JPS6342928B2 - - Google Patents

Info

Publication number
JPS6342928B2
JPS6342928B2 JP9701581A JP9701581A JPS6342928B2 JP S6342928 B2 JPS6342928 B2 JP S6342928B2 JP 9701581 A JP9701581 A JP 9701581A JP 9701581 A JP9701581 A JP 9701581A JP S6342928 B2 JPS6342928 B2 JP S6342928B2
Authority
JP
Japan
Prior art keywords
weight
parts
vinyl acetate
ethylene
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9701581A
Other languages
Japanese (ja)
Other versions
JPS57212247A (en
Inventor
Shoji Yamamoto
Masao Nishimura
Hiroyuki Nakae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9701581A priority Critical patent/JPS57212247A/en
Publication of JPS57212247A publication Critical patent/JPS57212247A/en
Publication of JPS6342928B2 publication Critical patent/JPS6342928B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は公知の架橋手段を応用して架橋せしめ
た場合に垂直燃焼試験に合格する高度の難燃性と
通常必要とされる引張特性とを兼ね備えたハロゲ
ンフリーの難燃性樹脂組成物に関するものであ
る。 かかる難燃性樹脂組成物は種々の用途、例えば
難燃性絶縁電線・ケーブルの絶縁及びシース材料
として要望されている。かかる難燃材料、特に車
輛用及び原子力発電所用の電線・ケーブルの絶縁
及びシース材料には、垂直燃焼試験、例えば、
UL規格758のVW―1燃焼試験、IPCEA S―61
―402の垂直燃焼試験及びTEEE383の垂直トレイ
試験に合格する高度の難燃性が要求され、引張特
性については引張強さ1.0Kg/mm2以上及び伸び100
%以上が要求されるほか、塩酸ガス発生量も規格
化されており、特に原子力発電所用ケーブルでは
燃焼時のハロゲンガス発生量100mg/gという低
ハロゲン性が要求される。 従来、ゴムの引張特性を高めるためにシリカ
(すなわち、ホワイトカーボン)及びカーボンブ
ラツクを数十phr添加することが知られており、
またエチレン酢酸ビニル共重合体、エチレンプロ
ピレン共重合体等のエチレン共重合体に水酸化ア
ルミニウム、水酸化マグネシウム等のような水和
金属酸化物を高充填すると、ハロゲンフリー又は
低ハロゲン性のほか高難燃性が付与されることも
知られている。例えば、特開昭51−132254号公報
及び特公昭51−348866号公報に披瀝されているエ
チレンコポリマーに水和金属酸化物を高充填した
組成物はハロゲンフリーであるが、難燃性が不十
分であり、垂直燃焼試験に合格させようとすると
引張特性等の物性が著しく低下する。また、特開
昭55−3187号公報、特開昭55−34226号公報及び
特開昭56−18636号公報(特許出願昭54−94210号
明細書)等に披瀝されている難燃性樹脂組成物
は、難燃性が著しく高く、垂直燃焼試験に合格
し、しかも伸び特性も良好であるが、引張強さが
0.5Kg/mm2前後であつて、通常ケーブルの絶縁及
びシース材料として要求される1.0Kg/mm2以上を
満足していない。また、難燃性を付与するために
ポリオレフインに有機ハロゲン化物を多量に添加
した難燃材料及び塩化ビニルにおいては、燃焼時
に発生するハロゲンガスの有毒性及び黒煙の著し
い発生が問題視されており、ポリオレフインに対
しては臭素系及びリン系難燃剤の併用、また塩化
ビニルに対しては炭酸カルシウムの併用も行われ
ているが、完全に無公害とすることは未だ不可能
である。 本発明は、従来の難燃性樹脂組成物における上
述の欠点を解決すべく鋭意検討した結果得られた
もので、酢酸ビニル濃度40重量%以上のエチレン
酢酸ビニル共重合体95〜70重量%と、エチレンア
クリル酸共重合体5〜30重量部と、このエチレン
アクリル酸共重合体100重量部に対して0〜200重
量部の割合のポリオレフインとを配合してなるベ
ース樹脂であつて、該ベース樹脂中の酢酸ビニル
濃度が40重量%以上であるベース樹脂100重量部
に対して、平均粒径10μm以下の水酸化アルミニ
ウム100〜250重量部及び二次平均粒径10μm以下
の無定形シリカとカーボンブラツクとのうちの少
くとも一方10〜70重量部を配合したことを特徴と
する難燃性樹脂組成物である。この組成物に放射
線照射法あるいは化学的架橋剤配合などの公知の
架橋技術を応用することにより高難燃性でかつ機
械的特性に優れた難燃架橋樹脂成形体を得ること
ができる。 本発明の組成物のベース樹脂においては、該組
