JPS6341935B2 - - Google Patents

Info

Publication number
JPS6341935B2
JPS6341935B2 JP24042584A JP24042584A JPS6341935B2 JP S6341935 B2 JPS6341935 B2 JP S6341935B2 JP 24042584 A JP24042584 A JP 24042584A JP 24042584 A JP24042584 A JP 24042584A JP S6341935 B2 JPS6341935 B2 JP S6341935B2
Authority
JP
Japan
Prior art keywords
parts
epoxy resin
bisphenol
viscosity
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24042584A
Other languages
Japanese (ja)
Other versions
JPS61120825A (en
Inventor
Toshiharu Ando
Kazuo Yasuda
Fumio Nogami
Masaru Dobashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24042584A priority Critical patent/JPS61120825A/en
Priority to KR1019850004773A priority patent/KR900000190B1/en
Priority to US06/775,332 priority patent/US4647605A/en
Priority to EP85111816A priority patent/EP0187897B1/en
Priority to DE8585111816T priority patent/DE3569250D1/en
Priority to CN85107222A priority patent/CN85107222B/en
Publication of JPS61120825A publication Critical patent/JPS61120825A/en
Publication of JPS6341935B2 publication Critical patent/JPS6341935B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、電気機器に使用される注型絶縁物に
用いるエポキシ樹脂組成物に関するものである。 従来の技術 エポキシ樹脂と酸無水物とから成る硬化物は、
電気的性質、機械的性質および化学的性質に優れ
ているため、電気機器や送配電機器にエポキシ樹
脂製注型絶縁物として広く用いられている。この
エポキシ樹脂注型物の製造を、少ない金型で生産
性を向上させる目的で離型時間を短縮する方法と
して、一般に加圧ゲル化法とよばれる製造法があ
る。この製造法では、樹脂組成物の混合物を低温
の加圧タンク内に保持し、注型時にパイプライ
ン、注型ヘツドを通して、樹脂混合物より高い温
度の金型に直接注入し、この時樹脂の硬化収縮を
補うために加圧を維持し、短時間で硬化して製品
を得るものである。この製造法に用いられるエポ
キシ樹脂混合物には、低温の加圧タンク内で低粘
度であり、長可使時間を有し、さらにまた、高温
の金型内では迅速に硬化する特性が必要である。 エポキシ樹脂の一般的な特徴として、低温で低
粘度を示すものは低分子量であるために硬化収縮
率が極めて大きく、そのために硬化物にヒケやク
ラツク等の欠陥が生じ易い。また、高温で反応が
速いものは低温でも比較的反応し易い性質があ
り、可使時間が短くなる。これらの問題に対し
て、硬化過程で発生するヒケやクラツクを防ぐに
は加圧ゲル化法を採用し、また可使時間を長くす
るためには、潜在性の促進剤を用いる等の手法が
一般的に行われている。しかし、低温で低粘度を
示す分子量の低いエポキシ樹脂は、加圧ゲル化法
以外の普通注型法でよく用いられる固形または高
粘度のエポキシ樹脂より耐熱衝撃性が劣るもので
ある。 従来、低粘度のエポキシ樹脂の耐熱衝撃性を改
善する方法として、可撓性付与剤例えば分子量
500〜5000程度で主鎖がポリエステル、ポリエー
テル、ポリブタジエン等の高分子オリゴマーを添
加する方法があるが、添加量の増加に伴つて著し
く高粘度化し、さらに耐熱性も著しく低下する等
の欠点がある。また逆に添加量が少なければ、耐
熱衝撃性は殆んど改善できない。樹脂混合物の粘
度をあまり上げない可撓性付与剤、例えば主鎖が
ポリアミドのようなものは反応が大きく、可使時
間が短くなる欠点がある。 発明が解決しようとする問題点 本発明は、加圧ゲル化法に欠くことのできな
い、低温で低粘度、長可使時間、また高温で迅速
硬化の性質を有し、従来の低粘度エポキシ樹脂が
持つている耐熱性あるいは耐熱衝撃性のいずれか
を犠性にしなければならない欠点を解消するため
になされたもので、耐熱性を低下せずに耐熱衝撃
性の優れたエポキシ樹脂組成物を得ることを目的
とするものである。 問題点を解決するための手段 即ち本発明は、(a)エポキシ当量が200以下のエ
ポキシ樹脂、(b)硬化剤として、多塩基性カルボン
酸無水物100重量部に対し、式()で表わされ
るビスフエノールA 10〜40重量部と、式()で表わされる水添ビ
スフエノールA 10〜40重量部との縮合混合物、及び(c)充填材と
して無機質粉末とから成るエポキシ樹脂組成物で
ある。 作 用 本発明に用いる、(a)エポキシ当量が200以下の
エポキシ樹脂としては、低温(20〜80℃)におい
て液状であるもの、もしくは硬化剤即ち(b)縮合混
合物と混合した時、低温において液状を呈するも
のであれば使用することができる。例えば、次に
挙げるエポキシ樹脂を単独あるいは、2種以上を
混合して用いることができる。すなわち、ビスフ
エノールA型エポキシ樹脂、ビスフエノールF型
エポキシ樹脂、フエノールノボラツク型エポキシ
樹脂、クレゾールノボラツク型エポキシ樹脂、脂
環式ジグリシジルエステル型エポキシ樹脂、環内
にエポキシ基を含有する脂環式エポキシ樹脂、ス
ピロ環を含有するエポキシ樹脂、ヒダントインエ
ポキシ樹脂等が挙げられる。 この発明に用いる、(b)縮合混合物は、多塩基性
カルボン酸無水物と、式()で表わされるビス
フエノールA及び式()で表わされる水添ビス
フエノールAとを窒素ガス雰囲気の容器中で100
〜150℃に加熱し、均一な液体になるまで混合し
て製造する。この製造には、所望により促進剤例
えば有機カルボン酸金属塩、第3級アミン等を添
加してもよい。縮合混合物に用いる多塩基性カル
ボン酸無水物としては、低温(20〜80℃)におい
て液状であるものであれば使用することができ
る。例えば、ヘキサヒドロ無水フタル酸、メチル
ヘキサヒドロ無水フタル酸、テトラヒドロ無水フ
タル酸、メチルテトラヒドロ無水フタル酸等が挙
げられ、これらを単独あるいは2種以上を混合し
