JPS6343372B2 - - Google Patents

Info

Publication number
JPS6343372B2
JPS6343372B2 JP54050891A JP5089179A JPS6343372B2 JP S6343372 B2 JPS6343372 B2 JP S6343372B2 JP 54050891 A JP54050891 A JP 54050891A JP 5089179 A JP5089179 A JP 5089179A JP S6343372 B2 JPS6343372 B2 JP S6343372B2
Authority
JP
Japan
Prior art keywords
reaction
oxide
catalyst
hours
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54050891A
Other languages
Japanese (ja)
Other versions
JPS55143921A (en
Inventor
Shoei Kudo
Motoo Kawamata
Kazufumi Ooshima
Mitsuo Onobusa
Makoto Kotani
Takeshi Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5089179A priority Critical patent/JPS55143921A/en
Publication of JPS55143921A publication Critical patent/JPS55143921A/en
Publication of JPS6343372B2 publication Critical patent/JPS6343372B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は還元性ガスにより前処理をした金属酸
化物含有触媒を用いて、フエノール核の水素原子
をアルキル化し、少なくとも1個以上のアルキル
基をもつアルキル化フエノール類の製造に関する
ものである。 アルキル化フエノール類の製造方法に関して
は、特にオルトアルキル化物である2,6−ジメ
チルフエノールが有用なプラスチツクスであるポ
リフエニレンエーテル(PPE)製造用の原料と
なるので、数多くの研究がなされている。 フエノール類のアルキル化方法としては、既
に、酸化アルミニウム、酸化マグネシウム、酸化
マンガン、酸化鉄、酸化クロム、ゼオライトな
ど、およびそれらに各種の成分を添加したものを
触媒として使用し、フエノール類とアルコール類
を接触反応させる方法が公知であるが、これらの
触媒はいずれも触媒寿命の点で欠点を有し、十分
な触媒とは言い難い。 本発明者らは、このアルキル化方法について
種々の検討を加えた結果、還元性ガスにより前処
理をした金属酸化物含有触媒は、未処理の場合と
比較して、触媒寿命の点においてすぐれているこ
とを見出し、本発明の方法に到達したものであ
る。 本発明において使用されるフエノール類とは、
1個以上の水素原子を芳香族環上に有するフエノ
ール化合物で、一般式() (式中、R1〜R5は、水素、炭素原子数1〜4の
炭化水素基、または非置換もしくは置換のフエニ
ル、ナフチルなどの芳香族炭化水素基であり、そ
の内少なくとも1個以上は水素原子である)で表
わされる。 例えば、フエノール、クレゾール類、キシレノ
ール類、トリメチルフエノール類、テトラメチル
フエノール類、各種のエチルフエノール類、n−
iso−またはtert−のブチルフエノール類、フエ
ニルフエノール類、ナフチルフエノール類などが
本発明に使用でき、同様に異種の官能基が芳香族
環に1個以上置換したフエノール化合物も使用で
きる。 本発明に使用されるアルコール類とは、炭素原
子数1〜4の低級アルコールであり、例えばメタ
ノール、エタノール、n−プロパノール、iso−
プロパノール、n−ブタノール、iso−ブタノー
ル、tert−ブタノールなどである。 本発明の方法で用いられる還元性ガスで前処理
される触媒とは、フエノール類とアルコール類を
接触反応させ、アルキル化フエノール類を合成す
る際に使用される触媒系が一般に有効であり、例
えば酸化アルミニウム含有触媒、酸化マグネシウ
ム含有触媒、酸化マンガン含有触媒、酸化鉄含有
触媒などがあげられる。すなわち、(1)酸化アルミ
ニウム含有触媒とは、酸化アルミニウム単独およ
びそれを主成分とし、酸化ケイ素などを含むも
の、(2)酸化マグネシウム含有触媒とは、酸化マグ
ネシウム単独およびそれを主成分とし、酸化錫、
酸化マンガン、酸化銅、ランタニド、アクチニ
ド、酸化ビスマスおよび酸化ホウ素から選ばれた
一種もしくは二種以上を含むもの、(3)酸化マンガ
ン含有触媒とは、酸化マンガン単独およびそれを
主成分とし、酸化ケイ素、アルカリ金属類、アル
カリ土類金属類および硫酸根から選ばれた一種も
しくは二種以上を含むもの、(4)酸化鉄含有触媒と
は、酸化鉄単独およびそれを主成分とし、酸化ケ
イ素、酸化クロム、酸化亜鉛、酸化マンガン、酸
化バナジウム、アルカリ金属類およびアルカリ土
類金属類から選ばれた一種もしくは2種以上を含
むものである。上記の酸化アルミニウム含有触
媒、酸化マグネシウム含有触媒、酸化マンガン含
有触媒、酸化鉄含有触媒において、「主成分」の
語彙は、それぞれ酸化アルミニウムを50モル%以
上含有するもの、酸化マグネシウムを50モル%以
上含有するもの、酸化マンガンを50モル%以上含
有するもの、酸化鉄を50モル%以上含有するもの
を示す。また、ここに記載された「含有触媒」
は、化学的な意味での「含有触媒」ではなく、物
理的な意味での「含有触媒」である。すなわち、
「含有触媒」は当該成分を物理的に主として含む
(換言すれば50モル%以上含有する)触媒を表す。 これらの触媒に用いられる各種酸化物の原料と
しては、それぞれの金属の酸化物、水酸化物、ハ
ロゲン化物、硝酸塩、硫酸塩、炭酸塩、有機酸塩
など、通常の化合物が使用可能である。 触媒の調製方法としては、各種の原料を混合
し、少量の水を添加し、ニーダー、ミクサーなど
で混練させる方法、あるいは各種原料を水溶液と
し、これに塩基性成分を加え、不溶性の沈澱とし
て共沈させる方法など、各種の一般的方法が適用
可能である。得られた触媒組成物は通常180℃以
下の温度で乾燥し、適当な造粒添加剤、成形助剤
などを添加し、成形したり、あるいは触媒組成物
をそのまま破砕して使用してもよい。 本発明の方法で使用される金属酸化物含有触媒
の還元処理は、つぎの2つの方法によるが、どち
らの方法でもよい。 () 触媒組成物の乾燥品を、還元性ガス雰囲気
下にて焼成し、使用する方法。 () 空気あるいは、窒素などのいわゆる不活性
ガス雰囲気下にて、あらかじめ焼成されている
触媒組成物を、還元性ガス雰囲気下にて再焼成
し、使用する方法。 ここで使用される還元性ガスとは、水素、一酸
化炭素、アンモニア、メタノール、エタノール、
メタン、エタン、プロパン、ブタンおよびそれら
の混合物があげられるが、水素、一酸化炭素およ
びそれらの混合物がより好ましい。また上記還元
性ガスを窒素などの不活性ガスで希釈して使用し
ても良い。通常、上記還元処理は100〜800℃、好
ましくは200〜600℃の温度範囲で、()の場合、
0.3〜30時間、()の場合では0.5〜50時間行な
われる。反応に使用して活性の低下した触媒は、
酸素および水蒸気によつて賦活化させた後、前記
還元処理を行なう。 本発明における還元処理の役割は、通常の空気
中または窒素などの雰囲気下で焼成されたとき、
触媒表面上に存在するを考えられる反応性に富ん
だ酸素種を取り去ることにある。これにより、反
