JPS6343490B2 - - Google Patents

Info

Publication number
JPS6343490B2
JPS6343490B2 JP11476380A JP11476380A JPS6343490B2 JP S6343490 B2 JPS6343490 B2 JP S6343490B2 JP 11476380 A JP11476380 A JP 11476380A JP 11476380 A JP11476380 A JP 11476380A JP S6343490 B2 JPS6343490 B2 JP S6343490B2
Authority
JP
Japan
Prior art keywords
fiber
strength
strand
acrylonitrile
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11476380A
Other languages
Japanese (ja)
Other versions
JPS5742934A (en
Inventor
Yasuo Saji
Kozo Tanaka
Keiji Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP11476380A priority Critical patent/JPS5742934A/en
Publication of JPS5742934A publication Critical patent/JPS5742934A/en
Publication of JPS6343490B2 publication Critical patent/JPS6343490B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特定の高耐衝撃性複合材製造用炭素
繊維ストランドに関する。このものは、複合材の
製造において強化材として用いられて複合材の衝
撃強度を著しく向上させる炭素繊維ストランドで
ある。 炭素繊維は軽量で高い強度と弾性率を有する繊
維材料であつて、近時エポキシ樹脂等の合成樹脂
や金属との複合材の強化材として使用されてい
る。 炭素繊維強化複合材は引張り及び曲げ等に対し
ては優れた強度を示すが、しかし、衝撃に対する
強度が低くこれが欠点となつていた。これを改善
するために炭素繊維にガラス繊維を併用するなど
の手段が行われているが、十分な成果をあげてい
ない。 本発明者らは、このような状況にかんがみ、複
合材の衝撃強度の改善につき種々検討したとこ
ろ、驚くべきことに、強化剤としての炭素繊維は
同じ引張弾性率で引張強度が高くても、複合材の
衝撃強度は必ずしも高くならず、かえつて低下す
る場合があることを知つた。 そこで研究を進めた結果、複合材の衝撃強度
は、強化材として使用された炭素繊維の引張強
度、引張弾性率、破断伸度等とは必ずしも相関関
係がないこと、そして、衝撃強度は炭素繊維のス
トンド結節強力に大きく依存することの知見を得
た。 これらの関係は下記第1表と図面に示す通りで
ある。
The present invention relates to carbon fiber strands for the manufacture of certain high impact composite materials. These are carbon fiber strands that are used as reinforcement in the manufacture of composites to significantly improve the impact strength of the composite. Carbon fiber is a lightweight fiber material having high strength and elastic modulus, and has recently been used as a reinforcing material for composite materials with synthetic resins such as epoxy resins and metals. Carbon fiber reinforced composite materials exhibit excellent strength against tension and bending, but have a drawback of low impact strength. Measures have been taken to improve this problem, such as using glass fiber in combination with carbon fiber, but these efforts have not produced sufficient results. In view of this situation, the present inventors conducted various studies on improving the impact strength of composite materials, and surprisingly found that even though carbon fiber as a reinforcing agent has the same tensile modulus and high tensile strength, I learned that the impact strength of composite materials does not necessarily increase, and may even decrease. As a result of our research, we found that the impact strength of composite materials does not necessarily correlate with the tensile strength, tensile modulus, elongation at break, etc. of the carbon fibers used as reinforcement materials, and that the impact strength of carbon fibers does not necessarily correlate with the It was found that the strength of the stond nodule greatly depends on the strength of the stond nodule. These relationships are as shown in Table 1 below and the drawings.

〔単糸の直径〕[Single thread diameter]

