JPS6343897B2 - - Google Patents

Info

Publication number
JPS6343897B2
JPS6343897B2 JP54165944A JP16594479A JPS6343897B2 JP S6343897 B2 JPS6343897 B2 JP S6343897B2 JP 54165944 A JP54165944 A JP 54165944A JP 16594479 A JP16594479 A JP 16594479A JP S6343897 B2 JPS6343897 B2 JP S6343897B2
Authority
JP
Japan
Prior art keywords
lead
semiconductor device
leads
bonding
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54165944A
Other languages
Japanese (ja)
Other versions
JPS5688347A (en
Inventor
Manabu Bonshihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP16594479A priority Critical patent/JPS5688347A/en
Publication of JPS5688347A publication Critical patent/JPS5688347A/en
Publication of JPS6343897B2 publication Critical patent/JPS6343897B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49572Lead-frames or other flat leads consisting of thin flexible metallic tape with or without a film carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/79Apparatus for Tape Automated Bonding [TAB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/50Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the shortcircuit of adjacent lead wires with a terminal when connecting the outer lead wire of the semiconductor device by connecting a number of inner lead wires with an insulated supporting piece. CONSTITUTION:When semiconductor lead wies are cut from a film carrier, the ends of the lead wires become cantilever, causing a shortcircuit. Therefore, the insulating film and the lead wires 2 projected from a semiconductor element 3 are simultaneously cut integrally, the supporting frame 6 of the insulating film is formed, and the lead wires are thus supported at both ends. According to this construction, the lead wire interval is not varied, and the improper shortcircuit can be prevented. The four corners of the frame 6 may be cut, or the lead wire 2 may also be wound in shape on the frame 6. According to this construction, when bonding them to the outer lead wire, it can prevent the shortcircuit of the adjacent lead wires to the terminal.

Description

【発明の詳細な説明】 本発明は半導体装置に係り、特にギヤングボン
デイングされてなる半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a semiconductor device formed by gigantic bonding.

これまでのフイルムキヤリヤー型半導体装置で
は、半導体装置素子とフイルムキヤリヤーリード
との接続(インナーリードボンデイング)を終了
した後それぞれ個別の半導体装置として、ハイブ
リツドIC用の回路基板やコンピユーター用の配
線基板上に接続(アウターリードボンデイング)
していた。これまでのアウターリードボンデイン
グは半導体装置のリード数が40ピン程度と比較的
少なかつた為、隣接同士のリード間の短絡は余り
問題とはならなかつた。しかしながら、50ピンを
越える程度となると、隣接リード間隔が狭くな
り、アウターリードボンデイング時に隣接リード
や、隣接端子部と短絡を起す等の欠点が発生し
た。
In conventional film carrier type semiconductor devices, after the connection between the semiconductor device element and the film carrier lead (inner lead bonding) is completed, each semiconductor device is sold as an individual semiconductor device, such as a circuit board for a hybrid IC or a wiring board for a computer. Connect to the top (outer lead bonding)
Was. In conventional outer lead bonding, the number of leads in a semiconductor device was relatively small at about 40 pins, so short circuits between adjacent leads did not pose much of a problem. However, when the number of pins exceeds 50, the distance between adjacent leads becomes narrow, resulting in short circuits with adjacent leads or adjacent terminals during outer lead bonding.

本発明の目的はこのような欠点を除去した半導
体装置を提供することにある。
An object of the present invention is to provide a semiconductor device that eliminates such drawbacks.

フイルムキヤリヤー半導体装置をハイブリツド
ICとして使用する場合には、あらかじめメタラ
イズ配線された配線端子部にフイルムキヤリヤー
のリード部を曲げ成形及び切断加工して、熱圧着
法や超音波溶接法やペースト接着法で接続し、半
導体装置の搭載をしていた。
Hybrid film carrier semiconductor device
When used as an IC, the lead part of the film carrier is bent, formed and cut onto the wiring terminal part which has been pre-metallized, and connected by thermocompression bonding, ultrasonic welding or paste bonding, and the semiconductor device It was equipped with.