応開始時でのこれらの酸素種と原料の間の副反応
の抑制、誘導期の短縮および吸着炭化水素種の量
を減少させることが可能となり、本発明の方法を
実施しない場合と比較して大巾に触媒再生サイク
ルの長期化がはかれる。 本発明の方法を実施する場合、フエノール類と
アルコール類の供給モル比率は1:1〜1:10が
適当で1:1〜1:8がより好ましい。気相で反
応させる場合、原料の反応系への供給に窒素、炭
酸ガス、アルゴンまたは本発明を実施した際に発
生するガスをキヤリアーとして使用することは、
反応を円滑に進行させる。また、反応原料中に水
を混入させ反応を実施させることは触媒寿命をさ
らに延ばす効果およびアルコール類の不必要な分
解を抑制する効果がある。 本発明の方法では、反応温度は290〜580℃、好
ましくは310〜530℃の範囲である。通常、反応温
度これ以上の高温側にすると反応の選択性が低下
したり、高沸分の生成が増加したりして好ましく
ない。また、これ以下の低温側では、通常の反応
形式では転化率が低く、実用的でない。 反応は液相、加圧、常圧、減圧いずれの場合で
も実施でき反応形式も固定床、流動床または移動
床のいずれもが可能であるが、固定床方式が一般
的である。 以下、実施例によつて本発明を説明する。 実施例 1 硝酸マンガン6水塩100g、水ガラス3号2g
を水2中に溶解させ、アンモニア水を加え沈澱
を生成させた。これを水洗、過し、170℃で乾
燥させた。それを破砕し、6〜12メツシユの粒径
にそろえ、得られた触媒7mlを、ガラス製反応管
に充填し空気流通下430℃で3時間焼成した後、
400℃で水素と窒素のモル比1:1の混合ガスを
50分間流し、反応に用いた。 フエノールとメタノールのモル比1:6に混合
した反応液を240℃にて加熱気化させた後、内温
を410℃に調節した反応管に1時間当り3.1g導入
し反応を行なつた。 反応開始時より、生成物はあまり着色せず澄ん
でおり、高沸分の生成が少ないことが示唆され
た。結果は、反応開始後5時間の時点でフエノー
ル転化率100%、O−クレソール、2.6−キシレノ
ールの選択率はそれぞれ3.1%、92.8%であり、
反応開始後200時間の時点においても、内温422℃
でフエノール転化率99.8%、O−クレゾール、
2.6−キシレノールの選択率はそれぞれ4.9%、
91.7%であつた。 実施例 2 硝酸鉄9水塩100g、硝酸クロム9水塩1g、
水ガラス3号0.5gを水2中に溶解させ、アン
モニア水を加え沈澱を生成させた。これを水洗、
過し、170℃で乾燥させた。それを破砕し、6
〜12メツシユの粒径にそろえ、得られた触媒8ml
を空気流通下400℃で3時間焼成した後、実施例
1と同様の水素−窒素の混合ガスを30分間流し、
反応に用いた。 フエノールとメタノールのモル比1:6に混合
した反応液を240℃にて加熱気化させた後、内温
を360℃に調節した反応管に1時間当り3.2g導入
し、反応を行なつた。 反応開始時より生成物はあまり着色せず澄んで
おり、高沸分の生成が少ないことが示唆された。
結果は、反応開始始後5時間の時点で、フエノー
ル転化率100%、O−クレゾール、2.6−キシレノ
ールの選択率はそれぞれ、2.3%、95.6%であり、
反応開始後150時間の時点においても、内温366℃
でフエノール転化率99.4%、O−クレソール、
2.6−キシレノールの選択率はそれぞれ8.1%、
91.3%であつた。 実施例 3 水酸化マグネシウム50gおよび塩化錫10gに、
水30mlを加え、3時間良くらいかい混練させた後
170℃にて乾燥させた。それを破砕し、6〜12メ
ツシユの粒径にそろえ得られた触媒7mlをガラス
製反応管に充填し、480℃、一酸化炭素、水素お
よび窒素のモル比1:1:8の混合ガスを流し、
3時間焼成し反応に用いた。 フエノールとメタノールのモル比1:6に混合
した反応液を240℃にて加熱気化させた後、内温
を440℃に調節した反応管に1時間当り3.0.g導
入し、反応を行なつた。 結果は、反応開始後5時間の時点で、フエノー
ル転化率100%、O−クレゾール、2.6−キシレノ
ールの選択率はそれぞれ5.4%、93.0%であり、
反応開始後150時間の時点においても、内温455℃
でフエノール転化率99.7%、O−クレゾール、
2.6−キシレノールの選択率はそれぞれ8.8%、
90.1%であつた。 比較例 1〜3 実施例1〜3と同様な方法において、触媒を空
気中で焼成し、還元処理を行なわず反応に用いた
場合について、それぞれ対応させて第1表に示
す。
The present invention relates to the production of alkylated phenols having at least one alkyl group by alkylating hydrogen atoms in phenol nuclei using a metal oxide-containing catalyst pretreated with a reducing gas. Much research has been conducted into the production of alkylated phenols, especially since the orthoalkylated product 2,6-dimethylphenol is a raw material for the production of polyphenylene ether (PPE), a useful plastic. There is. As a method for alkylating phenols, aluminum oxide, magnesium oxide, manganese oxide, iron oxide, chromium oxide, zeolite, etc., as well as various components added thereto, have been used as catalysts to alkylate phenols and alcohols. Although methods for catalytically reacting are known, all of these catalysts have shortcomings in terms of catalyst life and cannot be said to be sufficient catalysts. As a result of various studies on this alkylation method, the present inventors found that a metal oxide-containing catalyst pretreated with a reducing gas has a superior catalyst life compared to an untreated catalyst. The present invention has been developed based on this discovery. The phenols used in the present invention are:
