JPS6342717A - Separation of nitrogen - Google Patents

Separation of nitrogen

Info

Publication number
JPS6342717A
JPS6342717A JP61185646A JP18564686A JPS6342717A JP S6342717 A JPS6342717 A JP S6342717A JP 61185646 A JP61185646 A JP 61185646A JP 18564686 A JP18564686 A JP 18564686A JP S6342717 A JPS6342717 A JP S6342717A
Authority
JP
Japan
Prior art keywords
nitrogen
dppe
absorbent
tower
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61185646A
Other languages
Japanese (ja)
Inventor
Hiroshi Okamoto
宏 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP61185646A priority Critical patent/JPS6342717A/en
Publication of JPS6342717A publication Critical patent/JPS6342717A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0411Chemical processing only
    • C01B21/0427Chemical processing only by complexation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To enhance the separation efficiency of nitrogen by using a soln. of a complex expressed by [FeH(dppe)2]<+>Y<->, wherein dppe is ethylenebis(diphenylphosphine) and Y is B(C6H5)4 or ClO4, and a specified ligand as an N2 absorbent. CONSTITUTION:Raw air is introduced into an adsorption tower 3 from a pipe 1 through a compressor 3, wherein water and CO2 are absorbed and removed. The air is then introduced into an absorption tower 4, and brought into contact with a soln. of a complex expressed by [FeH(dppe)2]<+>Y<->, wherein dppe is ethylenebis(diphenylphosphine) and Y is B(C6H5)4 or ClO4, and a ligand consisting of one kind among (CH3)2CO, C5H5N, NH3, C6H5CN, and (CH3)CN to absorb N2. The air leaving the absorption tower 4 is sent to an adsorption tower 5 to recover the solvent vapor, the liq. N2 absorbent is passed through a heat exchanger 7 and then heated by a heater 8, the pressure of the absorbent is reduced by a valve 9, the absorbent is sent into a regeneration tower 10 wherein N2 is liberated and the solvent is regenerated, and the absorbent is returned to the absorption tower 4.

Description

【発明の詳細な説明】 [産業上の利用分野〕 この発明は、空気などの窒素含有ガスから窒素を分離す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a method for separating nitrogen from a nitrogen-containing gas such as air.

[従来の技術] 従来、空気などの音素含有ガスから音素を分離する方法
としては、次のようなものが知られている。
[Prior Art] Conventionally, the following methods are known as methods for separating phonemes from a phoneme-containing gas such as air.

■ 液化精溜法 ■PSA法 ■ 高分子膜法 液化精溜法は、空気を冷却液化せしめ、各成分ガスの気
化温度の差を利用して精溜する方法である。
■ Liquefaction rectification method ■ PSA method ■ Polymer membrane method Liquefaction rectification method is a method in which air is cooled and liquefied, and the air is rectified by utilizing the difference in vaporization temperature of each component gas.

t&、PSA 法は、モレキュラーシープスナトの吸着
剤によプ加圧空気中の窒素を吸着し、ついで減圧して窒
素ガスを吸着剤から脱着する方法である。
The t&, PSA method is a method in which nitrogen in pressurized air is adsorbed using an adsorbent made of molecular sheepsnat, and then the pressure is reduced to desorb nitrogen gas from the adsorbent.

さらに、高分子膜法はシリコーンポリマーなどの酸素の
透過係数の高い高分子膜を用い、叩気中の酸素を分離す
ることによシ%嘗素を得る方法である。
Furthermore, the polymer membrane method uses a polymer membrane with a high oxygen permeability coefficient, such as a silicone polymer, to separate oxygen in the beating gas, thereby obtaining silicon.

[発明が解決しようとする問題点] この発明は、これら従来の9素分離法とは根本的に異る
新しい原理に基いて音素を分離するものである。
[Problems to be Solved by the Invention] This invention separates phonemes based on a new principle that is fundamentally different from these conventional nine-element separation methods.