このハイブリツドIC用配線基板は、動作特性
向上の為と、価格低下を目的として高密度実装が
極めて重要なこととなつている。この為、配線端
子部は通常数100ミクロンピツチで、配線端子巾
は約200ミクロン程度となつているが、半導体装
置のリード数が、50ピンを越える程度となると、
このピツチや配線端子巾が小さくなつて隣接配線
端子間隔も、100ミクロンよりも小さくなる。更
に端子数が増えると、この傾向がひどくなり、半
導体装置のリードを接続した際容易に隣接リード
同士又はリードと隣接端子の短絡が発生しやすく
なる。
High-density packaging is extremely important for wiring boards for hybrid ICs in order to improve operating characteristics and lower prices. For this reason, the wiring terminal section is usually several hundred microns pitch, and the wiring terminal width is about 200 microns, but when the number of leads of a semiconductor device exceeds 50 pins,
As the pitch and wiring terminal width become smaller, the distance between adjacent wiring terminals also becomes smaller than 100 microns. Furthermore, as the number of terminals increases, this tendency becomes more severe, and when the leads of a semiconductor device are connected, short circuits easily occur between adjacent leads or between a lead and an adjacent terminal.

この短絡不良の発生は、半導体装置のリード曲
げ成形や、アウターリードボンデイング時に該リ
ードに付加される応力でリードが曲げられたり、
あるいは内部歪が蓄えられてアウターリードボン
デイング治具が除かれた後に、リード変形を生じ
る為に起る。
This short-circuit failure occurs when the leads are bent due to stress applied to the leads during lead bending of semiconductor devices or during outer lead bonding.
Alternatively, this may occur because internal strain is accumulated and leads are deformed after the outer lead bonding jig is removed.

従来のフイルムキヤリヤー半導体装置で、この
短絡不良が発生するのは、以上の理由丈ではな
く、フイルムキヤリヤーから半導体装置のリード
を切断した際、この切断リード群の切断端部が、
片持ちはり状の自由端となつているからである。
The reason why this short-circuit failure occurs in conventional film carrier semiconductor devices is not due to the length, but when the leads of the semiconductor device are cut from the film carrier, the cut ends of the group of cut leads are
This is because it has a cantilevered free end.

本発明は、これらの発生原因のうち、後者の原
因を除去すれば、前述の短絡不良発生が無くなる
ことを利用したものである。
The present invention takes advantage of the fact that if the latter of these causes is removed, the aforementioned short-circuit failures will no longer occur.

本発明は例えば、半導体素子の各辺毎に、半導
体素子から突出しているリード群を各辺毎に該リ
ード群の端部で支持していることを特徴とする半
導体装置であり、特に絶縁支持部を有するリード
部の部分、又は絶縁支持部と半導体素子との間の
リード部の部分で、アウターリードボンデイング
されている半導体装置である。
The present invention is, for example, a semiconductor device characterized in that, on each side of a semiconductor element, a group of leads protruding from the semiconductor element is supported at the end of the group of leads on each side. This is a semiconductor device in which outer lead bonding is performed at a portion of a lead portion having a portion or a portion of a lead portion between an insulating support portion and a semiconductor element.

