて、(1.2)2ないし(10)2倍の滞空距離
を必要とすることになるので工業的でなくなる
上、仮にその長い滞空距離を設けてみても冷却液
面に衝突する際の衝撃力が強いためか、形状の改
善効果が薄かつた。 上記の如くして得られる固体粒子の懸濁液か
ら、固体粒子を回収するには、沈降、過、遠心
分離などの任意の固液分離手段を適用すればよ
い。この際、微粉を除くために、予め沈降分級や
液体サイクロンなどを用いた分級操作を付加する
こともできる。 本発明によれば、比較的大きい粒径の粉体で
も、粒度分布が狭く、かつ良好な球状形状を保持
したものが得られる。また先に述べた先願提案の
ようなオレフイン重合用触媒担体の製造に利用し
た場合には、該先願と同様に、硬く耐崩壊性に優
れた担体を得ることができる。 次に実施例により説明する。 実施例 1 第1図のフローシートに従つて、良好な球状形
状の触媒用担体を合成した。スチームジヤケツト
付きの錯体槽1に塩化マグネシウムとエタノール
との錯体を仕込み、液体媒体(分散媒)槽2には
ノルマルデカンを仕込み、界面活性剤槽3にはノ
ルマルデカン1に対し、ソルビタンジステアレ
ートを24.2gの割合で仕込み、100℃で溶解させ
た。錯体槽1からポンプ4を通り、また液体媒体
槽2からポンプ5を通り、熱交換器7で130℃に
加熱した後、また界面活性剤槽3からポンプ6を
通り、それぞれの槽の液を内径4mmの送液管8に
後掲第1表の供給割合をとなるように送液した。
送液管8から内径1.5mm、長さ1mの混合用パイ
プ9に送られた混合液はここで激しく混合分散さ
れた後、混合用パイプ9に直結された内径4.0mm、
長さ500mmの整球用パイプ10を通し、実効容積
10の冷却槽11に供給され、冷却固化を行つ
た。 冷却槽11はジヤケツト12を有し、ブライン
により液温を35℃以下に保つように十分撹拌冷却
されている。冷却槽のオーバーフローノズル13
から冷却固化した錯体を含む分散液が連続的に取
り出された。かくして得られた分散液を5〜10分
静置し、底部に沈降したスラリー中の固体の粒度
分布を光透過法により測定したところ、50%平均
粒径75μm、自然対数標準偏差0.36であつた。ま
た、スラリーを顕微鏡で観察したところ、粒子径
200μm以上の大粒子まで完全な真球形をなして
いた。この写真を第2図に示した。 実施例 2 整球用パイプの内径を6.0mmと変えた以外は実
施例1と同様に行つた。その結果、50%平均粒径
80μm、自然対数標準偏差0.41であり、第3図の
写真に示すように粒径200μm以上の粒子までも
真球度の高い球状担体が得られた。 実施例 3 整球用パイプの内径を3.0mm、長さを70mmと変
えた以外は実施例1と同様に行つた。その結果、
50%平均粒径70μm、自然対数標準偏差0.41とな
り、第4図の写真に示すように、全粒子共、真球
度の高い球状の担体が得られた。 比較例 1 整球用パイプを取り除き、混合用パイプ9から
出た混合液を直接冷却槽11に供給した以外は実
施例1と同様に行つた。 その結果、得られた担体の形状は第5図の写真
に示すごとく、全てが完全な球形ではなく、いび
つな形のものが観察された。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing spherical powder with uniform shape and particle size. In order to obtain an easily meltable solid powder that can be melted at a relatively low temperature, there is a method of melting the solid once and then granulating it, and several methods are already known. One such method is to suspend the solid melt in a dispersion medium that is substantially a non-solvent, and then rapidly cool it to solidify the melt. As an industrially advantageous method for manufacturing a high-quality catalyst carrier for olefin polymerization using this method, the present inventors have already developed a simple and effective method for carrying out the above-mentioned suspension in a capillary in a patent publication published in Japanese Patent Application Laid-open No. It was proposed in No. 56-67311. According to this proposal, a uniform suspension is created by passing a solid melt and a dispersion medium through a capillary at high speed, and the powder is obtained by rapidly cooling the solid melt and solidifying the solid melt. Can be done. When using this method to produce powder with relatively small particle size, it was possible to obtain powder with good shape and particle size distribution, but when trying to obtain powder with even larger particle size, There was a tendency for a considerable amount of irregularly shaped powder to be produced. The present inventors investigated a method that could improve the above-mentioned drawbacks and easily produce powder having a true sphere or a shape close to it even if the particle size is relatively large. I learned that I could achieve that goal by adding additional operations. That is, the present invention involves mixing at least two of a solid melt and a dispersion medium capable of suspending the melt while passing through a capillary at high speed, and dispersing the solid melt in the dispersion medium. The present invention relates to a method for producing a spherical powder, which comprises passing the melt through a tube having a diameter larger than that of the thin tube, followed by rapid cooling to solidify the molten powder. The solid used in the present invention includes:
For example, those that melt at a relatively low temperature such as 50 to 200°C are preferred, and they may be inorganic or organic. Further, it is preferable that the melt viscosity is about 1 to 300 centipoise at the temperature during the mixing operation. For example, higher hydrocarbons that are solid at room temperature and melt around the above-mentioned temperature,
Organic compounds such as higher alcohols, higher fatty acids, phenols, esters, various aromatic compounds,
Specific examples include various low-melting point inorganic compounds and complex compounds of inorganic compounds and organic compounds. Further, the dispersion medium that can be used in the present invention is one that can suspend the melt of the above-mentioned solid, and can be selected from inorganic or organic liquids depending on the type of the above-mentioned solid. can. The dispersion medium preferably has a viscosity of about 0.2 to 10 centipoise during mixing with the solid melt. Suitable dispersion media include water, various hydrocarbons, various halogenated hydrocarbons, etc., although other polar solvents can also be used. Further, a mixed solvent may be used as the dispersion medium, or a solution in which a solid compound different from the above-mentioned solid melt is dissolved may be used. When suspending a solid melt in a dispersion medium, various surfactants can be used to enhance suspension stability. In the present invention, first, a solid melt, a dispersion medium capable of suspending the melt, a surfactant if necessary, etc. are premixed or passed through a capillary at high speed without premixing. to form a suspension of the molten solid in the dispersion medium. Although it varies depending on the type of solid and dispersion medium, whether or not a surfactant is used, etc., in order to obtain a good suspension, the amount of molten solid should be 5 to 5% per 100 parts by volume of dispersion medium under suspension conditions. Preferably, it is supplied to the capillary at a rate of 300 parts by volume, and more preferably 10 to 200 parts by volume. When a surfactant is used, it can be used in a proportion of, for example, 0.1 part by weight or less, preferably 0.01 to 0.1 part by weight, per 1 part by weight of the molten solid, although it varies depending on the type and other factors. . The thin tube used for the above-mentioned mixing and suspension preferably has an inner diameter of about 0.3 to about 5 mm, preferably about 0.5 to about 3 mm, although it varies depending on the type of raw materials. If the pipe inner diameter is too large,