成物の高難燃性を確保するため、前記従来の難燃
性樹脂組成物でも確認されているように、ベース
樹脂中の酢酸ビニル濃度は40重量%以上を必要と
し、また機械的強度を確保するため、エチレン酢
酸ビニル共重合体(酢酸ビニル濃度40重量%以
上)は95〜70重量部好ましくは80重量部とし、エ
チレンアクリル酸共重合体は5〜30重量部好まし
くは20重量部とする。エチレン酢酸ビニル共重合
体が95重量部より多量である場合、すなわちエチ
レンアクリル酸共重合体が5重量%より少量であ
る場合には、引張強さが不十分である。またエチ
レン酢酸ビニル共重合体が70重量部より少量であ
る場合、すなわちエチレンアクリル酸共重合体が
30重量部より多量である場合には、伸び及び垂直
難燃性が不十分である。エチレン酢酸ビニル共重
合体としては酢酸ビニル濃度40重量%以上のもの
を使用する。エチレン酢酸ビニル共重合体中の酢
酸ビニル濃度が40重量%より小さい場合には、ベ
ース樹脂中の酢酸ビニル濃度が40重量%以上を確
保できず、難燃性が不十分となる。エチレンアク
リル酸共重合体中のアクリル酸濃度は特に限定さ
れないが、5重量%以上が好ましい。上記ベース
樹脂には、さらにポリオレフイン、例えば、低密
度ポリエチレン、エチレンプロピレンジエン三元
共重合体、エチレン―αオレフイン共重合体等を
エチレンアクリル酸共重合体100重量部に対して
200重量部以下の割合で配合することができる。
配合量をこれより多量にすると、引張強さ及び伸
びが著しく低下する。 本発明の組成物においては、かかるベース樹脂
100重量部に対して、平均粒径10μm以下好まし
くは0.5〜4μmの水酸化アルミニウム100〜250重
量部好ましくは120〜180重量部を配合し、さらに
二次平均粒径10μm以下の無定形シリカを10〜70
重量部好ましくは30〜50重量部配合する。水酸化
アルミニウム配合量は100重量部未満では垂直難
燃性が不十分で、250重量部を越えると引張強さ
及び伸びが著しく低下するほか、組成物の外観も
不良になる。また水酸化アルミニウムの平均粒径
が10μmを越えると、引張強さ及び伸びが著しく
低下するほか、組成物の外観も不良になる。無定
形シリカとカーボンブラツクとのうちの少くとも
一方の配合量は10重量部未満では引張強さが不十
分であり、70重量部を越えると組成物の粘性が高
くなり、コンパウンデイング時及び押出加工時に
トルクが上りすぎる欠点があるほか、伸びが劣
り、組成物の外観も不良になる。また無定形シリ
カの二次平均粒度が10μmを越えると、引張強さ
が不十分であるほか伸びが低下する。ここにシリ
カの「二次平均粒径」とは二次平均凝集粒子径の
ことで、シリカをメタノール中に分散させた後コ
ールターカウンターにより求めたシリカの粒度分
布における50%分布時の粒子径を意味する。 本発明の組成物においては、水酸化アルミニウ
ムを予めシラン系またはチタネート系カツプリン
グ剤で前処理してもよい。シラン系カツプリング
剤としてはビニル―トリス(2―メトキシエトキ
シ)シランが最も好ましく、水酸化アルミニウム
100phvをこの化合物3〜5phrで前処理すると、
引張強さは0.2Kg/mm2向上する。チタネート系カ
ツプリング剤としてはイソプロピル―トリイソス
テアロイルチタネートが最も好ましく、水酸化ア
ルミニウム100phrをこの化合物1phrで前処理す
ると、引張強さをさほど低下させずに伸びを50%
前後向上することができる。 なお、本発明の組成物には、その難燃性、引張
特性等を著しく損わない程度に、ポリ塩化ビニル
等に普通用いられている可塑剤のほか、老化防止
剤、滑剤、例えばステアリン酸、架橋助剤、例え
ばトリアリルシアヌレート(TAC)等を配合す
ることができる。 本発明の組成物はジクミルパーオキサイド等の
ような有機過酸化物等の化学的架橋剤の存在下又
は電子線等の放射線の作用下で架橋させることが
可能である。架橋度はゲル分率が50%以上、好ま
しくは70%以上になるように行う。架橋により組
成物の伸びは若干低下するが、引張強さを向上さ
せることができる。 本発明を次の実施例及び比較例について説明す
る。 これらの例では下記の材料を使用した: エチレン酢酸ビニル共重合体(VA:酢酸ビニル
濃度): VA=75重量%、(商品名)エバスレン310P、
大日本インキ化学工業(株)製、 VA=25重量%、(商品名)EUA360、三井石油
化学工業(株)製、 エチレンアクリル酸共重合体(AA:アクリル酸
濃度): AA=8重量%、(商品名)EAA455、ダウケミ
カル製、 エチレンプロピレンジエン三元共重合体:(商品
名)EPT1070、三井石油化学(株)製、 低密度ポリエチレン:(商品名)UBEC180、宇部
興産(株)製、 水酸化アルミニウム:(品名)ハイジライトH―
42M、昭和電工(株)製、 無定形シリカ:(商品名)トクシール及び(商品
名)フアインシール、徳山曹達(株)製、 老化防止剤:(商品名)イルガノツクス1010、チ
バガイギー製、 ステアリン酸:旭電化(株)製、 トリアシルシアヌレート:(商品名)TR―127、
武蔵野商事。 実施例1〜7及び比較例1〜14 これらの例では、先ずベース樹脂を構成する重
合体をバンバリーミキサで練り混ぜて均一なベー
ス樹脂とし、次いでこのベース樹脂に水酸化アル