炭素繊維の断面形は真円ではないので、顕微鏡
下で断面積を測定し、この断面積を有する円の直
径を算出し、これを単糸の直径とする。 〔衝撃強度〕 JIS K7111「硬化プラスチツクのシヤルピー衝
撃強度」に準じて測定する。この場合マトリツク
スとしてはフエノール−ノボラツクタイプのエポ
キシ樹脂を用い、vf(繊維体積含有率)を60±2
%とし、試験はノツチ無し、エツジワイズよりの
打撃で行なう。 〔ストランド結節強力〕 炭素繊維ストランドを1m当りの重量が0.4±
0.01になるように集束又は分割する。例えば1m
当り0.2gのストランドの場合はこれを2本平行
にそろえて試料とし、1m当り1gのストランド
の場合は1m当り0.4±0.01gになるよう注意深
く分割して試料を作る。 次に0.4±0.01g/mのストランドに単繊維の
結節強度を測定するときと同様の結節部分を作
る。 インストロン型引張試験機を用い、チヤツク間
隔を100mmとし、結節部分がほぼその中央にくる
ように保ち、引張速度50mm/minで切断強力を測
定しこの値をストランド結節強力とする。 ところで、従来、一般に細い炭素繊維は知られ
ているが、本発明における如き特定の単糸の直径
を有し且つ高い数値のストランド結節強力を有す
る炭素繊維ストランドはこれまで知られていな
い。 本発明においては、炭素繊維ストランドの単糸
の直径及びストランド結節強力に関する要件を共
に満すことが必要である。単糸の直径は、原糸の
選定及び製造条件等に依存し、又ストランド結節
強力は、単糸の直径、原糸の品質、炭素繊維の製
造条件及びストランドを構成する単位繊維相互間
の膠着等諸々の要因により左右される。 本発明の炭素繊維ストランドは次のようにして
得ることができる。 まず、原料として繊維強度6g/d以上を有し
且つ0.1〜0.6デニールのアクリロニトリル系繊維
が使用される。ここでいうアクリロニトリル系繊
維は、アクリロニトリル単独又はアクリロニトリ
ルを95%以上含む共重合体より得られた繊維であ
る。共重合成分としては、通常アクリロニトリル
との共重合用として用いられている酢酸ビニル、
アクリル酸エステル、ビニルエーテル、イタコン
酸、ビニルアミド等既知の単量体である。 このアクリロニトリル系繊維を原糸とし、これ
に耐炎化処理が施される。耐炎化処理は、240〜
300℃の空気中で行われるが、この際、耐炎化処
理時間t(分)と平均耐炎化温度T(℃)に関して
は下記の関係がある。 (310−T)×(0.8〜3)=t(分) この際、耐炎化反応の進行に応じて繊維の平衡
水分率は2%以下の値から13%程度にまで順次変
化する。 ここに平均耐炎化温度T℃及び平衡水分率の意
味は以下の通りである。 〔平均耐炎化温度T℃〕 耐炎化は必ずしも一定の温度で行なわず、むし
ろ順次温度をあげて多段で処理することが耐炎化
時間の短縮及び炭素繊維の品質改善のうえで有効
である。T1℃でt1分、次いでT2℃でt2分……Tn
℃でtn分で耐炎化処理する場合、平均耐炎化温度
T℃は、 T=(T1×t1)+(T2×t2)+…(Tn×tn)/t1+t2
tn で定義される。 〔平衡水分率〕 耐炎化過程の繊維の平衡水分率は次の方法で測
定する。 固相共存の塩化アンモニウム水溶液のデシケー
ター(温度20〜30℃、相対湿度80%)中に、あら
かじめ重量を測定した約1gの絶乾繊維を入れ24
時間吸湿させた後、吸着水分を測定し、絶乾繊維
に対する水分率を算出して平衡水分率とする。 耐炎化処理工程中、この繊維の平衡水分率を基
準として、繊維に与える収縮率を、次の如く調整
する。 繊維の平衡水分率が5%に達するまでは、少く
とも3%以上好ましくは4〜10%の収縮を繊維に
与える。次いで更に耐炎化処理を行い耐炎化工程
終了までの間に更に1%以上、好ましくは2〜8
%の収縮を与えながら耐炎化処理を行う。この後
段の耐炎化処理工程は、更に複数の工程に分け、
前半で収縮を与え、後半で短時間の定長処理を行
う工程を採用することもできるが、全体として、
1%以上の収縮処理を与えるようにする。 又、耐炎化処理は、酸化工程であるが、酸素結
合量を飽和点に達するまで、すなわち、平衡水分
率が最大値を示すまで行う必要はなく、平衡水分
率にして10%以上12%程度で炭化工程に移行する
こともできる。 次いで1000〜1800℃の窒素、アルゴン等不活性
ガス中で通常の方法に従つて炭素化処理を行う。 以上の如くしてストランド内に繊維の膠着もな
く、単繊維直径1〜6μ、ストランド結節強力7
Kg以上の炭素繊維ストランドを得ることができ
る。 このようにしてアクリロニトリル系繊維を原糸
として炭素繊維を得ると、生産性よく、極細単糸
径を有し、高い衝撃強度の複合材を得るための炭
素繊維ストランドが得られる。工業的見地からす
ると、特に本発明の如き極細炭素繊維ストランド
の工業的製造に際しては、繊維自体の性能の向上
と共に生産性の改善も考慮されるべきは当然であ
る。上記した耐炎化温度、時間及び収縮率をバラ
ンスよく管理した方法によつて原料アクリロニト
リル系繊維の性能を損わず短時間で耐炎化処理を
行い、次いで炭素化をすることができる。 本発明の炭素繊維ストランドは、従来知られた
方法によつて、ストランドとし、又、織物、不織
物、フイラメントワインド、射出成形等により、
合成樹脂と併用され複合材にされる。 次に、本発明を実施例によつて説明する。 実施例 1 アクリロニトリルを96%含有する共重合体から
なる強度6.8g/d、平均デニール0.50dで、フイ
ラメント数6000フイラメントのアクリロニトリル
系繊維を用いて、まず263℃の空気中、30分間収
縮率8%で処理した。(この繊維の平衡水分率は
5.0%であつた。) 第二段目として、この繊維を引続き270℃25分
間5%の収縮下で耐炎化処理し、更に第三段目と
して290℃4分間定長下で耐炎化処理した。得ら
れた繊維の平衡水分率は10.8%であつた。 ここに得られた繊維を温度1300℃、窒素ガス雰
囲気中で炭素化処理した。かくして得られた炭素
繊維は単糸の直径が5.3μ、ストランド結節強力が
8.6Kgであるほか、強度が390Kg/mm2、弾性率が
24Ton/mm2であつた。又このものを用いて強化し
た複合材はシヤルピー衝撃強度196Kg・cm/cm2
示した。 実施例 2 アクリロニトリル95%含有共重合体からなる強
度7.1g/d、平均デニール0.1d、フイラメント
数1000からなるアクリロニトリルストランドを用
いて、まず270℃25分収縮率8.7%で平衡水分率
4.9%まで、次いで275℃15分間4%の収縮条件下
で、更に290℃で2分間定長で、夫々空気中で処
理した。 得られた繊維の平衡水分率は10.5%であつた。 ここで得られた繊維を温度1300℃、窒素ガス雰
囲気中で炭素化処理した。 得られた炭素繊維は、単糸の直径2.3μ、ストラ
ンド結節強力9.4Kg、強度429Kg/mm2、弾性率
24Ton/mm2であつた。このものを用いた複合材の
シヤルピー衝撃強度は210Kg・cm/cm2を示した。 実施例 3 デニールと強度を種々変えたアクリロニトリル
系繊維を原糸とし実施例1に準じて耐炎化処理と
炭素化処理を施して炭素繊維を得た。得られた
種々の炭素繊維について単糸直径を有する炭素繊
維のストランド結節強力と複合材とした場合の衝
撃強度を測定した。この結果を第2表に示す。 比較のため、比較例の結果も第2表に示す。
Since the cross-sectional shape of carbon fibers is not a perfect circle, the cross-sectional area is measured under a microscope, the diameter of a circle having this cross-sectional area is calculated, and this is taken as the diameter of the single yarn. [Impact strength] Measured according to JIS K7111 "Sharpey impact strength of hardened plastics". In this case, a phenol-novolac type epoxy resin is used as the matrix, and the vf (fiber volume content) is 60±2.
%, and the test is conducted with an edgewise blow without a notch. [Strand knot strength] Carbon fiber strand weight per meter is 0.4±
Focus or divide to 0.01. For example, 1m