〔問題点を詐決する曳めのΦ段〕[Hikime Φ stage to resolve issues]

この発明にあっては、[FeH(dpp e ) x 
I  Y((fl、 L、 dpp・はエチレンビス(
ジフェニルホスフィン)であり、YはB (06H5)
、またはczo。
In this invention, [FeH(dpp e ) x
I Y ((fl, L, dpp・ is ethylene bis(
diphenylphosphine), and Y is B (06H5)
, or czo.

である、)で表わされる錯体と、(CH3)2C0。) and (CH3)2C0.

C5H5N 、 NH3,C6H5CN # (CH,
)CNの配位子とを溶解し々溶液に511素含有ガスを
接触せしめて、音素錯体を生1成させ、この9素錯体か
ら窒素を離脱させること(=より!!章を分離するよう
にし九。
C5H5N, NH3, C6H5CN # (CH,
) A gas containing 511 elements is brought into contact with a solution in which CN ligands are dissolved, a phoneme complex is formed, and nitrogen is released from this 9-element complex. Nishiniku.

[発明の原理] 例えば、[FeH(d IIp3 )2 〕[(CJI
s ) 4B 1″″((fl L% dppに1エチ
レンビス(ジフェニルホスフィン)を示す、以ド、同じ
、)で表わぜれる錯体があ′!1..この錯体は、中心
金属が2価の第1鉄イオンであり、テトラヒドロ7%ン
(以’l’、 ’rHFと略称する。)などの溶媒に可
溶で、溶液中でも安定なカチオニツクな錯体である。
[Principle of the invention] For example, [FeH(dIIp3)2][(CJI
s) There is a complex represented by 4B 1"" ((fl L% dpp indicates 1 ethylenebis(diphenylphosphine), the same is true hereafter)! 1. This complex has a central metal of 2 It is a valent ferrous ion, and is a cationic complex that is soluble in solvents such as tetrahydro7% (rHF) and stable even in solution.

この錯体tj、1素ガスと反ルして窒素錯体+ 成する1例えば、[F・H(dppe)2 ][(e、
H,)4B−1をTT!F  に溶解させ、仁の溶液に
常温常圧で空気を吹き込むと、ただちに率で得ら扛る。
This complex tj is reacted with 1 elemental gas to form a nitrogen complex + 1.For example, [F・H(dppe)2][(e,
H,) 4B-1 TT! When air is blown into the kernel solution at room temperature and pressure, the solution is immediately obtained.

この反応は、!!気のように酸素が共存すZ、状態でも
定量的に進行する。この窒素錯体の配位子であるN2 
Fi、他の二ネートラルな配位子(L)と容品に置換す
ることができる。ニュートラルな配位子(L)とは、分
極していないか電荷を帯びていない配位子であり、((
’H3)2CO。
This reaction is! ! Even in the Z state where oxygen coexists, like Qi, it progresses quantitatively. N2, the ligand of this nitrogen complex
Fi can be substituted with other binary ligands (L). A neutral ligand (L) is a ligand that is not polarized or has no charge ((
'H3)2CO.

C5H,N%NH3、C,)I、、CM、  (CIT
3)CNなどがある。
C5H,N%NH3,C,)I,,CM, (CIT
3) There are CN, etc.

この配位子の置換反応は、配位子(L)の濃度と窒素分
圧の大きさで、その平衡関係が決まる、よって、一定温
lと配位子(L)の一定濃度とに対し、窒素分圧が大き
い時には[FeH(N2)・(dppe)21  が形
成きれ、窒素分圧が小さい時にtj [Ft→I[(I
、)(dppe)2 Tl  が形成される。L7’j
がって、この可逆的な配位子の置換反応を利用すること
によって9獣を分離することができる。
In this ligand substitution reaction, the equilibrium relationship is determined by the concentration of the ligand (L) and the size of the nitrogen partial pressure. Therefore, for a constant temperature l and a constant concentration of the ligand (L), , when the nitrogen partial pressure is large, [FeH(N2)・(dppe)21] is completely formed, and when the nitrogen partial pressure is small, tj [Ft→I[(I
, )(dppe)2 Tl is formed. L7'j
Therefore, the nine animals can be separated by utilizing this reversible ligand substitution reaction.