ミニウム及び無定形シリカを練り込み、さらに老
化防止剤0.5phr、ステアリン酸1.0phr及びトリア
リルシアヌレート3phrを添加してコンパウンデ
イングして樹脂組成物を得た。各材料の配合割合
を第1表に示す。
The present invention relates to a halogen-free flame-retardant resin composition that has both a high degree of flame retardancy that passes a vertical combustion test and normally required tensile properties when cross-linked using known cross-linking methods. It is. Such flame-retardant resin compositions are desired for various uses, such as insulation and sheath materials for flame-retardant insulated wires and cables. Such flame-retardant materials, especially wire and cable insulation and sheathing materials for vehicles and nuclear power plants, are subjected to vertical combustion tests, e.g.
VW-1 combustion test of UL standard 758, IPCEA S-61
- A high degree of flame retardancy is required to pass the vertical combustion test of 402 and the vertical tray test of TEEE383, and for tensile properties, the tensile strength is 1.0 Kg/mm 2 or more and the elongation is 100.
% or more, the amount of hydrochloric acid gas generated is also standardized, and in particular, cables for nuclear power plants are required to have low halogen properties, with the amount of halogen gas generated during combustion being 100 mg/g. Conventionally, it has been known to add tens of phr of silica (i.e. white carbon) and carbon black to improve the tensile properties of rubber.
In addition, when ethylene copolymers such as ethylene vinyl acetate copolymers and ethylene propylene copolymers are highly loaded with hydrated metal oxides such as aluminum hydroxide and magnesium hydroxide, they can be halogen-free or have low halogen properties. It is also known to impart flame retardancy. For example, the compositions disclosed in JP-A-51-132254 and JP-B-51-348866, in which ethylene copolymers are highly loaded with hydrated metal oxides, are halogen-free, but have insufficient flame retardancy. Therefore, when attempting to pass a vertical combustion test, physical properties such as tensile properties deteriorate significantly. In addition, flame-retardant resin compositions disclosed in JP-A-55-3187, JP-A-55-34226, JP-A-56-18636 (patent application No. 54-94210), etc. The material has extremely high flame retardancy, passes the vertical combustion test, and has good elongation properties, but has low tensile strength.
