JPS6341964B2 - - Google Patents

Info

Publication number
JPS6341964B2
JPS6341964B2 JP56049658A JP4965881A JPS6341964B2 JP S6341964 B2 JPS6341964 B2 JP S6341964B2 JP 56049658 A JP56049658 A JP 56049658A JP 4965881 A JP4965881 A JP 4965881A JP S6341964 B2 JPS6341964 B2 JP S6341964B2
Authority
JP
Japan
Prior art keywords
alloy
powders
specific resistance
powder
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56049658A
Other languages
Japanese (ja)
Other versions
JPS57164944A (en
Inventor
Tsutomu Inui
Hideki Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4965881A priority Critical patent/JPS57164944A/en
Publication of JPS57164944A publication Critical patent/JPS57164944A/en
Publication of JPS6341964B2 publication Critical patent/JPS6341964B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

Fe―Cr―Al合金は電熱材料として多量に使用
されており、JIS C―2520ではFCH1(固有抵抗
値132〜148μΩcm)とFCH2(固有抵抗値115〜
129μΩcm)が規定されている。 この合金の固有抵抗値はCrおよびAl量によつ
て第1図のように変化し、大きい抵抗値をもたせ
るためにはCr.Al含有量を増加させなければなら
ない。第1図の数値の単位はμΩcmである。 ところがCr.AlとくにAl量を増加させると室温
で脆性を示すようになる。一例として結晶粒度番
号6のFCH1相当材(Cr%25.8,Al%5.5含有)
とFCH2相当材(Cr%19.7,Al%3.6含有)の遷
移温度を測定したデータを第2図に示す。第2図
において、衝撃値を縦軸に温度を横軸にとつたと
き、FCH2の遷移温度Tc=−10℃だがFCH1の遷
移温度Tc=120℃となる。これは厚さ4m/mの
板材の場合を示す。即ちFCH1相当の合金になる
と遷移温度が室温以上となり最終製品である線あ
るいは帯を発熱体として所定の形状に加工する場
合、折損事故がしばしば発生する。 本発明の目的は室温で脆い性質を示すAlが4
〜10%、Crが15〜35%である固有抵抗値160μΩ
cm以上200μΩcm未満のFe―Cr―Al合金粉末と靭
性の高いNi―Cr合金粉末をミクロ複合化させ高
電気抵抗を示すと同時に室温で靭性にとんだ材料
を提供するものである。 以下本発明の実施例について具体的にのべる。
ガスアトマイズ法によつて第1表に示す2種類の
化学組成を有する合金粉末を作成した。
Fe-Cr-Al alloys are used in large quantities as electrical heating materials, and JIS C-2520 specifies FCH1 (specific resistance value 132 to 148 μΩcm) and FCH2 (specific resistance value 115 to 148 μΩcm).
129μΩcm) is specified. The specific resistance value of this alloy changes as shown in Figure 1 depending on the Cr and Al contents, and in order to have a large resistance value, the Cr.Al content must be increased. The unit of numerical values in FIG. 1 is μΩcm. However, when increasing the amount of Cr.Al, especially Al, it becomes brittle at room temperature. As an example, FCH1 equivalent material with grain size number 6 (contains Cr%25.8, Al%5.5)
Figure 2 shows the data obtained by measuring the transition temperature of FCH2-equivalent material (containing Cr%19.7, Al%3.6). In FIG. 2, when the shock value is plotted on the vertical axis and the temperature is plotted on the horizontal axis, the transition temperature Tc of FCH2 is -10°C, but the transition temperature Tc of FCH1 is 120°C. This shows the case of a plate material with a thickness of 4m/m. That is, when an alloy equivalent to FCH1 is used, the transition temperature is higher than room temperature, and breakage accidents often occur when the final product, such as a wire or band, is processed into a predetermined shape as a heating element. The purpose of the present invention is that Al, which exhibits brittle properties at room temperature, is
~10%, Cr is 15-35%, specific resistance value 160μΩ
By micro-compositing Fe-Cr-Al alloy powder with a diameter of cm or more and less than 200 μΩcm and a highly tough Ni-Cr alloy powder, it provides a material that exhibits high electrical resistance and is extremely tough at room temperature. Examples of the present invention will be described in detail below.
Alloy powders having two types of chemical compositions shown in Table 1 were prepared by gas atomization.