A phenol compound having one or more hydrogen atoms on an aromatic ring, with the general formula () (In the formula, R 1 to R 5 are hydrogen, a hydrocarbon group having 1 to 4 carbon atoms, or an aromatic hydrocarbon group such as unsubstituted or substituted phenyl or naphthyl, and at least one of them is hydrogen atom). For example, phenols, cresols, xylenols, trimethylphenols, tetramethylphenols, various ethylphenols, n-
Iso- or tert-butylphenols, phenylphenols, naphthylphenols, etc. can be used in the present invention, and similarly, phenol compounds in which one or more different functional groups are substituted on the aromatic ring can also be used. The alcohols used in the present invention are lower alcohols having 1 to 4 carbon atoms, such as methanol, ethanol, n-propanol, iso-
These include propanol, n-butanol, iso-butanol, tert-butanol, and the like. The catalyst that is pretreated with a reducing gas used in the method of the present invention is generally a catalyst system that is used when catalytically reacting phenols and alcohols to synthesize alkylated phenols. For example, Examples include catalysts containing aluminum oxide, catalysts containing magnesium oxide, catalysts containing manganese oxide, and catalysts containing iron oxide. In other words, (1) aluminum oxide-containing catalysts are those containing aluminum oxide alone or aluminum oxide as the main component and containing silicon oxide, etc.; (2) magnesium oxide-containing catalysts are those containing magnesium oxide alone or aluminum oxide as the main component; tin,
Catalysts containing one or more selected from manganese oxide, copper oxide, lanthanides, actinides, bismuth oxide, and boron oxide; , alkali metals, alkaline earth metals, and sulfuric acid radicals. (4) Iron oxide-containing catalysts include iron oxide alone or iron oxide as the main component, silicon oxide, sulfuric acid, etc. It contains one or more selected from chromium, zinc oxide, manganese oxide, vanadium oxide, alkali metals, and alkaline earth metals. In the above aluminum oxide-containing catalysts, magnesium oxide-containing catalysts, manganese oxide-containing catalysts, and iron oxide-containing catalysts, the term "main component" refers to those containing 50 mol% or more of aluminum oxide, and 50 mol% or more of magnesium oxide, respectively. containing 50 mol% or more of manganese oxide, and 50 mol% or more of iron oxide. In addition, the "containing catalyst" described here
is not a "containing catalyst" in a chemical sense, but a "containing catalyst" in a physical sense. That is,
"Containing catalyst" refers to a catalyst that physically mainly contains (in other words, contains 50 mol% or more) the component. As raw materials for various oxides used in these catalysts, common compounds such as oxides, hydroxides, halides, nitrates, sulfates, carbonates, and organic acid salts of the respective metals can be used. The catalyst can be prepared by mixing various raw materials, adding a small amount of water, and kneading with a kneader or mixer, or by making various raw materials into an aqueous solution, adding a basic component to this, and coagulating it as an insoluble precipitate. Various general methods are applicable, such as a method of precipitation. The obtained catalyst composition is usually dried at a temperature of 180°C or less, and suitable granulation additives, molding aids, etc. are added and molded, or the catalyst composition may be crushed and used as it is. . The metal oxide-containing catalyst used in the method of the present invention may be reduced by the following two methods, and either method may be used. () A method in which a dried catalyst composition is calcined in a reducing gas atmosphere and then used. () A method in which a catalyst composition that has been previously fired in a so-called inert gas atmosphere such as air or nitrogen is re-fired in a reducing gas atmosphere and then used. The reducing gases used here include hydrogen, carbon monoxide, ammonia, methanol, ethanol,