It is around 0.5Kg/mm 2 and does not meet the 1.0Kg/mm 2 or higher normally required for cable insulation and sheath materials. In addition, with regard to flame retardant materials and vinyl chloride, which are made by adding large amounts of organic halides to polyolefins to impart flame retardancy, the toxicity of halogen gas generated during combustion and the significant generation of black smoke are viewed as problems. For polyolefins, bromine-based and phosphorus-based flame retardants have been used together, and for vinyl chloride, calcium carbonate has been used in combination, but it is still impossible to make them completely pollution-free. The present invention was obtained as a result of intensive studies to solve the above-mentioned drawbacks of conventional flame-retardant resin compositions, and consists of an ethylene-vinyl acetate copolymer with a vinyl acetate concentration of 40% by weight or more and 95 to 70% by weight. , a base resin comprising 5 to 30 parts by weight of an ethylene acrylic acid copolymer and a polyolefin in a proportion of 0 to 200 parts by weight per 100 parts by weight of the ethylene acrylic acid copolymer, the base resin comprising: 100 to 250 parts by weight of aluminum hydroxide with an average particle size of 10 μm or less and amorphous silica and carbon with a secondary average particle size of 10 μm or less per 100 parts by weight of the base resin in which the vinyl acetate concentration in the resin is 40% by weight or more. This is a flame-retardant resin composition characterized in that it contains 10 to 70 parts by weight of at least one of black. By applying known crosslinking techniques such as radiation irradiation or chemical crosslinking agent combination to this composition, it is possible to obtain a flame-retardant crosslinked resin molded article that is highly flame retardant and has excellent mechanical properties. In the base resin of the composition of the present invention, in order to ensure high flame retardancy of the composition, the vinyl acetate concentration in the base resin is 40% as confirmed in the conventional flame retardant resin composition. % by weight or more, and in order to ensure mechanical strength, the ethylene vinyl acetate copolymer (vinyl acetate concentration 40% by weight or more) should be 95 to 70 parts by weight, preferably 80 parts by weight, and the ethylene acrylic acid copolymer should be 95 to 70 parts by weight, preferably 80 parts by weight. is 5 to 30 parts by weight, preferably 20 parts by weight. When the amount of ethylene vinyl acetate copolymer is more than 95 parts by weight, that is, when the amount of ethylene acrylic acid copolymer is less than 5% by weight, the tensile strength is insufficient. Also, if the amount of ethylene vinyl acetate copolymer is less than 70 parts by weight, that is, if the amount of ethylene vinyl acetate copolymer is less than 70 parts by weight,
If the amount is more than 30 parts by weight, the elongation and vertical flame retardancy will be insufficient. As the ethylene vinyl acetate copolymer, one having a vinyl acetate concentration of 40% by weight or more is used. If the vinyl acetate concentration in the ethylene vinyl acetate copolymer is less than 40% by weight, the vinyl acetate concentration in the base resin cannot be ensured to be 40% by weight or more, resulting in insufficient flame retardancy. The concentration of acrylic acid in the ethylene acrylic acid copolymer is not particularly limited, but is preferably 5% by weight or more. The above base resin further contains polyolefins such as low density polyethylene, ethylene propylene diene terpolymer, ethylene-α olefin copolymer, etc. per 100 parts by weight of ethylene acrylic acid copolymer.
It can be blended in a proportion of 200 parts by weight or less.
If the amount is greater than this, the tensile strength and elongation will be significantly reduced. In the composition of the present invention, such base resin
To 100 parts by weight, 100 to 250 parts by weight of aluminum hydroxide with an average particle size of 10 μm or less, preferably 0.5 to 4 μm, and preferably 120 to 180 parts by weight are blended, and further amorphous silica with a secondary average particle size of 10 μm or less is blended. 10~70
The amount is preferably 30 to 50 parts by weight. If the amount of aluminum hydroxide is less than 100 parts by weight, the vertical flame retardance will be insufficient, and if it exceeds 250 parts by weight, the tensile strength and elongation will be significantly reduced, and the appearance of the composition will also be poor. If the average particle size of aluminum hydroxide exceeds 10 μm, the tensile strength and elongation will be significantly reduced, and the appearance of the composition will also be poor. If the blending amount of at least one of amorphous silica and carbon black is less than 10 parts by weight, the tensile strength will be insufficient, and if it exceeds 70 parts by weight, the viscosity of the composition will increase, making it difficult to use during compounding and extrusion. In addition to the disadvantage that the torque increases too much during processing, elongation is poor and the appearance of the composition is also poor. Furthermore, if the secondary average particle size of the amorphous silica exceeds 10 μm, the tensile strength will be insufficient and the elongation will decrease. The "secondary average particle size" of silica here refers to the secondary average agglomerated particle size, which is the particle size at 50% distribution in the silica particle size distribution determined by a Coulter counter after dispersing silica in methanol. means. In the composition of the present invention, aluminum hydroxide may be pretreated with a silane-based or titanate-based coupling agent. As the silane coupling agent, vinyl-tris(2-methoxyethoxy)silane is most preferred, and aluminum hydroxide
When 100phv is pretreated with 3-5phr of this compound,
Tensile strength improves by 0.2Kg/ mm2 . Isopropyl-triisostearoyl titanate is the most preferred titanate coupling agent; pretreatment of 100 phr of aluminum hydroxide with 1 phr of this compound increases elongation by 50% without significantly reducing tensile strength.