If the strand weighs 0.2 g per meter, prepare two parallel strands to make the sample, and if the strand weighs 1 g per 1 m, carefully divide the strand into 0.4±0.01 g per 1 m to make the sample. Next, create a knot in the 0.4±0.01 g/m strand in the same way as when measuring the knot strength of a single fiber. Using an Instron type tensile tester, set the chuck interval to 100 mm, keep the knot part approximately in the center, measure the cutting strength at a tensile speed of 50 mm/min, and take this value as the strand knot strength. Incidentally, although thin carbon fibers have generally been known in the past, carbon fiber strands having a specific single yarn diameter and a high strand knot strength as in the present invention have not been known so far. In the present invention, it is necessary to satisfy both the requirements regarding the diameter of the single yarn of the carbon fiber strand and the strand knot strength. The diameter of a single yarn depends on the selection of raw yarn and manufacturing conditions, and the strand knot strength depends on the diameter of the single yarn, the quality of the raw yarn, the manufacturing conditions of carbon fiber, and the adhesion between the unit fibers that make up the strand. It depends on various factors. The carbon fiber strand of the present invention can be obtained as follows. First, an acrylonitrile fiber having a fiber strength of 6 g/d or more and a denier of 0.1 to 0.6 is used as a raw material. The acrylonitrile fiber mentioned here is a fiber obtained from acrylonitrile alone or a copolymer containing 95% or more of acrylonitrile. As a copolymerization component, vinyl acetate, which is usually used for copolymerization with acrylonitrile,
These are known monomers such as acrylic acid ester, vinyl ether, itaconic acid, and vinylamide. This acrylonitrile-based fiber is used as a raw thread, and is subjected to flame-retardant treatment. Flame resistance treatment is 240~
It is carried out in air at 300°C, and at this time, the following relationship exists between the flameproofing treatment time t (minutes) and the average flameproofing temperature T (°C). (310-T) x (0.8-3) = t (min) At this time, the equilibrium moisture content of the fiber gradually changes from a value of 2% or less to about 13% as the flameproofing reaction progresses. The meanings of the average flame resistance temperature T° C. and the equilibrium moisture content are as follows. [Average flame resistance temperature T° C.] Flame resistance is not necessarily carried out at a constant temperature, but rather, it is effective to increase the temperature sequentially and perform the treatment in multiple stages in order to shorten the flame resistance time and improve the quality of carbon fibers. T 1 min at T 1 °C, then t 2 min at T 2 °C...Tn
When flame-retardant treatment is performed at ℃ for tn minutes, the average flame-retardant temperature T℃ is T = (T 1 × t 1 ) + (T 2 × t 2 ) +... (Tn × tn) / t 1 + t 2 ...
Defined by tn. [Equilibrium moisture content] The equilibrium moisture content of the fiber during the flame-retardant process is measured by the following method. Approximately 1 g of bone-dry fiber, weighed in advance, was placed in a desiccator (temperature 20-30°C, relative humidity 80%) containing an aqueous ammonium chloride solution coexisting in a solid phase24.
After absorbing moisture for a period of time, the adsorbed moisture is measured, and the moisture content relative to the bone-dry fiber is calculated to determine the equilibrium moisture content. During the flameproofing process, the shrinkage rate given to the fiber is adjusted as follows, based on the equilibrium moisture content of the fiber. Until the equilibrium moisture content of the fibers reaches 5%, the fibers are given a shrinkage of at least 3% or more, preferably 4 to 10%. Next, a flame-retardant treatment is performed, and the content is further increased by 1% or more, preferably 2 to 8%, until the end of the flame-retardant process.
Flameproofing treatment is performed while giving % shrinkage. This latter flame-retardant treatment step is further divided into multiple steps,
It is possible to adopt a process in which shrinkage is applied in the first half and short-term constant length treatment is performed in the second half, but as a whole,