【表】 2種類の合金粉末は平均粒径が約250μでいず
れも正規分布に近い粒度分布を有する。この2種
類の粉末を合金Bに対し合金Aの粉末を重量比で
0,5,10,20,40,60の比率で混合した。 これらの混合粉末を内径140mm,高さ340mmの軟
鋼製カプセルに充填したのち、内部を真空に吸引
し、しかるのち端部を封止した。次にそのカプセ
ルを熱間静水圧装置を使用して温度1100℃,圧力
1000bar、保持時間2時間で圧密化した。圧密後
のカプセルを通常のハンマー鍛造法で50に鍛造
し、更に熱間圧延,冷間圧延により厚さ4mm,幅
10mmの形状に仕上げたのち、800℃で焼鈍を行い
電気抵抗値の測定と小型シヤルピー試験による遷
移温度の測定を行つた。 これらの結果を第3図に示す。Fe―Cr―Al合
金である合金Bは固有抵抗ρ=186μΩcmと大き
な電気抵抗値を示すが遷移温度はTc≒180℃と非
常に脆い材料特性を示す。合金粉末Aを5%加え
た場合は固有抵抗181μΩcmと若干低下しかつ遷
移温度Tc≒160℃とやはり脆い特性を呈する。と
ころが合金粉末Aを10%含有すると固有抵抗は更
に170μΩcmと下るが遷移温度Tc≒100℃と大幅に
靭性を示すようになる。即ち現在実用化されてい
るFCH1(固有抵抗ρ=145μΩcm遷移温度Tc≒
120℃)より固有抵抗が大きい割りに低い遷移温
度を即ち高靭性を示すようになる。 合金粉末Aの量比が増すにつれて固有抵抗が減
少し、靭性は増加して来る。ところが合金粉末A
が40%をこえ、60%になると固有抵抗が142μΩ
cmとなり、FCH1と同程度となり高抵抗である特
徴が失なわれるようになる。 以上実施例で示したように従来単一合金のみで
は高抵抗は得られるが、靭性の小さい脆い材料特
性を示すのに対し、本発明はそれのみの焼結合金
では脆い合金Bに靭性のある合金Aの粉末をミク
ロ複合することによつて高靭性、高抵抗を示す合
金を見出したことにある。 本発明でいうミクロ複合とは粉末冶金法におい
て異なる合金粉末を複合圧密化したとき開示した
特願昭55―165722(特開昭57―89454)の技術思想
によるもので、2種以上の合金粉末を混合し実密
体として製造した圧密化合金において、各々の合
金粉末の複合境界においてのみ相互の合金結合を
有する以外はそれぞれ単体粉末として圧密化した
場合と同様の状態を有することを特徴とする複合
形態を意味している。 尚Fe―Cr―Al合金の組成および固有抵抗をそ
れぞれAlが4〜10%、Crが15〜35%および160μ
Ωcm以上200μΩcm未満とした理由は、この組成
範囲で固有抵抗が160μΩcm未満では通常の溶製
材でえられるFCH1相当にあたるものであり、特
にミクロ複合による利点を行使しなくてもある程
度の可塑性を示す材料が得られる為である。また
固有抵抗を200μΩcm未満にしたのは、それ以上
ではミクロ複合を行つても、Fe―Cr―Al合金自
身が脆く、たとえFe―Cr―Al粉末粒子の外周部
に靭性に富んだ合金層が形成されても冷間加工に
耐えれず粒間にクラツクを発生するためである。
またNi―Cr合金を10%以上としたのは10%未満
では靭性の少ないFe―Cr―Al合金粉末粒子と接
するNi―Cr合金粉末粒子が少なく、冷間加工で
割れを生じやすいためである。またNi―Cr合金
においてNi量を60%から90%に限定したのは靭
性を示す合金範囲であると同時に固有抵抗が70μ
Ωcm以上と高い電気抵抗値を示すためである。 以上説明したごとく高靭性を有する合金粉末と
靭性の少ない高電気抵抗の合金粉末を適宜な配合
で混合し、ミクロ複合させることによつて高靭
性、高電気抵抗の新規な材料がえられたことは工
業上極めて有益である。
[Table] The two types of alloy powders have an average particle size of approximately 250μ, and both have particle size distributions close to normal distribution. These two types of powders were mixed at a weight ratio of 0, 5, 10, 20, 40, and 60 of alloy A powder to alloy B powder. After filling these mixed powders into a mild steel capsule with an inner diameter of 140 mm and a height of 340 mm, the inside was evacuated and the ends were sealed. Next, the capsule is heated to 1100℃ and pressure using a hot isostatic pressure device.
Consolidation was carried out at 1000 bar and holding time for 2 hours. After consolidation, the capsule is forged to a size of 50 mm using the normal hammer forging method, and then hot rolled and cold rolled to a thickness of 4 mm and a width of 4 mm.
After finishing it into a 10mm shape, it was annealed at 800℃ and the electrical resistance was measured and the transition temperature was measured using a small Charpy test. These results are shown in FIG. Alloy B, which is a Fe-Cr-Al alloy, exhibits a large electrical resistance value with a specific resistance ρ = 186 μΩcm, but exhibits extremely brittle material characteristics with a transition temperature Tc≒180°C. When 5% of alloy powder A is added, the specific resistance decreases slightly to 181 μΩcm, and the transition temperature Tc≈160° C. also exhibits brittle characteristics. However, when alloy powder A is contained in an amount of 10%, the specific resistance further decreases to 170 μΩcm, but the transition temperature Tc≈100°C shows a significant degree of toughness. That is, FCH1 currently in practical use (specific resistance ρ = 145μΩcm transition temperature Tc≒
120°C), it exhibits a low transition temperature despite its high specific resistance, that is, high toughness. As the proportion of alloy powder A increases, the specific resistance decreases and the toughness increases. However, alloy powder A
exceeds 40% and becomes 60%, the specific resistance becomes 142μΩ
cm, which is about the same as FCH1, and the high resistance characteristic is lost. As shown in the examples above, high resistance can be obtained with only a single alloy in the past, but it exhibits brittle material characteristics with low toughness, whereas in the present invention, alloy B, which is brittle with only that sintered alloy, has toughness. By micro-compositing the powder of Alloy A, we have discovered an alloy that exhibits high toughness and high resistance. The term "microcomposite" as used in the present invention is based on the technical concept of Japanese Patent Application No. 165722/1983 (Japanese Patent Application Laid-Open No. 89454/1989), which