なお、錯体[FeH(dT)T’θ)2〕 が窒素配位
能を有するのは、中心金属が落1鉄Fe(1)の時であ
って、第8鉄に酸化されると、可逆的な1素上位能を失
う。この場合は、適切な還元削を加えるか、電解還元に
よって@1鉄に還元し々ければならない。
The complex [FeH(dT)T'θ)2] has nitrogen coordination ability when the central metal is Fe(1), and when it is oxidized to ferric iron, it has a reversible ability to coordinate. Loss of the first-element ability. In this case, it is necessary to apply appropriate reduction cutting or to reduce the iron to @1 iron by electrolytic reduction.

次に、真体的操作を示すと、まずTHF などの溶謀l
′:、配位子(IJ)を添加すみ、配位子(L)の選択
およびその濃度は、操作温度と操作圧力により決められ
る。ついで、この溶液に [FaH(dppa)2 ]  をW!ガして容素吸収
液とする。
Next, to show the true operation, first, melting liquid such as THF.
': After adding the ligand (IJ), the selection of the ligand (L) and its concentration are determined by the operating temperature and operating pressure. Next, [FaH(dppa)2] was added to this solution with W! Gently stir to make a volume-absorbing liquid.

この溶液中では[F@T((I、)(dppe)、〕 
 となっている、この吸収液に、加圧した窒素含有ガス
を接触させて、(FaH(N2Xdppe)2コを生5
ft、&’)て窒素を吸収させる。
In this solution, [F@T((I,)(dppe),]
This absorption liquid is brought into contact with a pressurized nitrogen-containing gas to produce 2 pieces of (FaH(N2Xdppe)).
ft, &') to absorb nitrogen.

窒素を吸収し友溶液をついで減圧し、昇温すれ+ ば、を素が離脱し、再び[FeH(L)(dT”pe 
)21が生成されて錯体が元に再生され、己。
If nitrogen is absorbed and the solution is then depressurized and heated, the element will separate and form [FeH(L)(dT”pe) again.
) 21 is generated and the complex is regenerated from the original, self.

このようにして循環サイクルを構成すれば、錯体は、!
jに窒素(N、)も[2(は配位子(1J)が配位し良
状態となp、配位不飽和な状態はなくなる、この結果、
中心金属(第1鉄)が、共存する酸素などにより酸化さ
れることがな(、安定な錯体として窒素分離に供するこ
とができる。
If a circulation cycle is constructed in this way, the complex will be!
Nitrogen (N,) is also coordinated with the ligand (1J) at j, resulting in a good state p, and there is no coordination unsaturated state. As a result,
The central metal (ferrous iron) is not oxidized by coexisting oxygen, etc., and can be subjected to nitrogen separation as a stable complex.

〔実施例〕〔Example〕

図面は、この発明の音素分離方法の真体例を示すもので
、窒素含有ガスとして9気を用いるものである。
The drawing shows a true example of the phoneme separation method of the present invention, in which 9 Qi is used as the nitrogen-containing gas.

原料となる空気は、管1から圧縮機2に送られ、ここで
3〜9〜/lya  G8!Ifに加圧される。仁の加
圧突気は、2塔切替式の吸着塔3に導ひかれる。
Air, which is the raw material, is sent from pipe 1 to compressor 2, where 3~9~/lya G8! It is pressurized to If. The pressurized air rush is led to the adsorption tower 3, which is a two-tower switching type.

吸着塔3には、モレキュラーシーブスが吸着剤として充
填されており、原料空気中の水分および二酸化炭素が吸
着、除去される。吸着塔3からの9気は、吸着塔4に導
ひかれる。吸着塔4内の温度は約35℃とされ、その内
部には、気液接触用の充填剤が充填されておシ、塔3上
部から流下する窒素吸収液と加圧突気とが気液接触する
ようになっている。
The adsorption tower 3 is filled with molecular sieves as an adsorbent, and moisture and carbon dioxide in the raw air are adsorbed and removed. The 9 gases from the adsorption tower 3 are led to the adsorption tower 4. The temperature inside the adsorption tower 4 is approximately 35°C, and the interior thereof is filled with a packing material for gas-liquid contact. It is meant to be in contact.