A shrinkage treatment of 1% or more should be applied. In addition, flameproofing treatment is an oxidation process, but it does not need to be carried out until the amount of oxygen binding reaches the saturation point, that is, until the equilibrium moisture content reaches its maximum value, and the equilibrium moisture content should be approximately 10% or more and 12%. It is also possible to move on to the carbonization process. Next, carbonization treatment is carried out according to a conventional method in an inert gas such as nitrogen or argon at 1000 to 1800°C. As described above, there is no fiber adhesion within the strand, the single fiber diameter is 1 to 6μ, and the strand knot strength is 7.
Carbon fiber strands weighing more than Kg can be obtained. When carbon fibers are obtained using acrylonitrile fibers as raw yarns in this manner, carbon fiber strands can be obtained with good productivity, having an ultrafine single fiber diameter, and for obtaining a composite material with high impact strength. From an industrial standpoint, especially when industrially manufacturing ultrafine carbon fiber strands as in the present invention, it is natural that improvements in productivity as well as improvements in the performance of the fibers themselves should be taken into consideration. By controlling the flame resistance temperature, time, and shrinkage rate in a well-balanced manner as described above, flame resistance treatment can be performed in a short time without impairing the performance of the raw material acrylonitrile fiber, and then carbonization can be performed. The carbon fiber strand of the present invention can be made into a strand by a conventionally known method, or can be woven, nonwoven, filament wound, injection molded, etc.
It is used in combination with synthetic resin to make composite materials. Next, the present invention will be explained with reference to examples. Example 1 Using an acrylonitrile fiber made of a copolymer containing 96% acrylonitrile, having a strength of 6.8 g/d, an average denier of 0.50 d, and 6000 filaments, the shrinkage rate was 8 for 30 minutes in air at 263°C. %. (The equilibrium moisture content of this fiber is
It was 5.0%. ) In the second stage, this fiber was subsequently flame-retardantly treated at 270°C for 25 minutes under 5% shrinkage, and as the third stage, it was flame-retardantly treated at 290°C for 4 minutes under constant length. The equilibrium moisture content of the obtained fiber was 10.8%. The fibers obtained here were carbonized at a temperature of 1300°C in a nitrogen gas atmosphere. The carbon fiber thus obtained has a single yarn diameter of 5.3μ and strand knot strength.
In addition to being 8.6Kg, the strength is 390Kg/mm 2 and the elastic modulus is
It was 24Ton/ mm2 . Composite materials reinforced using this material exhibited a Charpy impact strength of 196 kg·cm/cm 2 . Example 2 Using an acrylonitrile strand made of a copolymer containing 95% acrylonitrile, having a strength of 7.1 g/d, an average denier of 0.1 d, and a number of filaments of 1000, the equilibrium moisture content was first adjusted at 270°C for 25 minutes at a shrinkage rate of 8.7%.
to 4.9%, then 4% shrinkage for 15 minutes at 275°C, and further for 2 minutes at 290°C for a constant length in air, respectively. The equilibrium moisture content of the obtained fiber was 10.5%. The fibers obtained here were carbonized at a temperature of 1300°C in a nitrogen gas atmosphere. The obtained carbon fiber has a single yarn diameter of 2.3 μ, a strand knot strength of 9.4 Kg, a strength of 429 Kg/mm 2 , and an elastic modulus.
It was 24Ton/ mm2 . The Shalpy impact strength of the composite material using this material was 210Kg·cm/cm 2 . Example 3 Acrylonitrile fibers with various deniers and strengths were used as yarns and subjected to flameproofing treatment and carbonization treatment in accordance with Example 1 to obtain carbon fibers. For the various carbon fibers obtained, the strand knot strength of the carbon fibers having a single diameter and the impact strength when made into a composite material were measured. The results are shown in Table 2. For comparison, the results of comparative examples are also shown in Table 2.