disclosed the composite consolidation of different alloy powders in the powder metallurgy method, and is based on the technical idea of patent application No. 55-165722 (Japanese Patent Application Laid-Open No. 57-89454), which describes the composite consolidation of different alloy powders in the powder metallurgy method. A consolidated alloy produced as a solid body by mixing the two is characterized by having the same state as when consolidated as a single powder, except that each alloy powder has mutual alloy bonding only at the composite boundary. It means a composite form. The composition and specific resistance of the Fe-Cr-Al alloy are 4 to 10% for Al, 15 to 35% for Cr, and 160μ, respectively.
The reason why we chose Ωcm or more and less than 200 μΩcm is that in this composition range, if the resistivity is less than 160 μΩcm, it is equivalent to FCH1 obtained from ordinary melted material, and it is a material that exhibits a certain degree of plasticity even without using the advantages of microcomposite. This is because it can be obtained. In addition, the specific resistance was set to less than 200 μΩcm because if the resistivity is higher than that, the Fe-Cr-Al alloy itself is brittle even if microcomposite is performed, so even if a tough alloy layer is formed on the outer periphery of the Fe-Cr-Al powder particles. This is because even if formed, it cannot withstand cold working and cracks occur between grains.
In addition, the reason why the Ni-Cr alloy was set at 10% or more is because if it is less than 10%, there are few Ni-Cr alloy powder particles in contact with the Fe-Cr-Al alloy powder particles, which have low toughness, and cracks are likely to occur during cold working. . In addition, in the Ni-Cr alloy, the Ni amount is limited from 60% to 90%, which is the alloy range that exhibits toughness and at the same time has a specific resistance of 70μ.
This is because it exhibits a high electrical resistance value of Ωcm or more. As explained above, a new material with high toughness and high electrical resistance was obtained by mixing an alloy powder with high toughness and an alloy powder with low toughness and high electrical resistance in an appropriate proportion and making a microcomposite. is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFe―Cr―Al合金比抵抗線図、第2図
はFe―Cr―Al合金の鋼種別遷移温度比較図、第
3図は異種合金粉末のミクロ複合割合に対する遷
移温度と固有抵抗の関係図である。
Figure 1 is a specific resistance diagram for Fe-Cr-Al alloys, Figure 2 is a comparison diagram of transition temperatures of Fe-Cr-Al alloys by steel type, and Figure 3 is transition temperature and specific resistance for microcomposite ratios of different alloy powders. It is a relationship diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 2種の合金粉末の圧密化合金において、出発
原料としての合金粉末の1種が、製品で高い靭性
を有するNi60%以上90%以下を含有するNi―Cr
合金であり、他の合金粉末は製品でAlが4〜10
%、Crが15〜35%でありかつ固有抵抗値160μΩ
cm以上200μΩcm未満のFe―Cr―Al合金であつて、
前記両者の粉末を重量比で前者を10%以上の比率
で混合し、圧密化した合金体において、前記各々
の合金粉末の境界においてのみ合金結合を有する
以外は、それぞれ単体粉末として圧密化した場合
と同様の金属組織を製品状態において残存したこ
とを特徴とする固有抵抗が150μΩcm以上の高靭
性高電気抵抗合金。
1. In a compacted alloy of two types of alloy powder, one type of alloy powder as a starting material is Ni-Cr containing 60% to 90% Ni, which has high toughness in the product.
alloy, and other alloy powders have Al content of 4 to 10 in the product.
%, Cr is 15-35% and specific resistance value is 160μΩ
An Fe-Cr-Al alloy with a diameter of cm or more and less than 200μΩcm,
In the case where the above-mentioned two powders are mixed in a weight ratio of 10% or more and compacted, each of the powders is compacted as a single powder, except that the alloy bond is present only at the boundary between the above-mentioned respective alloy powders. A high-toughness, high-electrical-resistance alloy with a specific resistance of 150μΩcm or more, which is characterized by remaining in the product state with a metal structure similar to that of .
JP4965881A 1981-04-02 1981-04-02 Alloy with high toughness and high electric resistance Granted JPS57164944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4965881A JPS57164944A (en) 1981-04-02 1981-04-02 Alloy with high toughness and high electric resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4965881A JPS57164944A (en) 1981-04-02 1981-04-02 Alloy with high toughness and high electric resistance