て用いることができる。 上記(b)縮合混合物において、多塩基性カルボン
酸無水物100部(重量部、以下同様)に対する式
()で表わされるビスフエノールAの添加量が
10部より少ない場合、硬化物の高HDT(熱変形温
度、以下同様)が得られず、式()で表わされ
る水添ビスフエノールAの添加量が10部より少な
い場合は、硬化物の耐熱衝撃性を改善することが
できない。また、ビスフエノールAの添加量が40
部を越え、さらに水添ビスフエノールAの添加量
も40倍を越えた場合、低温でのエポキシ樹脂及び
無機質粉末充填材との混合物の粘度が10万CP(セ
ンチポイズ、以下同様)を越え、パイプラインを
介しての注入が困難になり、加圧ゲル化注型法の
樹脂混合物としては使用できない。 本発明に用いる充填材である(c)無機質粉末とし
ては、電気的、機械的特性を低下させないもので
あればいずれも用いることができ、例えばアルミ
ナ粉末、水和アルミナ粉末、石英粉末、溶融石英
粉末等があげられるが、これらに限定されるもの
ではない。 本発明のエポキシ樹脂組成物における(a)エポキ
シ樹脂:(b)縮合混合物:(c)無機質粉末の配合割合
は100部:50〜150部:200〜600部の範囲とするの
が好ましい。 本発明によるエポキシ樹脂組成物を用いた注型
物の製造方法は、(a)エポキシ当量が200以下のエ
ポキシ樹脂と、(b)縮合混合物、(c)無機質粉末及び
所望により促進剤とを20〜80℃で混合し、好まし
くは真空混合して得たエポキシ樹脂組成物を直接
パイプラインを通じて90〜160℃に予熱した金型
に注入する。その後、ゲージ圧0.5〜5.0Kg/cm2
加圧を維持し、1〜30分で硬化を完了して製品を
得る。 エポキシ樹脂組成物に添加する促進剤は、例え
ば有機カルボン酸金属塩例えばオクチル酸亜鉛、
第3級アミン、三フツ化ホウ素−アミン錯体、イ
ミダゾール類等を用いることができるが、これら
に限定されるものではない。また促進剤の添加量
は、金型温度90〜160℃で1〜30分で硬化が完了
するように調整し、好適には0.8〜8部を添加す
る。 本発明によるエポキシ樹脂組成物には、樹脂混
合物の粘度、長可使時間、迅速硬化及び硬化物の
高HDT、耐熱衝撃性等の特性を低下させないな
らば、着色剤、カツプリング剤、内部離型剤等を
添加して製造することができる。 実施例 つぎに本発明の組成物を実施例および比較例に
基づきさらに具体的に説明する。 実施例 1 エポキシ樹脂のGY−260(チバガイギー社製商
品名)100部、メチル−THPA(酸無水物)100部
に対しビスフエノールA10部および水添ビスフエ
ノールA30部を混合して得られた縮合混合物65
部、オクチル酸亜鉛1部およびアルミナ粉末390
部を60℃で減圧撹拌し、エポキシ樹脂組成物を調
製した。得られた組成物の初期粘度、可使時間、
ゲル化時間および経時粘度を下記方法で測定し
た。それらの結果を表および図に示す(図中〇
印)。 また該組成物を用いて、耐クラツク性試験片お
よびHDT試験片を作製(150℃でゲル化させた
後、130℃×24時間後硬化を行う)し、下記方法
で評価した。その結果を表に示す。 初期粘度 エポキシ樹脂組成物調製後、60℃で減圧撹拌を
15分間行つたのちの粘度を測定した。 可使時間 エポキシ樹脂組成物調製後、60℃で30分間隔で
粘度を測定し、粘度が5万CPになるまでの時間
を測定した。 ゲル化時間 エポキシ樹脂組成物を150℃の熱風乾燥炉中で
加熱しゲル化するまでの時間を測定した。 経時粘度 エポキシ樹脂組成物を60℃の容器に入れ、60℃
のオイルバス中に設置し、30分間隔で粘度測定を
行ない、経時変化を観察した。 クラツク指数 エポキシ樹脂組成物を用いてIEC推奨法
(publication455−2)にもとづいて耐クラツク
性試験片を作製し、評価した。 HDT ASTM−D648にもとづいて試験片を作製し、
評価した。
INDUSTRIAL APPLICATION FIELD The present invention relates to an epoxy resin composition used for cast insulators used in electrical equipment. Conventional technology A cured product consisting of an epoxy resin and an acid anhydride is
Because of its excellent electrical, mechanical, and chemical properties, it is widely used as an epoxy resin cast insulator for electrical equipment and power transmission and distribution equipment. There is a manufacturing method generally called a pressure gelling method as a method of shortening the mold release time in order to improve the productivity of manufacturing this epoxy resin cast product using fewer molds. In this manufacturing method, a mixture of resin compositions is held in a pressurized tank at a low temperature, and during casting, it is injected directly into a mold at a higher temperature than the resin mixture through a pipeline and a casting head, during which time the resin hardens. Pressure is maintained to compensate for shrinkage, and the product is cured in a short period of time. The epoxy resin mixture used in this manufacturing method must have low viscosity and long pot life in cold pressurized tanks, and also have the properties of curing quickly in hot molds. . A general characteristic of epoxy resins is that those that exhibit low viscosity at low temperatures have a low molecular weight and therefore have an extremely large curing