【表】 これによれば、本発明の要件を満たした炭素繊
維を使用した場合、そうでないものを使用した場
合に比し、複合材の衝撃強度が顕著に向上してい
ることが判る。
[Table] According to this table, it can be seen that when carbon fibers that meet the requirements of the present invention are used, the impact strength of the composite material is significantly improved compared to when carbon fibers that do not meet the requirements are used.

【図面の簡単な説明】[Brief explanation of drawings]

図面は炭素繊維のストランド結節強力とこれを
用いて強化した複合材のシヤルピー衝撃強度との
関係を示す図表である。
The drawing is a chart showing the relationship between the strand knot strength of carbon fibers and the shear peace impact strength of a composite material reinforced using the same.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維強度6g/d以上、繊度0.1〜0.6デニー
ルのアクリロニトリル系繊維を耐炎化処理、次い
で炭素化処理して得られたものであつて、単糸の
直径が1〜6μであり且つ、0.4±0.01g/mのス
トランド結節強力が7Kg以上の値を有する高耐衝
撃性複合材製造用炭素繊維ストランド。
1 Acrylonitrile fibers with a fiber strength of 6 g/d or more and a fineness of 0.1 to 0.6 denier are flame-resistant treated and then carbonized, and the single yarn diameter is 1 to 6 μ and 0.4± A carbon fiber strand for producing high-impact composite materials having a strand knot strength of 7 kg or more at 0.01 g/m.
JP11476380A 1980-08-22 1980-08-22 High property carbon fiber strand Granted JPS5742934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11476380A JPS5742934A (en) 1980-08-22 1980-08-22 High property carbon fiber strand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11476380A JPS5742934A (en) 1980-08-22 1980-08-22 High property carbon fiber strand