この日素吸収液としては、次のようにして作成し良もの
を使用する。イソブタノールとテトラヒドロフランとの
混合溶媒にL Fe)ICj(dppe ) 2 ]を
溶解し九溶液を作る。ついで、アルゴン雰囲気下でNa
B(06H5)4  を加えて攪拌する。
As this daily chloride absorption liquid, a good one prepared in the following manner is used. LFe)ICj(dppe)2] was dissolved in a mixed solvent of isobutanol and tetrahydrofuran to prepare a solution. Then, under an argon atmosphere, Na
Add B(06H5)4 and stir.

[FeHC7(dppe)2] + NaB(C,H5
)4−4[FeH(appe)2] [B(C6H,)
4] + NaCt溶媒とNaCLを除去したのち、[
FeH(dppe)2 ][’B(C,H,)4)を、
ピリジン(C5H5N )が添加しであるTHF rJ
液に溶解し、窒素吸収液とした。
[FeHC7(dppe)2] + NaB(C,H5
)4-4[FeH(appe)2][B(C6H,)
4] + After removing the NaCt solvent and NaCL, [
FeH(dppe)2]['B(C,H,)4),
THF rJ with addition of pyridine (C5H5N)
It was dissolved in a liquid to make a nitrogen absorption liquid.

吸収塔4で窒素が吸収されて酸素富化され大空気は、2
塔切換式の吸着塔5に導かれる。吸着塔5には、活性炭
が充填されており、酸素富化空気に同伴されてきた溶媒
蒸気はここで、吸着除去され、回収されろ。吸着塔5か
らの酸素富化突気は製品ガスとして系外に導出される。
Nitrogen is absorbed in the absorption tower 4 and the air is enriched with oxygen, and the air becomes 2
The adsorption tower 5 is guided to a switching tower type adsorption tower 5. The adsorption tower 5 is filled with activated carbon, and the solvent vapor entrained in the oxygen-enriched air is adsorbed and removed here and recovered. The oxygen-enriched gas from the adsorption tower 5 is led out of the system as a product gas.

一方、吸収塔4で窒素を吸収した窒素吸収液は、吸収塔
41部より抜かれ、管6を通り熱交換器7に導ひかれ、
約55℃まで加温される。さらに、ヒーター8で65℃
まで加熱され喪窒素吸収液は、弁9で0.5〜/ cm
 2Q壕で減圧され、再生塔lOに送られる。再生#!
t10では、窒素吸収液の昇温と窒素分圧の低下により
、吸収液から窒素が離脱し、吸収液が再生される。再生
された窒素吸収液は、吸収qrio下部から抜かれ、熱
交換器7に送られ、冷却され九のち、液ポンプ11で昇
圧されたうえ、吸収塔4に戻される。
On the other hand, the nitrogen absorption liquid that has absorbed nitrogen in the absorption tower 4 is extracted from the 41st part of the absorption tower, passes through the pipe 6, and is led to the heat exchanger 7.
It is heated to about 55°C. Furthermore, 65℃ with heater 8
The nitrogen absorbing liquid is heated to a temperature of 0.5~/cm at valve 9.
It is depressurized in trench 2Q and sent to regeneration tower IO. reproduction#!
At t10, the temperature of the nitrogen absorption liquid increases and the nitrogen partial pressure decreases, so that nitrogen is released from the absorption liquid and the absorption liquid is regenerated. The regenerated nitrogen absorption liquid is extracted from the lower part of the absorption QRIO, sent to the heat exchanger 7, cooled, and then pressurized by the liquid pump 11 and returned to the absorption tower 4.