shrinkage rate, which tends to cause defects such as sink marks and cracks in the cured product. Additionally, materials that react quickly at high temperatures tend to react relatively easily even at low temperatures, resulting in a short pot life. To address these problems, pressure gelling methods are used to prevent sink marks and cracks that occur during the curing process, and techniques such as the use of latent accelerators are used to extend pot life. This is commonly done. However, low molecular weight epoxy resins that exhibit low viscosity at low temperatures have poorer thermal shock resistance than solid or high viscosity epoxy resins that are often used in ordinary casting methods other than pressure gelling methods. Conventionally, as a method to improve the thermal shock resistance of low-viscosity epoxy resins, flexibility-imparting agents such as molecular weight
There is a method of adding polymer oligomers with a main chain of about 500 to 5000, such as polyester, polyether, polybutadiene, etc., but this method has the disadvantages that as the amount added increases, the viscosity increases significantly and the heat resistance also decreases significantly. be. Conversely, if the amount added is small, thermal shock resistance can hardly be improved. Flexibility-imparting agents that do not significantly increase the viscosity of the resin mixture, such as those whose main chain is polyamide, have the drawback of being highly reactive and shortening their pot life. Problems to be Solved by the Invention The present invention has the characteristics of low viscosity at low temperatures, long pot life, and quick curing at high temperatures, which are indispensable for the pressure gelling method, and which is compatible with conventional low viscosity epoxy resins. This was done to eliminate the drawback of having to sacrifice either heat resistance or thermal shock resistance, and to obtain an epoxy resin composition with excellent thermal shock resistance without reducing heat resistance. The purpose is to Means for Solving the Problems That is, the present invention uses (a) an epoxy resin having an epoxy equivalent of 200 or less, and (b) a curing agent of 100 parts by weight of a polybasic carboxylic acid anhydride expressed by the formula (). bisphenol A 10 to 40 parts by weight and hydrogenated bisphenol A represented by formula () (c) an inorganic powder as a filler; and (c) an inorganic powder as a filler. Function The epoxy resin (a) having an epoxy equivalent of 200 or less used in the present invention is one that is liquid at low temperatures (20 to 80°C), or one that is liquid at low temperatures (20 to 80°C), or one that is liquid at low temperatures (20 to 80°C), or when mixed with a curing agent (b) condensation mixture. Any liquid can be used. For example, the following epoxy resins can be used alone or in combination of two or more. Namely, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, alicyclic diglycidyl ester type epoxy resin, alicyclic resin containing an epoxy group in the ring. Examples include formula epoxy resins, spiro ring-containing epoxy resins, hydantoin epoxy resins, and the like. The condensation mixture (b) used in this invention is a polybasic carboxylic acid anhydride, bisphenol A represented by the formula (), and hydrogenated bisphenol A represented by the formula () in a container with a nitrogen gas atmosphere. 100 in