Publications (2)

Publication Number Publication Date
JPS5742934A JPS5742934A (en) 1982-03-10
JPS6343490B2 true JPS6343490B2 (en) 1988-08-31

Family

ID=14646068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11476380A Granted JPS5742934A (en) 1980-08-22 1980-08-22 High property carbon fiber strand

Country Status (1)

Country Link
JP (1) JPS5742934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0160592U (en) * 1987-10-09 1989-04-17

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985001752A1 (en) * 1983-10-13 1985-04-25 Mitsubishi Rayon Co., Ltd. Carbon fibers with high strength and high modulus, and process for their production
JPS6445830A (en) * 1987-08-13 1989-02-20 Toray Industries High performance carbon fiber cord
JPH0726273B2 (en) * 1988-02-22 1995-03-22 東レ株式会社 Preform manufacturing thread and method for manufacturing the same
JP2002201569A (en) * 2000-11-06 2002-07-19 Toray Ind Inc Rubber reinforcing cord and fiber-reinforced rubber material
JP2003247127A (en) * 2002-02-22 2003-09-05 Toray Ind Inc Carbon fiber bundle for rubber reinforcing, cord, and fiber-reinforced rubber
EP2107030B1 (en) 2007-01-25 2015-04-15 Mitsubishi Electric Corporation Elevator control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0160592U (en) * 1987-10-09 1989-04-17

Also Published As

Publication number Publication date
JPS5742934A (en) 1982-03-10

Similar Documents

Publication Publication Date Title
JPS6352134B2 (en)
KR101656976B1 (en) Carbon fiber bundle and method of producing carbon fiber bundle
US4520623A (en) Activated carbon fiber spun yarn
JP6702511B1 (en) Carbon fiber and method for producing the same
JPS6343490B2 (en)
US4452860A (en) Carbon fibers and process for producing the same
EP0378007B1 (en) Carbon fiber made from acrylic fiber and process for production thereof
CN111788341B (en) Carbon fiber bundle and method for producing same
US3671192A (en) Method of stabilizing acrylic polymer fibers prior to graphitization
JPS58136838A (en) Production of high-performance carbon fiber
JP2777565B2 (en) Acrylic carbon fiber and method for producing the same
GB2064498A (en) Acrylonitrile based fibres and their use in the production of oxidized or flame resistant fibres
JP3002549B2 (en) Manufacturing method of graphite fiber
JPH03185121A (en) Carbon fiber with non-circular cross section, its production and carbon fiber composite material therefrom
JPH0742615B2 (en) High-strength, high-modulus pitch-based carbon fiber
US5413858A (en) Acrylic fiber and process for production thereof
JPH02259119A (en) High density graphite yarn and production thereof
US4237109A (en) Process for producing carbon fabric
WO1987002391A1 (en) Process for producing carbon fibers
JPH038830A (en) Manufacture of drawing rope
JP3090868B2 (en) Carbon fiber bundle
JPH0219513A (en) Production of carbon fiber having high strength and high modulus of elasticity
JPH1088430A (en) Carbon fiber, precursor for production of carbon fiber and production thereof
JP2930166B2 (en) Carbon fiber production method
JPS6250574B2 (en)