Mention may be made of methane, ethane, propane, butane and mixtures thereof, with hydrogen, carbon monoxide and mixtures thereof being more preferred. Further, the above-mentioned reducing gas may be diluted with an inert gas such as nitrogen before use. Usually, the above reduction treatment is carried out at a temperature range of 100 to 800°C, preferably 200 to 600°C.
It is carried out for 0.3 to 30 hours, and in the case of () 0.5 to 50 hours. A catalyst whose activity has decreased after being used in a reaction is
After activation with oxygen and water vapor, the reduction treatment is performed. The role of reduction treatment in the present invention is that when fired in normal air or in an atmosphere such as nitrogen,
The purpose is to remove reactive oxygen species that may be present on the catalyst surface. This makes it possible to suppress side reactions between these oxygen species and raw materials at the start of the reaction, shorten the induction period, and reduce the amount of adsorbed hydrocarbon species, compared to when the method of the present invention is not carried out. In comparison, the catalyst regeneration cycle is significantly longer. When carrying out the method of the present invention, the molar ratio of phenols and alcohols to be supplied is suitably from 1:1 to 1:10, more preferably from 1:1 to 1:8. When reacting in the gas phase, using nitrogen, carbon dioxide, argon, or the gas generated when carrying out the present invention as a carrier for supplying the raw materials to the reaction system,
Make the reaction proceed smoothly. Furthermore, mixing water into the reaction raw materials to carry out the reaction has the effect of further extending the life of the catalyst and suppressing unnecessary decomposition of alcohols. In the method of the invention, the reaction temperature ranges from 290 to 580°C, preferably from 310 to 530°C. Generally, raising the reaction temperature to a higher temperature is not preferable because the selectivity of the reaction decreases or the production of high-boiling components increases. Furthermore, at lower temperatures than this, the conversion rate is low in the normal reaction format, making it impractical. The reaction can be carried out in a liquid phase, under increased pressure, normal pressure, or reduced pressure, and the reaction format can be fixed bed, fluidized bed, or moving bed, although fixed bed method is common. The present invention will be explained below with reference to Examples. Example 1 Manganese nitrate hexahydrate 100g, water glass No. 3 2g
was dissolved in water 2, and aqueous ammonia was added to form a precipitate. This was washed with water, filtered, and dried at 170°C. The catalyst was crushed and adjusted to a particle size of 6 to 12 meshes, and 7 ml of the resulting catalyst was filled into a glass reaction tube and fired at 430°C for 3 hours under air circulation.