There is a tendency for the shape of the molten solid in the suspension to deteriorate significantly and for the particle size distribution to become broader. In addition, the length of the capillary is preferably at least 100 times, especially at least 300 times, the inner diameter in order to obtain a desirable suspension, but if the length is too long, no increase in effectiveness can be expected, and on the contrary, the pressure inside the capillary will increase. Since this may have the disadvantage of increasing loss, it is preferable to keep it to about 7000 times the inner diameter of the pipe or less. In order to mix the molten solid and the dispersion medium well and obtain a good suspension, it is necessary to pass the liquid raw material at high speed. In general, the flow rate of the liquid raw material is such that the ratio of flow rate/pipe inner diameter is approximately 2000 sec -1 or more, particularly preferably approximately
It is preferable to set it to 2000 to about 16000sec -1 . If this ratio is too small than about 2000 sec -1 , it will be difficult to form a suspension of droplets with uniform shape and particle size, and if the ratio is too large, pressure loss will increase. It is desirable to select the range as described above. In this way, the molten solid and the dispersion medium mix in the capillary to form a suspension in which droplets of the molten solid are dispersed in the dispersion medium. The size of this droplet can be adjusted by adjusting the inner diameter of the tube, the liquid flow rate, etc. At this time, when producing a suspension of relatively small droplets, it is easy to obtain a suspension of droplets with a narrow particle size distribution and a true spherical shape, but when producing a suspension of relatively large droplets, There is a strong tendency for the number of droplets exhibiting a perfect spherical shape to decrease and the number of droplets with an irregular shape to increase. It is difficult to obtain a uniform powder, and such powder has poor fluidity.
Difficult to handle. In the present invention, in order to shape such distorted droplets into a true spherical shape or a shape close to this, the suspension formed by passing through the thin tube is passed through a tube having a larger diameter. It is something that makes you The diameter of the tube used for this purpose should be larger than the diameter of the capillary, for example 1.2 to 10 times the inner diameter of the capillary, especially
It is preferably 1.3 to 5 times as large, and preferably 1.0 to 30 mm, particularly 2 to 10 mm. When passing through a pipe with such a large diameter, if the length is too short, there will be virtually no effect.
Furthermore, if the length is too long, coalescence of large droplets will occur, broadening the particle size distribution and deteriorating the shape of the coalesced droplets, so it is necessary to select an appropriate length. Its length should be determined experimentally depending on the type of suspension, pipe diameter, liquid flow rate, etc., but usually the length of this part is 0.03 to 1.0 m, especially 0.05 to 1.0 m.
It is preferable to set it as the range of. According to the present invention, the droplets (molten solid) are solidified by rapidly cooling the resulting suspension in which the shape of the droplets has been corrected. Methods for rapidly cooling the suspension include, for example, spouting the suspension from the tube into a cooling tank equipped with a cooling jacket, or passing the suspension through an externally cooled tube installed downstream of the tube. method etc. can be adopted. The principle of the present invention can be considered as follows. When two types of liquids that generally do not dissolve in each other are emulsified and dispersed under strong stirring force, one liquid becomes the dispersed phase A and the other becomes the continuous phase B. In this case A is B
Due to the interfacial tension with the material, it tends to become round and spherical. However, when A and B are in a strong turbulent agitation field such as the first-stage emulsification pipe of the present invention, A is in an equilibrium state of repeating fragmentation and association, and in the process of movement, a daruma-like There are many droplets and bullet-shaped droplets. Also, in a system where the interfacial tension is constant, A is
It is known that it has an internal pressure derived from its interfacial tension, and that the pressure is P = 4σ/d (P: internal pressure, σ: interfacial tension, d: particle size). As can be seen from this equation, the smaller the particle size of A, the higher the internal pressure, so A
tends to become spherical. As stated in the present invention,
As the particle size of A increases, the proportion of particles that are cooled and solidified with distorted shapes increases. Therefore, in order to achieve spheroidization of the dispersed phase with a relatively large particle size, the present inventors installed a second-stage pipe with a larger inner diameter than the first-stage pipe and It was discovered that by releasing the shear stress and allowing time for the dispersion liquid to change from the distorted shape of splitting and aggregating to a spherical shape, most of the particles produced become perfectly spherical. Considering this, if the length of the second-stage pipe with a larger inner diameter is too long, a certain stirring equilibrium state will occur in the second-stage pipe, resulting in an irregularly shaped A.