また、再生塔10で離脱した1素は、2塔切換式の吸着
塔12に導ひかれる。吸着塔12には活゛性炭が充填さ
れており、窒素に同伴してくる溶媒蒸気が吸着除去され
る。吸着塔12からの窒素は製品カスとすることもでき
るが、吸着塔3.5゜12の加熱再生用ガスとして使用
することができる。吸gl塔3,5.12から脱着した
溶媒は冷却液化して吸収塔4に戻され、再利用される、
このようなプロセスにより、醗素濃[31の酸素富化空
気を得ることができた、 〔発明の効果〕 以上説明したように、この発明の窒素分離法は、+ 窒素を1つの配位子とする錯体[FeH(dppe)2
]を用い、配位子の可逆的な置換反応を利用して、窒素
含有ガスから*累を分離するものであるので、次のよう
な効果を得ることができる。
Moreover, the single element separated in the regeneration tower 10 is led to the adsorption tower 12 of a two-column switching type. The adsorption tower 12 is filled with activated carbon, and the solvent vapor accompanying the nitrogen is adsorbed and removed. Nitrogen from the adsorption tower 12 can be used as product residue, but it can also be used as a heating regeneration gas for the adsorption tower 3.5° 12. The solvent desorbed from the absorption towers 3, 5.12 is cooled and liquefied, returned to the absorption tower 4, and reused.
Through such a process, it was possible to obtain oxygen-enriched air with a concentration of 31%. [Effects of the Invention] As explained above, the nitrogen separation method of the present invention is capable of converting + nitrogen into one ligand. The complex [FeH(dppe)2
] and utilizes a reversible substitution reaction of the ligand to separate * from the nitrogen-containing gas, so the following effects can be obtained.

■ 分離プロセスが連続的であるから、エネルギー原単
位が低い。
■ Energy consumption is low because the separation process is continuous.

■ 常温、常圧に近い温和な条件で分離できる。■ Can be separated under mild conditions close to normal temperature and pressure.

■ 窒素だけが反応に関与するので、分離係数が極めて
高(、高純な窒素を得ることができる。
■ Since only nitrogen participates in the reaction, the separation coefficient is extremely high (high purity nitrogen can be obtained).

■ 反応速度が速(、当量的に反応するので、効率がよ
(、分離装置をコンパクト化できる。
■ The reaction rate is fast (reacts equivalence, so it is efficient) and the separation equipment can be made more compact.

■ 起動時間が短(てすむ。■ Short startup time.

■ 小容量から大容量まで、任意の大きさの装置が製作
できる。
■ Equipment of any size can be manufactured, from small capacity to large capacity.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の1素分離方法を実施するに好適な分
離装置の一例を示す概略構成図である。 1・・・・・・管 2・・・・・・圧[11 4・・・・・・吸収塔 )・・・・・・熱交換器 8・・・・・・ヒーター 9・・・・・・弁 10・・・・・・再生塔 11・・・・・・液ポンプ。 出顧人日本e素株式会社
The drawing is a schematic configuration diagram showing an example of a separation apparatus suitable for carrying out the single element separation method of the present invention. 1...Pipe 2...Pressure [11 4...Absorption tower)...Heat exchanger 8...Heater 9... ... Valve 10 ... Regeneration tower 11 ... Liquid pump. Client Japan e-So Co., Ltd.

Claims (1)