It can be improved before and after. The composition of the present invention may contain a plasticizer commonly used for polyvinyl chloride, an anti-aging agent, a lubricant, such as stearic acid, to the extent that the flame retardance, tensile properties, etc. are not significantly impaired. , a crosslinking aid, such as triallyl cyanurate (TAC), etc. can be blended. The compositions of the present invention can be crosslinked in the presence of chemical crosslinking agents such as organic peroxides such as dicumyl peroxide or under the action of radiation such as electron beams. The degree of crosslinking is determined so that the gel fraction is 50% or more, preferably 70% or more. Although crosslinking slightly reduces the elongation of the composition, it can improve the tensile strength. The present invention will be explained with reference to the following examples and comparative examples. The following materials were used in these examples: Ethylene-vinyl acetate copolymer (VA: vinyl acetate concentration): VA = 75% by weight, (trade name) Evathrene 310P,
Manufactured by Dainippon Ink and Chemicals Co., Ltd., VA = 25% by weight, (trade name) EUA360, manufactured by Mitsui Petrochemical Industries, Ltd., ethylene acrylic acid copolymer (AA: acrylic acid concentration): AA = 8% by weight , (Product name) EAA455, manufactured by Dow Chemical, Ethylene propylene diene terpolymer: (Product name) EPT1070, manufactured by Mitsui Petrochemical Co., Ltd., Low density polyethylene: (Product name) UBEC180, manufactured by Ube Industries, Ltd. , Aluminum hydroxide: (Product name) Hygilite H-
42M, manufactured by Showa Denko K.K., Amorphous silica: (Product name) Toxyl and (Product name) Fine Seal, manufactured by Tokuyama Soda Co., Ltd., Anti-aging agent: (Product name) Irganox 1010, manufactured by Ciba Geigy, Stearic acid: Asahi Manufactured by Denka Co., Ltd., triacyl cyanurate: (product name) TR-127,
Musashino Shoji. Examples 1 to 7 and Comparative Examples 1 to 14 In these examples, the polymers constituting the base resin were first mixed in a Banbury mixer to form a uniform base resin, and then aluminum hydroxide and amorphous silica were added to the base resin. After kneading, 0.5 phr of anti-aging agent, 1.0 phr of stearic acid and 3 phr of triallyl cyanurate were added and compounded to obtain a resin composition. Table 1 shows the blending ratio of each material.

【表】 4.○は合格、×は不合格。
この樹脂組成物を30mmφ押出被覆機により0.4
mmφ導体上に0.2mmの厚さに被覆し、次いでこの
被覆層のゲル分率が70%以上に達するまで
7.5Mradの放射線を照射することにより絶縁電線
を得、この絶縁電線について下記の試験を行い、
第1表に示す結果を得た。 (1) 絶縁体の引張特性(引張強さ及び伸び):JIS
C3005に準拠した。 (2) 垂直燃焼試験:UL規格758―VW―1に準拠
し、10本の絶縁電線について試験し、次の基準
に基いて判定した: 〇印は10本中10本が合格した場合、 △印は10本中7本が合格した場合、 ×印は10本中6本以下が合格した場合。 (3) 外観:SE―3型万能表面形状測定機(小坂
研究所製)に測定し、次の基準に基いて判定し
た: 〇印は表面粗さが1μm未満の場合、 △印は表面粗さが1〜2μmの場合、 ×印は表面粗さが2μmを越えた場合。 この表面形状測定機は、レコード盤上のレコー
ド針におけるような、被検体表面上における検出
針の上下動を、変位差計により測定して表面粗さ
を求めるものである。通常、プラスチツク製品の
表面粗さは1μm以下であり、2μmを超えると手
触りが可成りざらついてくる。 第1表に示す結果から次のことが判る: (1) ベース樹脂について エチレン酢酸ビニル共重合体(VA:40重量
%以上)単独では引張強さが不良であり、エチ
レン酢酸ビニル共重合体(VA:40重量%未
満)単独では引張強さ及び伸びが不良であるほ
か、難燃性が不良であるため、不合格である
(比較例1及び2)。 エチレン酢酸ビニル共重合体(VA:40重量
%以上)95〜70重量部とエチレンアクリル酸共
重合体5〜30重量部とからなる2種の重合体の
組合せは良好な結果を与える(実施例1)。こ
の範囲外の配合比の場合に、エチレン酢酸ビニ
ル共重合体の配合量が大きすぎる場合には引張
強さが不良であり、エチレンアクリル酸共重合
体が大きすぎる場合には伸び及び難燃性が不良
である(比較例6及び7)。またエチレン酢酸
ビニル共重合体(VA:40重量%以上)に配合
される重合体がエチレンアクリル酸共重合体で
ない場合には、引張強さが不良である(比較例
3,4及び5)。 エチレン酢酸ビニル共重合体(VA:40重量
%以上)95〜70重量部とエチレンアクリル酸共
重合体5〜30重量部とこのエチレンアクリル酸
共重合体100重量部に対して200重量部以下のポ
リエチレンとを配合した3種の重合体の組合せ
も良好な結果を与える(実施例2)。しかしポ
リエチレンの配合量が本発明における規定量以
上(比較例13)では伸び特性が著しく低下し、
またポリエチレン以外のポリマーを配合した場
合(比較例14)では総合面で著しい特性低下が