即ち本発明によれば、フイルムキヤリヤーを構
成している絶縁フイルムと半導体素子から突出し
ているリード群とを同時に一体切断し、リード先
端部に切断されたリード群と、絶縁フイルムが接
着した状態即ち、リード群が半導体素子と絶縁フ
イルムの両持はり状態とし、リード切断端部が、
自由端とならないようにし、その後に、ハイブリ
ツドIC等の配線基板の配線端子部に該絶縁フイ
ルム部又は、該絶縁フイルム部よりも内側のリー
ド部でアウターリードボンデイングすることによ
り、短絡不良を無くした半導体装置を得ることが
できる。
That is, according to the present invention, the insulating film constituting the film carrier and the lead group protruding from the semiconductor element are simultaneously cut into one piece, and the cut lead group and the insulating film are bonded to the tip of the lead. That is, the lead group is in a state where the semiconductor element and the insulating film are supported on both sides, and the cut end of the lead is
Short-circuit defects are eliminated by ensuring that the leads do not become free ends, and then bonding the outer leads to the wiring terminals of the wiring board of hybrid ICs, etc. with the insulating film part or the lead part inside the insulating film part. A semiconductor device can be obtained.

以下図面を用いて説明する。 This will be explained below using the drawings.

第1図は絶縁フイルム1上に形成されたリード
2に半導体素子3がインナーリードボンデイング
されたフイルムキヤリヤー半導体装置の平面図で
ある。絶縁フイルム1は、100ミクロン厚のポリ
イミドシートで、送り孔4と半導体素子を載置す
る開孔5を有している。
FIG. 1 is a plan view of a film carrier semiconductor device in which a semiconductor element 3 is bonded to leads 2 formed on an insulating film 1 by inner lead bonding. The insulating film 1 is a polyimide sheet with a thickness of 100 microns, and has a feed hole 4 and an opening 5 for placing a semiconductor element.

第2図は、フイルムキヤリヤー半導体装置から
ハイブリツドIC基板に載置する為に切断した個
片の半導体装置の平面図で、従来から行われてい
る形態である。従来は、このようにリード2が半
導体素子3から片持ちはり状の形態で使用されて
いるのでリード2の端部が自由端となつて、外力
が負荷されると容易に位置ずれを起していた。こ
の外力としては、切断時又は切断後の取扱い時あ
るいはアウターリードボンデイング時にかかるも
のが主なものであるが、いずれの時にもリード間
隔が変動して短絡の原因となつていた。
FIG. 2 is a plan view of individual semiconductor devices cut from a film carrier semiconductor device in order to be placed on a hybrid IC board, which is a conventional method. Conventionally, the leads 2 are used in the form of a cantilever from the semiconductor element 3, so the ends of the leads 2 become free ends, which easily cause misalignment when an external force is applied. was. This external force is mainly applied during cutting, handling after cutting, or outer lead bonding, but in any case, the lead spacing fluctuates, causing short circuits.

第3図は、ポリイミドフイルム枠6を残すよう
にフイルムキヤリヤー半導体装置から個片の半導
体装置を切り取つたものでリード2は枠6に支え
られている為に、リード間隔が変動することはな
い。
Figure 3 shows an individual semiconductor device cut out from a film carrier semiconductor device leaving the polyimide film frame 6. Since the leads 2 are supported by the frame 6, the lead spacing does not change. .

第4図は、第3図半導体装置の枠6の四角を切
除した半導体装置の平面図である。第4図におい
て支持枠片7が残つている為、リード2は互いの
リード間隔が変動することはない。
FIG. 4 is a plan view of the semiconductor device shown in FIG. 3, with a square section of the frame 6 removed. In FIG. 4, since the support frame piece 7 remains, the distance between the leads 2 does not change.

第5図は、第4図の半導体装置の断面図であ
る。
FIG. 5 is a cross-sectional view of the semiconductor device of FIG. 4.

第6図は、第5図の半導体装置の支持枠片7を
リード2に沿つて、180゜回転させて、リード2を
「コ」の字状にまげた半導体装置の断面図である。
FIG. 6 is a cross-sectional view of the semiconductor device in which the support frame piece 7 of the semiconductor device shown in FIG. 5 is rotated 180 degrees along the leads 2 and the leads 2 are bent into a U-shape.