【特許請求の範囲】  次式 〔FeH(dppe)_2〕^+Y^− (但し、式中dppeはエチレンビス(ジフェニルホス
フィン)であり、YはB(C_6H_5)_4またはC
lO_4である。)で表わされる錯体と、(CH_3)
_2CO、C_5H_5N、NH_3、C_6H_5C
N。、(CH_3)CNからなる群から選ばれた1種以
上の配位子との溶液を窒素吸収液とし、この窒素吸収液
に窒素含有ガスを接触させることを特徴とする窒素分離
方法。
[Claims] The following formula [FeH(dppe)_2]^+Y^- (wherein dppe is ethylenebis(diphenylphosphine), and Y is B(C_6H_5)_4 or C
It is lO_4. ) and (CH_3)
_2CO, C_5H_5N, NH_3, C_6H_5C
N. , (CH_3)CN, a nitrogen-absorbing liquid is used as a nitrogen-absorbing liquid, and a nitrogen-containing gas is brought into contact with the nitrogen-containing gas.
JP61185646A 1986-08-07 1986-08-07 Separation of nitrogen Pending JPS6342717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61185646A JPS6342717A (en) 1986-08-07 1986-08-07 Separation of nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61185646A JPS6342717A (en) 1986-08-07 1986-08-07 Separation of nitrogen

Publications (1)

Publication Number Publication Date
JPS6342717A true JPS6342717A (en) 1988-02-23

Family

ID=16174411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61185646A Pending JPS6342717A (en) 1986-08-07 1986-08-07 Separation of nitrogen

Country Status (1)

Country Link
JP (1) JPS6342717A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630929A (en) * 1994-10-17 1997-05-20 Dipsol Chemicals Co., Ltd. Highly corrosion-resistant zincate type zinc-iron-phosphorus alloy plating bath and plating method using the plating bath
EP0800852A2 (en) * 1996-04-11 1997-10-15 Bend Research, Inc. Absorbent solutions for separating nitrogen from natural gas
WO2005009897A1 (en) * 2003-07-24 2005-02-03 Gheczy Rudolf Method for the selective absorption of oxygen from a gas mixture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630929A (en) * 1994-10-17 1997-05-20 Dipsol Chemicals Co., Ltd. Highly corrosion-resistant zincate type zinc-iron-phosphorus alloy plating bath and plating method using the plating bath
EP0800852A2 (en) * 1996-04-11 1997-10-15 Bend Research, Inc. Absorbent solutions for separating nitrogen from natural gas
EP0800852A3 (en) * 1996-04-11 2000-03-22 Bend Research, Inc. Absorbent solutions for separating nitrogen from natural gas
WO2005009897A1 (en) * 2003-07-24 2005-02-03 Gheczy Rudolf Method for the selective absorption of oxygen from a gas mixture

Similar Documents

Publication Publication Date Title
CA3017323C (en) Carbon dioxide recovery method and recovery device
CA3017705C (en) Carbon dioxide recovery method and recovery apparatus
CA1126931A (en) Hydrogen sulfide concentrator for acid gas removal systems
US8216344B2 (en) Purifying carbon dioxide using activated carbon
AU662776B2 (en) Nitrogen sorption
JP2016040025A (en) Carbon dioxide recovery method and recovery device
JPS61222905A (en) Manufacture of oxygen-rich air
CN109107329A (en) A kind of method of separation of methane and nitrogen
FI111245B (en) A process for separating ammonia from a gas mixture and using an adsorbent composition for this separation
JP2003300724A (en) Recovery of ammonia from purge gas
JP6510257B2 (en) Purification method of nitrous oxide
JP2017176954A (en) Carbon dioxide recovery apparatus and natural gas combustion system
Kikkinides et al. Gas separation and purification by polymeric adsorbents: flue gas desulfurization and sulfur dioxide recovery with styrenic polymers
JPH0372566B2 (en)
JP2001510723A (en) Production of ammonia
JPS6342717A (en) Separation of nitrogen
GB1534667A (en) Process for recovering h2 from a gas mixture
JPS62117612A (en) Regenerating method for adsorption tower
CN115947949B (en) Porous metal organic framework material and synthesis method thereof, adsorbent and method for purifying ethylene
JPH07166B2 (en) CO adsorption separation method
JPH02283608A (en) Method for separating and recovering carbon monoxide
JPH05279046A (en) Solid state cyanocobaltate complex
JPS63240914A (en) Separation of nitrogen from gaseous mixture containing oxygen and nitrogen
JPS61215208A (en) Separation of carbon monoxide
JPH079350B2 (en) Method and apparatus for producing high-purity nitrogen gas