A mixed gas of hydrogen and nitrogen at a molar ratio of 1:1 at 400°C.
It was run for 50 minutes and used for reaction. A reaction solution containing phenol and methanol mixed at a molar ratio of 1:6 was heated and vaporized at 240°C, and then 3.1g per hour was introduced into a reaction tube whose internal temperature was adjusted to 410°C to carry out a reaction. From the beginning of the reaction, the product was clear without much coloration, suggesting that less high-boiling components were produced. The results showed that 5 hours after the start of the reaction, the phenol conversion rate was 100%, and the selectivity for O-cresol and 2.6-xylenol was 3.1% and 92.8%, respectively.
Even at 200 hours after the start of the reaction, the internal temperature was 422℃.
99.8% phenol conversion, O-cresol,
The selectivity of 2.6-xylenol was 4.9% and
It was 91.7%. Example 2 Iron nitrate nonahydrate 100g, chromium nitrate nonahydrate 1g,
0.5 g of Water Glass No. 3 was dissolved in Water 2, and aqueous ammonia was added to form a precipitate. Wash this with water,
and dried at 170°C. Crush it and 6
8 ml of the catalyst obtained by adjusting the particle size to ~12 meshes
After firing at 400°C for 3 hours under air circulation, the same hydrogen-nitrogen mixed gas as in Example 1 was flowed for 30 minutes.
Used for reaction. A reaction solution containing phenol and methanol mixed at a molar ratio of 1:6 was heated and vaporized at 240°C, and then 3.2g per hour was introduced into a reaction tube whose internal temperature was adjusted to 360°C to carry out a reaction. From the start of the reaction, the product was clear without much coloration, suggesting that less high-boiling components were produced.
The results showed that 5 hours after the start of the reaction, the phenol conversion rate was 100%, and the selectivity of O-cresol and 2.6-xylenol was 2.3% and 95.6%, respectively.
Even at 150 hours after the start of the reaction, the internal temperature remained at 366℃.
phenol conversion rate of 99.4%, O-cresol,
The selectivity of 2.6-xylenol is 8.1% and
It was 91.3%. Example 3 50 g of magnesium hydroxide and 10 g of tin chloride,
Add 30ml of water and mix well for 3 hours.
It was dried at 170°C. The catalyst was crushed and adjusted to a particle size of 6 to 12 meshes, and 7 ml of the resulting catalyst was filled into a glass reaction tube, and a mixed gas of carbon monoxide, hydrogen, and nitrogen in a molar ratio of 1:1:8 was heated at 480°C. sink,
It was calcined for 3 hours and used for reaction. A reaction mixture of phenol and methanol in a molar ratio of 1:6 was heated and vaporized at 240°C, and then 3.0g per hour was introduced into a reaction tube whose internal temperature was adjusted to 440°C to carry out the reaction. . The results showed that 5 hours after the start of the reaction, the phenol conversion rate was 100%, and the selectivity of O-cresol and 2.6-xylenol was 5.4% and 93.0%, respectively.
Even at 150 hours after the start of the reaction, the internal temperature remained at 455℃.
phenol conversion rate of 99.7%, O-cresol,
The selectivity of 2.6-xylenol is 8.8% and
It was 90.1%. Comparative Examples 1 to 3 In the same manner as Examples 1 to 3, the catalysts were calcined in air and used in the reaction without being subjected to reduction treatment, as shown in Table 1.