第7図は、アルミナ配線基板8の配線端子9に
第6図の半導体装置を熱圧着ボンデイングした状
態を示す断面図である。半導体素子3は、銀ペー
スト10を用いてあらかじめ基板8にダイボンド
した。リード2は40ミクロン厚の銅で、表面に錫
メツキが1ミクロン施こしてあるので、金メタラ
イズが0.5ミクロン施こしてある配線端子9には、
300℃程度の熱圧着で容易にアウターリード・ボ
ンデイング出来た。このように容易にアウターリ
ード・ボンデイングが出来たのは、第4図で明ら
かなように、リード2の先端が支持枠片7がある
ため互いに接触することなく、曲げ加工や、アウ
ターリード・ボンデイング出来る状態にあるから
である。又、第3図の如き枠6のある半導体装置
では、第6図あるいは後述の第8図、第9図の如
き曲げ加工が出来ないので、リードの曲げ加工方
向が揃つているリード群別にリード支持片が必要
となる。
FIG. 7 is a cross-sectional view showing the semiconductor device shown in FIG. 6 bonded to the wiring terminals 9 of the alumina wiring board 8 by thermocompression bonding. The semiconductor element 3 was die-bonded to the substrate 8 in advance using a silver paste 10. The lead 2 is made of copper with a thickness of 40 microns and has a tin plating of 1 micron on the surface, so the wiring terminal 9 has a gold metallization of 0.5 micron.
Outer lead bonding was easily achieved by thermocompression at around 300°C. The reason why outer lead bonding was easily possible in this way is that, as is clear from FIG. This is because it is possible. In addition, in a semiconductor device having a frame 6 as shown in FIG. 3, bending as shown in FIG. 6 or FIGS. 8 and 9 described later cannot be performed, so the leads are separated into groups whose bending directions are the same. A support piece is required.

第8図、第9図は、リード支持片11,12
が、半導体素子3に対して反対側に存在する半導
体装置の断面図である。これらの半導体装置のリ
ードは、支持片11,12がリードの導出方向毎
に分かれて、リード群を支持しているので、容易
に第8図、第9図の如くに、曲げ加工が出来た。
8 and 9 show lead support pieces 11 and 12.
is a cross-sectional view of a semiconductor device located on the opposite side to the semiconductor element 3. FIG. The leads of these semiconductor devices can be easily bent as shown in FIGS. 8 and 9 because the support pieces 11 and 12 are separated for each direction in which the leads are led out and support the group of leads. .

第9図のリード2′は半導体装置の電極に対応
した突起端子を有する表面金メツキ処理した70ミ
クロン厚ニツケルリードである。
The lead 2' in FIG. 9 is a 70 micron thick nickel lead whose surface is gold-plated and has protruding terminals corresponding to the electrodes of a semiconductor device.

第10図は、配線ピツチが100ミクロン、端子
巾が70ミクロン、端子間が30ミクロンの金配線を
有するハイブリツドIC基板に第8図の半導体装
置を、樹脂ダイボンドした後、熱圧着アウターリ
ード・ボンデイングした本発明の実施例半導体装
置を説明する断面図である。
Figure 10 shows the semiconductor device shown in Figure 8 being resin die-bonded to a hybrid IC board that has gold wiring with a wiring pitch of 100 microns, a terminal width of 70 microns, and a distance between terminals of 30 microns, followed by thermocompression outer lead bonding. FIG. 2 is a cross-sectional view illustrating a semiconductor device according to an embodiment of the present invention.