認められた。 (2) 水酸化アルミニウムについて 水酸化アルミニウムの平均粒径は10μmを越
えると、引張強さ及び伸びが著しく低下するほ
か、外観も不良になる(比較例8)。平均粒径
10μm以下の場合には、良好な結果が得られる
(実施例2,3,4及び5)。 平均粒径10μm以下の水酸化アルミニウムで
あつても、その配合量が100重量部未満である
と難燃性が不十分であり、また250重量部を越
えると引張強さ及び伸びが著しく低下するほ
か、外観も不良である(比較例9及び10)。 (3) 無定形シリカについて: 無定形シリカの二次平均粒径は10μmを越え
ると、引張強さが不良であるほか伸びが低下す
る(比較例11)。二次平均粒径10μm以下の場
合には良好な結果が得られる(実施例1及び
2)。 二次平均粒径10μm以下の無定形シリカであ
つても、その配合量が70重量部を越えると伸び
が劣り、外観も不良になる。(なお、コンパウ
ンデイング時及び押出加工時にトルクが上りす
ぎる欠点がある。) 本発明により、ハロゲンフリーで、引張特性が
著しく改善され、垂直燃焼試験に合格する高度の
難燃性を有する難燃性樹脂組成物が得られた。
[Table] 4. ○ means pass, × means fail.
This resin composition was coated with 0.4
Coat on mmφ conductor to a thickness of 0.2 mm, and then until the gel fraction of this coating layer reaches 70% or more.
An insulated wire was obtained by irradiating it with 7.5 Mrad radiation, and the following tests were conducted on this insulated wire.
The results shown in Table 1 were obtained. (1) Tensile properties of insulators (tensile strength and elongation): JIS
Compliant with C3005. (2) Vertical combustion test: In accordance with UL standard 758-VW-1, 10 insulated wires were tested and judged based on the following criteria: 〇 indicates if 10 out of 10 passed, △ The mark indicates that 7 out of 10 tests passed, and the × mark indicates that 6 or fewer out of 10 tests passed. (3) Appearance: Measured using an SE-3 type universal surface profile measuring machine (manufactured by Kosaka Laboratory) and judged based on the following criteria: ○ indicates surface roughness of less than 1 μm, △ indicates surface roughness When the surface roughness is 1 to 2 μm, × indicates the surface roughness exceeds 2 μm. This surface profile measuring device measures the vertical movement of a detection stylus on the surface of a subject, such as a stylus on a record, using a displacement difference meter to determine surface roughness. Normally, the surface roughness of plastic products is 1 μm or less, and if it exceeds 2 μm, the surface roughness becomes quite rough to the touch. The results shown in Table 1 reveal the following: (1) Regarding the base resin Ethylene vinyl acetate copolymer (VA: 40% by weight or more) alone has poor tensile strength; (VA: less than 40% by weight) alone has poor tensile strength and elongation, as well as poor flame retardancy, so it is rejected (Comparative Examples 1 and 2). A combination of two polymers consisting of 95 to 70 parts by weight of ethylene vinyl acetate copolymer (VA: 40% by weight or more) and 5 to 30 parts by weight of ethylene acrylic acid copolymer gives good results (Example 1). In the case of a blending ratio outside this range, if the blending amount of ethylene vinyl acetate copolymer is too large, the tensile strength will be poor, and if the blending amount of ethylene acrylic acid copolymer is too large, the elongation and flame retardance will be poor. are poor (Comparative Examples 6 and 7). Furthermore, when the polymer blended into the ethylene vinyl acetate copolymer (VA: 40% by weight or more) is not an ethylene acrylic acid copolymer, the tensile strength is poor (Comparative Examples 3, 4, and 5). 95 to 70 parts by weight of ethylene vinyl acetate copolymer (VA: 40% by weight or more), 5 to 30 parts by weight of ethylene acrylic acid copolymer, and 200 parts by weight or less per 100 parts by weight of this ethylene acrylic acid copolymer. A combination of three polymers blended with polyethylene also gives good results (Example 2). However, when the amount of polyethylene blended exceeds the specified amount in the present invention (Comparative Example 13), the elongation properties are significantly reduced.