Publications (2)

Publication Number Publication Date
JPS57164944A JPS57164944A (en) 1982-10-09
JPS6341964B2 true JPS6341964B2 (en) 1988-08-19

Family

ID=12837278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4965881A Granted JPS57164944A (en) 1981-04-02 1981-04-02 Alloy with high toughness and high electric resistance

Country Status (1)

Country Link
JP (1) JPS57164944A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166641A (en) * 1983-03-12 1984-09-20 Sumitomo Electric Ind Ltd Shape memory alloy member and preparation thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393106A (en) * 1977-01-28 1978-08-15 Hitachi Metals Ltd Production of tool alloy having composite texture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393106A (en) * 1977-01-28 1978-08-15 Hitachi Metals Ltd Production of tool alloy having composite texture

Also Published As

Publication number Publication date
JPS57164944A (en) 1982-10-09

Similar Documents

Publication Publication Date Title
EP0969943B1 (en) A method for producing a non-evaporable getter and a getter produced by said method
US2809891A (en) Method of making articles from aluminous metal powder
US3362799A (en) Ductile ruthenium alloy and process for producing the same
CA1053486A (en) Ruthenium powder metal alloy and method for making same
US3971657A (en) Sintering of particulate metal
US4090875A (en) Ductile tungsten-nickel-alloy and method for manufacturing same
US4343650A (en) Metal binder in compaction of metal powders
US4432795A (en) Sintered powdered titanium alloy and method of producing same
CA1053485A (en) Ruthenium powder metal alloy and method for making same
JP3113144B2 (en) Method for producing high density sintered titanium alloy
US5765096A (en) Method for producing nickel-aluminum intermetallic compounds containing dopant elements
JPS6341964B2 (en)
US3945863A (en) Process for treating metal powders
US3754905A (en) Exothermic structuring of aluminum
JPH0119447B2 (en)
US4798625A (en) Superalloy with oxide dispersion hardening having improved corrosion resistance and based on nickel
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
EP0465101A1 (en) Fused yttria reinforced metal matrix composites
US3419656A (en) Method of making solid solution carbide-graphite compositions
JPH04308065A (en) Material having high electric resistance and production thereof
US2289569A (en) Powder metallurgy
JPS613861A (en) Sintered heat-and wear-resistant hard alloy for hot working tool
US3770391A (en) Lanthanum containing powders for making oxidation resistant metallics, method of making same, and metallic products
JPH04371536A (en) Production of tial intermetallic compound powder