第8図の半導体装置は52ピンのリード数を有す
るもので、リード巾は50ミクロン、リードピツチ
を100ミクロンにしたものであるが、ポリイミド
支持片11によつて、リードピツチのずれは殆ん
ど起つていなく、半導体装置素子3のダイボンド
時にも個々のリード間隔の変動は数ミクロンで、
このような状態での基板端子と、リードの位置合
わせは極めて容易であつた。又、アウターリー
ド・ボンデイングは支持片11より内側のリード
部のみでの金―金熱圧着とし、極めて安定した短
絡不良発生のないアウターリードボンデイングの
出来た半導体装置が得られた。第10図に於て、
13はエポキシペースト、14はアウターリード
ボンデイング部を示す。
The semiconductor device shown in FIG. 8 has 52 leads, the lead width is 50 microns, and the lead pitch is 100 microns. However, the polyimide support piece 11 prevents most of the lead pitch from shifting. Even during die bonding of the semiconductor device element 3, the individual lead spacing varies by a few microns.
It was extremely easy to align the board terminals and the leads in this state. Further, the outer lead bonding was carried out by thermocompression bonding of only the lead portions inside the support piece 11, and a semiconductor device was obtained in which the outer lead bonding was extremely stable and did not cause short-circuit defects. In Figure 10,
13 is an epoxy paste, and 14 is an outer lead bonding part.

第11図はガラスエポキシ基板15に設けられ
た、金メツキ銅配線端子16を有するIC基板1
5に錫鉛半田17を用いて、ダイボンド及びアウ
ターリードボンデイングをした本発明の他の実施
例半導体装置断面図である。
FIG. 11 shows an IC board 1 having gold-plated copper wiring terminals 16 provided on a glass epoxy board 15.
5 is a sectional view of a semiconductor device according to another embodiment of the present invention in which die bonding and outer lead bonding are performed using tin-lead solder 17.

第11図例は、ダイボンド及びアウターリード
ボンデイングが220℃程度の温度で、一回の熱加
工プロセスで出来たもので、第10図例と同様、
極めて容易に短絡不良の無い半導体装置が得られ
た。
In the example in Figure 11, die bonding and outer lead bonding were made in a single heat processing process at a temperature of about 220°C, and as in the example in Figure 10,
A semiconductor device free from short-circuit defects was extremely easily obtained.

第12図は、セラミツクICパツケージに封入
した本発明のさらに他の実施例半導体装置断面図
である。
FIG. 12 is a sectional view of a semiconductor device according to still another embodiment of the present invention sealed in a ceramic IC package.

同図において、18はアルミナセラミツクベー
ス、19はモリブデンマンガンメタライズ配線で
端子部にはニツケルメツキ、金メツキを施こした
もの、20はセラミツクリング、21はガラス封
止部、22は封止セラミツクキヤツプ、23は鉄
ニツケルコバルト合金リード、24は銀ペースト
を示している。
In the figure, 18 is an alumina ceramic base, 19 is molybdenum manganese metallized wiring with nickel plating and gold plating on the terminal part, 20 is a ceramic ring, 21 is a glass sealing part, 22 is a sealing ceramic cap, 23 indicates an iron-nickel-cobalt alloy lead, and 24 indicates a silver paste.

本半導体装置は、第4図半導体装置をリード成
形することなく、超音波熱圧着ボンデイングした
もので、アウターリードボンデイング時に、リー
ド位置ずれを生じることなく製造することが出来
た。
This semiconductor device was obtained by performing ultrasonic thermocompression bonding on the semiconductor device shown in FIG. 4 without forming leads, and was able to be manufactured without causing lead positional deviation during outer lead bonding.

本発明の別の実施例を示すと、フイルムキヤリ
ヤー半導体装置を、第13図に示すように破線部
25に沿つて、フイルムキヤリヤーのフイルム部
を切除すると、第14図の如き中間支持片26と
リード先端支持片27を有する半導体装置を得て
該支持片26と27の間でアウターリードボンデ
イングすれば、更に安定した半導体装置が得られ
た。
In another embodiment of the present invention, when a film carrier semiconductor device is cut out along a broken line 25 as shown in FIG. 13, an intermediate support piece as shown in FIG. 14 is formed. By obtaining a semiconductor device having a lead tip support piece 26 and a lead tip support piece 27 and performing outer lead bonding between the support pieces 26 and 27, a more stable semiconductor device was obtained.