is generated, so an optimal length is required as in the present invention. Furthermore, considering the principle of the present invention, it is not impossible to measure the spheroidization by allowing the two liquid phases exiting the first-stage emulsification pipe to remain in the hot state for a long time, but it is possible to If you want to achieve the same theoretical effect as using a second-stage pipe with twice the inner diameter, the distance from the first-stage pipe outlet to the coolant level would be (1.2) 2 to (10) twice as large. This would require a longer hangover distance, making it impractical for industrial use, and even if such a long hangover distance were provided, the effect of improving the shape would be weak, probably due to the strong impact force upon collision with the coolant surface. To recover solid particles from the solid particle suspension obtained as described above, any solid-liquid separation means such as sedimentation, filtration, or centrifugation may be applied. At this time, in order to remove fine powder, a classification operation using sedimentation classification, a liquid cyclone, etc. may be added in advance. According to the present invention, even if the powder has a relatively large particle size, it is possible to obtain a powder that has a narrow particle size distribution and maintains a good spherical shape. Furthermore, when the present invention is used in the production of a catalyst carrier for olefin polymerization as proposed in the earlier application, it is possible to obtain a hard carrier with excellent collapse resistance, as in the earlier application. Next, an example will be explained. Example 1 A good spherical catalyst carrier was synthesized according to the flow sheet shown in FIG. A complex of magnesium chloride and ethanol is charged in a complex tank 1 equipped with a steam jacket, normal decane is charged in a liquid medium (dispersion medium) tank 2, and sorbitane distear is charged in a surfactant tank 3 for 1 part normal decane. A total of 24.2 g of lattice was added and dissolved at 100°C. The liquid in each tank is passed from the complex tank 1 to the pump 4, from the liquid medium tank 2 to the pump 5, heated to 130°C by the heat exchanger 7, and from the surfactant tank 3 to the pump 6. The liquid was fed into the liquid feeding tube 8 having an inner diameter of 4 mm at the supply ratio shown in Table 1 below.
The mixed liquid sent from the liquid sending pipe 8 to a mixing pipe 9 with an inner diameter of 1.5 mm and a length of 1 m is vigorously mixed and dispersed there, and then transferred to a pipe with an inner diameter of 4.0 mm, which is directly connected to the mixing pipe 9.
Pass through the ball adjustment pipe 10 with a length of 500 mm to determine the effective volume.
It was supplied to 10 cooling tanks 11 and cooled and solidified. The cooling tank 11 has a jacket 12, and is sufficiently stirred and cooled by brine to keep the liquid temperature below 35°C. Cooling tank overflow nozzle 13
A dispersion containing the cooled and solidified complex was continuously taken out from the tube. The thus obtained dispersion was allowed to stand for 5 to 10 minutes, and the particle size distribution of the solids in the slurry that had settled to the bottom was measured by a light transmission method, and the 50% average particle size was 75 μm and the natural logarithm standard deviation was 0.36. . In addition, when the slurry was observed under a microscope, the particle size was
Even large particles of 200 μm or more were perfectly spherical. This photograph is shown in Figure 2. Example 2 The same procedure as in Example 1 was carried out except that the inner diameter of the ball adjusting pipe was changed to 6.0 mm. As a result, 50% average particle size
80 μm, natural logarithm standard deviation of 0.41, and as shown in the photograph in FIG. 3, spherical carriers with high sphericity were obtained even for particles with particle diameters of 200 μm or more. Example 3 The same procedure as in Example 1 was carried out except that the inner diameter of the ball adjusting pipe was changed to 3.0 mm and the length to 70 mm. the result,
The 50% average particle diameter was 70 μm, the natural logarithm standard deviation was 0.41, and as shown in the photograph in FIG. 4, spherical supports with high sphericity were obtained for all particles. Comparative Example 1 The same procedure as in Example 1 was carried out except that the ball adjustment pipe was removed and the mixed liquid coming out of the mixing pipe 9 was directly supplied to the cooling tank 11. As a result, as shown in the photograph of FIG. 5, the shape of the obtained carrier was not completely spherical, but was observed to have an irregular shape. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に用いた装置の一例を示
す図面である。第2図〜第4図は、本発明によつ
て得られた球状粉体の一例を示す写真であり、第
5図は従来法により得られた球状粉体の一例を示
す写真である。
FIG. 1 is a drawing showing an example of an apparatus used for carrying out the present invention. 2 to 4 are photographs showing an example of a spherical powder obtained by the present invention, and FIG. 5 is a photograph showing an example of a spherical powder obtained by a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 固体の溶融物と、該溶融物を懸濁させ得る分
散媒の少なくとも二者を、高速度で細管中を通過
させつつ混合して該分散媒に該固体溶融物を分散
させた後、該細管より径の大きい管中を通過さ
せ、次いで急冷して該溶融物を固化させることを
特徴とする球状粉体の製造方法。
1 At least two of a solid melt and a dispersion medium capable of suspending the melt are mixed while passing through a capillary at high speed to disperse the solid melt in the dispersion medium, and then the solid melt is dispersed in the dispersion medium. 1. A method for producing a spherical powder, which comprises passing the molten material through a tube having a larger diameter than a thin tube, and then solidifying the molten material by rapid cooling.
JP593583A 1983-01-19 1983-01-19 Preparation of spherical powder Granted JPS59132929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP593583A JPS59132929A (en) 1983-01-19 1983-01-19 Preparation of spherical powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP593583A JPS59132929A (en) 1983-01-19 1983-01-19 Preparation of spherical powder