Produce by heating to ~150℃ and mixing until a homogeneous liquid. In this production, promoters such as organic carboxylic acid metal salts, tertiary amines, etc. may be added if desired. As the polybasic carboxylic acid anhydride used in the condensation mixture, any one that is liquid at low temperatures (20 to 80°C) can be used. Examples include hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and the like, and these can be used alone or in combination of two or more. In the condensation mixture (b) above, the amount of bisphenol A expressed by the formula () relative to 100 parts (parts by weight, same hereinafter) of the polybasic carboxylic acid anhydride is
If the amount is less than 10 parts, a high HDT (heat distortion temperature, the same shall apply hereinafter) of the cured product cannot be obtained, and if the amount of hydrogenated bisphenol A expressed by formula () is less than 10 parts, the heat resistance of the cured product will be poor. Impact resistance cannot be improved. In addition, the amount of bisphenol A added is 40
If the amount of hydrogenated bisphenol A exceeds 40 times, the viscosity of the mixture with the epoxy resin and inorganic powder filler at low temperature will exceed 100,000 CP (centipoise, the same shall apply hereinafter), and the pipe It becomes difficult to inject through the line and cannot be used as a resin mixture for pressure gel casting. As the inorganic powder (c) which is the filler used in the present invention, any powder can be used as long as it does not deteriorate electrical or mechanical properties, such as alumina powder, hydrated alumina powder, quartz powder, fused silica powder, etc. Examples include powder, but are not limited to these. The blending ratio of (a) epoxy resin: (b) condensation mixture: (c) inorganic powder in the epoxy resin composition of the present invention is preferably in the range of 100 parts: 50 to 150 parts: 200 to 600 parts. The method for producing a cast product using the epoxy resin composition according to the present invention includes (a) an epoxy resin having an epoxy equivalent of 200 or less, (b) a condensation mixture, (c) an inorganic powder, and optionally an accelerator. The epoxy resin composition obtained by mixing at ~80°C, preferably vacuum mixing, is directly injected into a mold preheated to 90-160°C through a pipeline. Thereafter, a gauge pressure of 0.5 to 5.0 Kg/cm 2 is maintained, and curing is completed in 1 to 30 minutes to obtain a product. The accelerator added to the epoxy resin composition is, for example, an organic carboxylic acid metal salt such as zinc octylate,