第15図は本発明の半導体装置のさらに別の実
施例を示す平面図で、20ピンのリードを有する集
積回路30で、絶縁支持枠28とリード群2の端
部が絶縁支持片で保持されている。このようにリ
ード群が多ピンになればなる程、リード間隔や、
リード巾が小さくなるので、リードの曲りは重大
になることはいうまでもないことである。
FIG. 15 is a plan view showing still another embodiment of the semiconductor device of the present invention, which is an integrated circuit 30 having 20 pin leads, in which the insulating support frame 28 and the ends of the lead group 2 are held by insulating support pieces. ing. In this way, the more pins a lead group has, the more the lead spacing,
Needless to say, as the lead width becomes smaller, bending of the lead becomes more serious.

従つて、本発明は多数ピンのフイルムキヤリヤ
ー等のギヤングボンド用集積回路や、リード間隔
や、リード巾の小さい半導体装置には、特に効果
的に短絡不良を防止できるが、従来のリード間隔
の広いものでも適用できることは明らかである。
Therefore, the present invention can particularly effectively prevent short-circuit failures in large-bond integrated circuits such as multi-pin film carriers, and semiconductor devices with small lead spacing and lead width. It is clear that it can also be applied to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフイルムキヤリヤー半導体装置を示す
平面図であり、第2図及び第3図は従来の半導体
装置を示す平面図である。第4図乃至第12図は
本発明の実施例を示す半導体装置の断面図であ
り、第13図〜第15図は本発明の実施例を示す
半導体装置の平面図である。このうち、第4図,
第5図,第6図,第7図の組と、第4図,第8
図,第10図の組と、第4図,第9図,第11図
の組と、第12と、第13図,第14図と、第1
5図は、各々本発明の実施例を説明するための平
面図もしくは断面図である。 尚、図において、1……フイルムキヤリヤー、
2……リード、3,30……半導体素子、44…
…送り孔、5……貫通孔、6,28……支持枠、
7,11,12,26,27,29……支持片、
10……ペースト、8,15……基板、9,1
6,19……配線、13,24……ダイボンド接
着剤、14……アウターリードボンデイング部、
17……半田、18,20,21,22,23…
…パツケージ、25……切断線部。
FIG. 1 is a plan view showing a film carrier semiconductor device, and FIGS. 2 and 3 are plan views showing a conventional semiconductor device. 4 to 12 are cross-sectional views of a semiconductor device showing an embodiment of the present invention, and FIGS. 13 to 15 are plan views of a semiconductor device showing an embodiment of the present invention. Of these, Figure 4,
A set of figures 5, 6, and 7, and figures 4 and 8.
10, 4, 9, and 11, 12, 13, 14, and 1.
FIG. 5 is a plan view or a sectional view for explaining an embodiment of the present invention, respectively. In addition, in the figure, 1... film carrier,
2... Lead, 3, 30... Semiconductor element, 44...
...Feeding hole, 5...Through hole, 6, 28...Support frame,
7, 11, 12, 26, 27, 29... support piece,
10...Paste, 8,15...Substrate, 9,1
6, 19... Wiring, 13, 24... Die bond adhesive, 14... Outer lead bonding part,
17... solder, 18, 20, 21, 22, 23...
...Package, 25... Cutting line section.

Claims (1)