Publications (2)

Publication Number Publication Date
JPS59132929A JPS59132929A (en) 1984-07-31
JPS634444B2 true JPS634444B2 (en) 1988-01-29

Family

ID=11624751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP593583A Granted JPS59132929A (en) 1983-01-19 1983-01-19 Preparation of spherical powder

Country Status (1)

Country Link
JP (1) JPS59132929A (en)

Also Published As

Publication number Publication date
JPS59132929A (en) 1984-07-31

Similar Documents

Publication Publication Date Title
US6127513A (en) Spherical polyamide and process for preparing the same
US5885920A (en) Process for producing catalyst carrier for olefin polymerization
US5147412A (en) Production of dispersions of spherical particles by crystallization of emulsions
US4469648A (en) Process for preparing spheroidally shaped products, solid at room temperature
JPS61268346A (en) Method for forming liquid droplet
EP0051210B2 (en) Process for preparing uniform size spheroidal polymer beads
WO1999037706A1 (en) Expandable microspheres and process for producing the same
GB2037634A (en) Casting thixotropic material
JPS62149726A (en) Powdery polymer and its production
JP4122959B2 (en) Method for producing inorganic spherical body
US5801453A (en) Process for preparing spherical energetic compounds
JPS634444B2 (en)
US4119687A (en) Process for the production of powder-form hydrolyzed ethylene/vinyl acetate copolymers
JP2004298859A (en) Method and apparatus for manufacturing inorganic sphere
US4022820A (en) Solidification and crystallization of materials
US3952080A (en) Solidification of a molten surfactant solution
JP2875389B2 (en) Method for producing polymer beads
US3900041A (en) Modification of particle hardness in waxy crude oil slurries
JPS6323824B2 (en)
Kim Nano/micro spherical poly (Methyl methacrylate) particle formation by cooling from polymer solution
JP2832867B2 (en) Suspension polymerization method
JPH11172007A (en) Production of polymer particle
US3943115A (en) Method for preparing finely divided ethylene polymer particles
AU719931B2 (en) Water based formation of a beaded product
JPS5839566B2 (en) Alkali Kinzoku Bun Santa Ino Seizou Hohou