【表】 実施例 4 市販の酸化アルミニウム(表面積200m2/g)
の錠剤を破砕し、6〜12メツシユの粒径にそろえ
得られた触媒6mlをガラス製反応管に充填し、
430℃、一酸化炭素、水素および窒素のモル比
1:1:8の混合ガスを流し、1時間焼成し、反
応に用いた。 m−クレゾールとメタノールのモル比1:4に
混合した反応液を、240℃にて加熱気化させた後、
内温を330℃に調節した反応管に1時間当り3.3g
導入し、反応を行なつた。 結果は、反応開始後10時間の時点で、m−クレ
ゾール転化率99.9%、50時間、100時間の時点で、
それぞれ99.9%、99.7%であつた。 比較例 4 実施例4と同様な方法において、酸化アルミニ
ウムを空気中、430℃で焼成し、反応に用いた。 結果は、反応開始後10時間の時点で、m−クレ
ゾール転化率99.8%、50時間、100時間の時点で、
それぞれ99.4%、98.7%であつた。 実施例 5〜8 市販の特級試薬をそれぞれ成型後粉砕して、6
〜12メツシユの粒径にそろえ、得られた触媒7ml
をガラス製反応管に充填し空気流通下450℃で5
時間焼成した。その後に400℃で水素と窒素との
モル比が1:1である混合ガスを2時間流し、反
応に用いた。反応器内温をそれぞれの適温に調節
した以外は、実施例1と同様の方法で反応を行つ
た。結果を第2表に示す。 比較例 5〜8 実施例5〜8と同様な方法において、触媒を焼
成後に還元処理を行わずにそれぞれ対応させて反
応を行つた。結果を第2表に示す。
[Table] Example 4 Commercially available aluminum oxide (surface area 200m 2 /g)
Crush the tablets, adjust the particle size to 6 to 12 meshes, and fill a glass reaction tube with 6 ml of the resulting catalyst.
A mixed gas of carbon monoxide, hydrogen and nitrogen in a molar ratio of 1:1:8 was flowed at 430°C, and the mixture was calcined for 1 hour and used for the reaction. After heating and vaporizing a reaction mixture of m-cresol and methanol at a molar ratio of 1:4 at 240°C,
3.3g per hour into a reaction tube whose internal temperature was adjusted to 330℃
was introduced and the reaction was carried out. The results showed that the m-cresol conversion rate was 99.9% at 10 hours after the start of the reaction, and at 50 hours and 100 hours.
They were 99.9% and 99.7%, respectively. Comparative Example 4 In the same manner as in Example 4, aluminum oxide was calcined in air at 430°C and used in the reaction. The results showed that the m-cresol conversion rate was 99.8% at 10 hours after the start of the reaction, and at 50 hours and 100 hours.
They were 99.4% and 98.7%, respectively. Examples 5 to 8 Commercially available special grade reagents were each molded and pulverized to form 6
7 ml of the catalyst obtained by adjusting the particle size to ~12 meshes
Filled into a glass reaction tube and heated at 450℃ under air circulation for 5 minutes.
Baked for an hour. Thereafter, a mixed gas containing hydrogen and nitrogen at a molar ratio of 1:1 was flowed for 2 hours at 400°C and used for the reaction. The reaction was carried out in the same manner as in Example 1, except that the internal temperature of the reactor was adjusted to the appropriate temperature for each. The results are shown in Table 2. Comparative Examples 5 to 8 In the same manner as in Examples 5 to 8, reactions were carried out in the same way as in Examples 5 to 8, without performing reduction treatment after calcination of the catalysts. The results are shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族環上に少なくとも1個以上の水素原子
を有するフエノール類を、アルコール類と共に気
相接触反応させ、アルキル化フエノール類を製造
する際、酸化アルミニウムを50モル%以上含有す
る酸化アルミニウム含有触媒、酸化マグネシウム
を50モル%以上含有する酸化マグネシウム含有触
媒、酸化マンガンを50モル%以上含有する酸化マ
ンガン含有触媒または酸化鉄を50モル%以上含有
する酸化鉄含有触媒のうちいずれか1種を還元性
ガスにより前処理して用いることを特徴とするア
ルキル化フエノール類の製造方法。
1. An aluminum oxide-containing catalyst containing 50 mol% or more of aluminum oxide when producing alkylated phenols by subjecting a phenol having at least one hydrogen atom on an aromatic ring to a gas phase catalytic reaction with an alcohol. , a magnesium oxide-containing catalyst containing 50 mol% or more of magnesium oxide, a manganese oxide-containing catalyst containing 50 mol% or more of manganese oxide, or an iron oxide-containing catalyst containing 50 mol% or more of iron oxide. 1. A method for producing alkylated phenols, the method comprising pre-treating them with a reactive gas.
JP5089179A 1979-04-26 1979-04-26 Preparation of alkylphenol Granted JPS55143921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5089179A JPS55143921A (en) 1979-04-26 1979-04-26 Preparation of alkylphenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5089179A JPS55143921A (en) 1979-04-26 1979-04-26 Preparation of alkylphenol