【特許請求の範囲】 1 半導体素子の電極と外部配線とを接続するた
めのインナーリードを多数備えた半導体装置にお
いて、一端部が前記半導体素子の電極に接続され
たがいに平行に同一方向に延在する複数のインナ
ーリードの他端部は絶縁支持片によりたがいに支
持連結され、該インナーリードは該他端部よりも
前記一端部側の所定個所において前記外部配線に
ボンデイングされていることを特徴とする半導体
装置。 2 半導体素子の電極と外部配線とを接続するた
めのインナーリードを多数備えた半導体装置にお
いて、一端部が前記半導体素子の電極に接続され
たがいに平行に同一方向に延在する複数のインナ
ーリードの他端部は絶縁支持片によりたがいに支
持連結され、該インナーリードは該他端部におい
て前記外部配線にボンデイングされていることを
特徴とする半導体装置。
[Scope of Claims] 1. A semiconductor device including a large number of inner leads for connecting electrodes of a semiconductor element and external wiring, one end of which extends in the same direction parallel to the electrodes of the semiconductor element connected to the other. The other ends of the plurality of inner leads are supported and connected to each other by insulating support pieces, and the inner leads are bonded to the external wiring at a predetermined location closer to the one end than the other end. semiconductor devices. 2. In a semiconductor device equipped with a large number of inner leads for connecting electrodes of a semiconductor element and external wiring, a plurality of inner leads whose one end is connected to the electrode of the semiconductor element and which extend in the same direction in parallel to the A semiconductor device, wherein the other ends are supported and connected to each other by an insulating support piece, and the inner lead is bonded to the external wiring at the other end.
JP16594479A 1979-12-20 1979-12-20 Semiconductor device Granted JPS5688347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16594479A JPS5688347A (en) 1979-12-20 1979-12-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16594479A JPS5688347A (en) 1979-12-20 1979-12-20 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5688347A JPS5688347A (en) 1981-07-17
JPS6343897B2 true JPS6343897B2 (en) 1988-09-01

Family

ID=15821977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16594479A Granted JPS5688347A (en) 1979-12-20 1979-12-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5688347A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050932A (en) * 1983-08-31 1985-03-22 Oki Electric Ind Co Ltd Mounting method for semiconductor chip
JPH0394435A (en) * 1989-09-06 1991-04-19 Toshiba Corp Semiconductor device
US11508799B2 (en) * 2018-03-28 2022-11-22 Sharp Kabushiki Kaisha Display device comprising frame region surrounding display region

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339866A (en) * 1976-09-24 1978-04-12 Fujitsu Ltd Packaging method of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339866A (en) * 1976-09-24 1978-04-12 Fujitsu Ltd Packaging method of semiconductor device

Also Published As

Publication number Publication date
JPS5688347A (en) 1981-07-17

Similar Documents

Publication Publication Date Title
US3902148A (en) Semiconductor lead structure and assembly and method for fabricating same
US6188127B1 (en) Semiconductor packing stack module and method of producing the same
US6344683B1 (en) Stacked semiconductor package with flexible tape
KR100520660B1 (en) Semiconductor wafer, semiconductor device, and method for manufacturing the same
JP2001339043A (en) Semiconductor device and semiconductor module using the same
KR100226335B1 (en) Molded plastic packaging of electronic devices
US7198979B2 (en) Method for manufacturing a stack arrangement of a memory module
JP2606603B2 (en) Semiconductor device, its manufacturing method and its mounting inspection method
JPH0697237A (en) Semiconductor device and manufacture thereof
KR19980071599A (en) Semiconductor device and manufacturing method
US6006981A (en) Wirefilm bonding for electronic component interconnection
JP2569400B2 (en) Method for manufacturing resin-encapsulated semiconductor device
JPH0558657B2 (en)
JPS63124434A (en) Manufacture of semiconductor device
JPS59222947A (en) Semiconductor device and manufacture thereof
JPS6343897B2 (en)
JPH0817870A (en) Semiconductor device
JP4038021B2 (en) Manufacturing method of semiconductor device
KR970001891B1 (en) Semiconductor device and method for manufacturing the same
JPH0740576B2 (en) Film carrier semiconductor device electrical test method
EP0170022B1 (en) Semiconductor power device package for surface mounting
JPH10261735A (en) Semiconductor device and its manufacture
US6645794B2 (en) Method of manufacturing a semiconductor device by monolithically forming a sealing resin for sealing a chip and a reinforcing frame by transfer molding
JP2001223325A (en) Semiconductor device
JP3508683B2 (en) Semiconductor device and manufacturing method thereof