Tertiary amines, boron trifluoride-amine complexes, imidazoles, and the like can be used, but are not limited to these. Further, the amount of the accelerator added is adjusted so that curing is completed in 1 to 30 minutes at a mold temperature of 90 to 160°C, and preferably 0.8 to 8 parts is added. The epoxy resin composition according to the present invention may contain coloring agents, coupling agents, internal mold release agents, etc., as long as they do not reduce the properties of the resin mixture, such as viscosity, long pot life, rapid curing and high HDT of the cured product, and thermal shock resistance. It can be manufactured by adding agents etc. Examples Next, the composition of the present invention will be explained in more detail based on Examples and Comparative Examples. Example 1 Condensation product obtained by mixing 10 parts of epoxy resin GY-260 (trade name manufactured by Ciba Geigy) and 100 parts of methyl-THPA (acid anhydride) with 10 parts of bisphenol A and 30 parts of hydrogenated bisphenol A. mixture 65
1 part zinc octylate and 390 parts alumina powder
The mixture was stirred under reduced pressure at 60°C to prepare an epoxy resin composition. Initial viscosity, pot life, and
Gelation time and viscosity over time were measured by the following method. The results are shown in the table and figure (marked with a circle in the figure). Furthermore, using the composition, crack resistance test pieces and HDT test pieces were prepared (gelatinized at 150°C and then post-cured at 130°C for 24 hours) and evaluated by the following method. The results are shown in the table. Initial viscosity After preparing the epoxy resin composition, stir at 60℃ under reduced pressure.
The viscosity was measured after 15 minutes. Pot life After preparing the epoxy resin composition, the viscosity was measured at 60° C. at 30 minute intervals, and the time until the viscosity reached 50,000 CP was measured. Gelation time The epoxy resin composition was heated in a hot air drying oven at 150°C, and the time required for gelation was measured. Viscosity over time: Put the epoxy resin composition in a container at 60℃, and
The viscosity was measured at 30 minute intervals to observe changes over time. Crack Index A crack resistance test piece was prepared using an epoxy resin composition based on the IEC recommended method (publication 455-2) and evaluated. A test piece was prepared based on HDT ASTM-D648,
evaluated.

【表】 実施例 2 エポキシ樹脂のGY−260 100部、メチル−
THPA100部に対しビスフエノールA20部及び水
添ビスフエノールA20部を混合して得られた縮合
混合物65部、オクチル酸亜鉛1部およびアルミナ
粉末390部を60℃で減圧撹拌し、エポキシ樹脂組
成物を調製した。得られた組成物の特性および硬
化物の特性を実施例1と同様にして測定した。そ
れらの結果を表及び図に示す(図中●印)。 実施例 3 エポキシ樹脂のGY−260 100部、メチル−
THPA100部に対しビスフエノール30部及び水添
ビスフエノールA10部を混合して得られた縮合混
合物65部、オクチル酸亜鉛1部及びアルミナ粉末
390部を60℃で減圧撹拌し、エポキシ樹脂組成物
を調製した。得られた組成物の特性および硬化物
の特性を実施例1と同様にして測定した。それら
の結果を表及び図面に示す(図中△印)。 実施例 4 エポキシ樹脂のGY−260 100部、メチル−
THPA100部に対しビスフエノールA30部及び水
添ビスフエノールA30部を混合して得られた縮合
混合物60部、オクチル酸亜鉛1部およびアルミナ
粉末370部を60℃で減圧撹拌し、エポキシ樹脂組
成物を調製した。得られた組成物の特性および硬
化物の特性を実施例1と同様にして測定した。そ
れらの結果を表及び図に示す(図中▲印)。 比較例 1 エポキシ樹脂のGY−260 100部、メチル−
THPA70部、オクチル酸亜鉛1部およびアルミ
ナ粉末400部を60℃で減圧撹拌し、エポキシ樹脂
組成物を調製した。得られた組成物の特性および
硬化物の特性を実施例1と同様にして測定した。
その結果を表及び図に示す(図中□印)。 比較例 2 エポキシ樹脂のGY−260 100部、メチル−
THPA100部に対しビスフエノールA5部及び水