Furthermore, when a polymer other than polyethylene was blended (Comparative Example 14), a significant decrease in overall properties was observed. (2) Regarding aluminum hydroxide If the average particle size of aluminum hydroxide exceeds 10 μm, the tensile strength and elongation will decrease significantly, and the appearance will also become poor (Comparative Example 8). Average particle size
Good results are obtained when the thickness is 10 μm or less (Examples 2, 3, 4, and 5). Even if aluminum hydroxide has an average particle size of 10 μm or less, if the amount is less than 100 parts by weight, the flame retardance will be insufficient, and if it exceeds 250 parts by weight, the tensile strength and elongation will decrease significantly. In addition, the appearance was also poor (Comparative Examples 9 and 10). (3) Regarding amorphous silica: When the secondary average particle size of amorphous silica exceeds 10 μm, tensile strength is poor and elongation is decreased (Comparative Example 11). Good results are obtained when the secondary average particle diameter is 10 μm or less (Examples 1 and 2). Even if amorphous silica has a secondary average particle size of 10 μm or less, if the amount exceeds 70 parts by weight, the elongation will be poor and the appearance will be poor. (However, there is a drawback that the torque increases too much during compounding and extrusion processing.) The present invention provides a flame retardant that is halogen-free, has significantly improved tensile properties, and has a high degree of flame retardancy that passes the vertical combustion test. A resin composition was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 酢酸ビニル濃度40重量%以上のエチレン酢酸
ビニル共重合体95〜70重量部と、エチレンアクリ
ル酸共重合体5〜30重量部と、このエチレンアク
リル酸共重合体100重量部に対して0〜200重量部
の割合のポリオレフインとを配合してなるベース
樹脂であつて、該ベース樹脂中の酢酸ビニル濃度
が40重量%以上であるベース樹脂100重量部に対
して、平均粒径10μm以下の水酸化アルミニウム
100〜250重量部及び二次平均粒径10μm以下の無
定形シリカ10〜70重量部を配合したことを特徴と
する難燃性樹脂組成物。
1. 95 to 70 parts by weight of an ethylene vinyl acetate copolymer with a vinyl acetate concentration of 40% by weight or more, 5 to 30 parts by weight of an ethylene acrylic acid copolymer, and 0 to 100 parts by weight of this ethylene acrylic acid copolymer. A base resin prepared by blending 200 parts by weight of polyolefin with a vinyl acetate concentration of 40% by weight or more, and water with an average particle size of 10 μm or less per 100 parts by weight of the base resin. Aluminum oxide
1. A flame-retardant resin composition comprising 100 to 250 parts by weight of amorphous silica and 10 to 70 parts by weight of amorphous silica having a secondary average particle size of 10 μm or less.