Publications (2)

Publication Number Publication Date
JPS55143921A JPS55143921A (en) 1980-11-10
JPS6343372B2 true JPS6343372B2 (en) 1988-08-30

Family

ID=12871349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5089179A Granted JPS55143921A (en) 1979-04-26 1979-04-26 Preparation of alkylphenol

Country Status (1)

Country Link
JP (1) JPS55143921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054068A1 (en) 2018-09-14 2020-03-19 日揮グローバル株式会社 Method for operating liquefied natural gas receiving equipment
WO2021005675A1 (en) 2019-07-08 2021-01-14 東芝三菱電機産業システム株式会社 Energy balance adjustment control method and adjustment control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838225A (en) * 1981-08-31 1983-03-05 Sumitomo Chem Co Ltd Preparation of alkylphenols

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054068A1 (en) 2018-09-14 2020-03-19 日揮グローバル株式会社 Method for operating liquefied natural gas receiving equipment
KR20210058819A (en) 2018-09-14 2021-05-24 닛키 글로벌 가부시키가이샤 How to operate liquefied natural gas import facility
WO2021005675A1 (en) 2019-07-08 2021-01-14 東芝三菱電機産業システム株式会社 Energy balance adjustment control method and adjustment control device

Also Published As

Publication number Publication date
JPS55143921A (en) 1980-11-10

Similar Documents

Publication Publication Date Title
JPS5918374B2 (en) Selective method for producing ortho-alkylated phenols using anisole as a starting material
US4227023A (en) Process for the selective ortho-alkylation of phenolic compounds
US4208537A (en) Process for the selective ortho-alkylation of phenolic compounds
JP2001514961A (en) A method for producing a platinum metal-containing catalyst and a diaryl carbonate produced by a sol-gel method.
JPS6343372B2 (en)
JPS599530B2 (en) Method for producing ortho-alkylated phenols
JPH0341213B2 (en)
JPS6361931B2 (en)
JPH0158170B2 (en)
KR100752418B1 (en) Catalysts for dehydrogenation of ethylbenzene into styrene, process thereof and preparation method for styrene monomer employing them
JP4294209B2 (en) Process for producing ortho-position alkylated hydroxyaromatic compounds
US4454357A (en) Process for producing o-methylated phenols
JPS6326093B2 (en)
JPS6331451B2 (en)
JPS6136732B2 (en)
TW434042B (en) Supported catalysts which contain a platinum metal and a process for preparing diaryl carbonates
JPH0419984B2 (en)
JPH0121136B2 (en)
JPS6049166B2 (en) Process for producing orthomethylated phenols
US5098879A (en) Catalyst for preparation of ortho-alkylated phenols
US5175377A (en) Process for preparing an ortho-alkylated phenol
JPS6334137B2 (en)
JPS6332771B2 (en)
JPH0212936B2 (en)
JPS6236504B2 (en)