JP9701581A 1981-06-23 1981-06-23 Flame retardant resin composition Granted JPS57212247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9701581A JPS57212247A (en) 1981-06-23 1981-06-23 Flame retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9701581A JPS57212247A (en) 1981-06-23 1981-06-23 Flame retardant resin composition

Publications (2)

Publication Number Publication Date
JPS57212247A JPS57212247A (en) 1982-12-27
JPS6342928B2 true JPS6342928B2 (en) 1988-08-26

Family

ID=14180513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9701581A Granted JPS57212247A (en) 1981-06-23 1981-06-23 Flame retardant resin composition

Country Status (1)

Country Link
JP (1) JPS57212247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105815U (en) * 1990-02-15 1991-11-01

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719486B2 (en) * 1982-12-22 1995-03-06 日立電線株式会社 Flame-retardant wire / cable
JPS6013829A (en) * 1983-07-05 1985-01-24 Tatsuta Electric Wire & Cable Co Ltd Olefinic thermoplastic elastomer composition having high radiation resistance and flame retardance
JPS61168644A (en) * 1985-01-22 1986-07-30 Fujikura Ltd Flame-retardant resin composition
JPH0649807B2 (en) * 1985-05-17 1994-06-29 大日本インキ化学工業株式会社 Flame-retardant resin composition
JPS62177046A (en) * 1986-01-31 1987-08-03 Nippon Telegr & Teleph Corp <Ntt> Acid-resistant flame-retardant resin composition
JPS63146302A (en) * 1986-07-24 1988-06-18 古河電気工業株式会社 Rubber resin insulated power cable
JPH0745595B2 (en) * 1986-08-09 1995-05-17 大日精化工業株式会社 Halogen-free flame-retardant thermoplastic synthetic resin composition
JP2582395B2 (en) * 1988-02-23 1997-02-19 株式会社フジクラ Flame retardant composition
US5091608A (en) * 1988-07-27 1992-02-25 Minnesota Mining And Manufacturing Company Flame retardant splicing system
CN1886453B (en) * 2003-11-25 2010-05-26 纳幕尔杜邦公司 Flame retardant, halogen-free compositions
JP4690653B2 (en) * 2004-01-15 2011-06-01 古河電気工業株式会社 Flame retardant resin composition and molded article using the same
JP2009093900A (en) * 2007-10-05 2009-04-30 Sumitomo Electric Ind Ltd Multi-core flat insulated wire and manufacturing method therefor
JP5269476B2 (en) * 2008-05-19 2013-08-21 昭和電線ケーブルシステム株式会社 Electric wire / cable
CN102766293B (en) * 2011-08-16 2013-11-20 深圳市沃尔核材股份有限公司 Radiation cross-linked low-smoke halogen-free red phosphorus-free flame retardant material and application thereof
JP2015067819A (en) * 2013-10-01 2015-04-13 日立金属株式会社 Non-halogen resin composition, insulated wire and cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105815U (en) * 1990-02-15 1991-11-01

Also Published As

Publication number Publication date
JPS57212247A (en) 1982-12-27

Similar Documents

Publication Publication Date Title
US6043312A (en) Low flame and smoke compositions for plenum cables
JPS6342928B2 (en)
NZ525352A (en) Halogen-free flame retardant polymeric compositions with metallocene catalysed olefin polymers
JP5306632B2 (en) Flame retardant resin composition and insulated wire coated with the same
KR20100025211A (en) Polypropylene-based flame-resistant resin composition for cable insulation material with superior mechanical properties
EP2199335B1 (en) Flame retardant composition with improved mechanical properties
JP2006179452A (en) Nonhalogen electric wire, electric wire bundle, and automobile wire harness
KR101037817B1 (en) Polypropylene-based flame-resistant resin composition for cable insulation material with superior mechanical properties
JP2008239901A (en) Flame-retardant resin composition and insulated electric wire coated with the resin composition
JP2004156026A (en) Flame-retardant resin composition
JP2000191844A (en) Non-halogen flame retardant resin composition
JP2001151952A (en) Nonhalogen flame-retardant resin composition
JP2012124061A (en) Flame retardant wire/cable
JPH11219626A (en) Fire retardant insulated electric wire thin wall thickness
JPS61213234A (en) Flame-retardant resin composition
EP1956609B1 (en) Cable with improved flame retardancy
JP2000178386A (en) Nonhalogen flame-retarded resin composition
JP2001011262A (en) Non-halogen flame retardant resin composition and flame retardant electric wire and cable using it
JP4776208B2 (en) Resin composition and insulated wire coated therewith
JPS62215644A (en) Flame-retardant resin composition
EP1396865A1 (en) Flame retardant polymer composition
JPH0129502B2 (en)
JP2003268250A (en) Nonhalogen flame-retardant composition and flame- retardant power source cord
JP2003277633A (en) Nonhalogen flame-retardant resin composition and flame-retardant power source cord
JP2536092B2 (en) Flame-retardant wire / cable