添ビスフエノールA5部を混合して得られた縮合
混合物70部、オクチル酸亜鉛1部およびアルミナ
粉末400部を60℃で減圧撹拌し、エポキシ樹脂組
成物を調製した。得られた組成物の特性および硬
化物の特性を実施例1と同様にして測定した。そ
れらの結果を表および図に示す(図中■印)。 比較例 3 エポキシ樹脂のGY−260 100部、メチル−
THPA100部に対しビスフエノールA50部及び水
添ビスフエノールA50部を混合して得られた縮合
混合物55部、オクチル酸亜鉛1部及びアルミナ粉
末360部を60℃で減圧撹拌し、エポキシ樹脂組成
物を調製した。得られた組成物の特性および硬化
時の特性を実施例1と同様にして測定した。それ
らの結果を表及び図に示す(図中×印)。 なお前記実施例および比較例において、エポキ
シ樹脂組成物に対する充填材濃度は約70%、硬化
剤量はエポキシ樹脂に対し、当量比0.8となるよ
うに配合した。 発明の効果 本発明のエポキシ樹脂組成物は、高HDT、耐
熱衝撃性の双方の特性が優れた注型絶縁物が得ら
れるばかりでなく、生産性及び品質安定性に富む
ものである。さらに、製造工程においても樹脂の
ロスを低減でき省資源化がなされるものである。
[Table] Example 2 Epoxy resin GY-260 100 parts, methyl
65 parts of a condensation mixture obtained by mixing 100 parts of THPA with 20 parts of bisphenol A and 20 parts of hydrogenated bisphenol A, 1 part of zinc octylate, and 390 parts of alumina powder were stirred under reduced pressure at 60°C to form an epoxy resin composition. Prepared. The properties of the obtained composition and the properties of the cured product were measured in the same manner as in Example 1. The results are shown in the table and figure (● mark in the figure). Example 3 100 parts of epoxy resin GY-260, methyl
65 parts of a condensation mixture obtained by mixing 100 parts of THPA with 30 parts of bisphenol and 10 parts of hydrogenated bisphenol A, 1 part of zinc octylate, and alumina powder.
390 parts were stirred under reduced pressure at 60°C to prepare an epoxy resin composition. The properties of the obtained composition and the properties of the cured product were measured in the same manner as in Example 1. The results are shown in the table and drawings (indicated by △ in the drawings). Example 4 100 parts of epoxy resin GY-260, methyl
60 parts of a condensation mixture obtained by mixing 100 parts of THPA with 30 parts of bisphenol A and 30 parts of hydrogenated bisphenol A, 1 part of zinc octylate, and 370 parts of alumina powder were stirred under reduced pressure at 60°C to form an epoxy resin composition. Prepared. The properties of the obtained composition and the properties of the cured product were measured in the same manner as in Example 1. The results are shown in the table and figure (marked with ▲ in the figure). Comparative Example 1 100 parts of epoxy resin GY-260, methyl
70 parts of THPA, 1 part of zinc octylate, and 400 parts of alumina powder were stirred under reduced pressure at 60°C to prepare an epoxy resin composition. The properties of the obtained composition and the properties of the cured product were measured in the same manner as in Example 1.
The results are shown in the table and figure (marked with □ in the figure). Comparative Example 2 100 parts of epoxy resin GY-260, methyl
70 parts of a condensation mixture obtained by mixing 100 parts of THPA with 5 parts of bisphenol A and 5 parts of hydrogenated bisphenol A, 1 part of zinc octylate, and 400 parts of alumina powder were stirred under reduced pressure at 60°C to form an epoxy resin composition. Prepared. The properties of the obtained composition and the properties of the cured product were measured in the same manner as in Example 1. The results are shown in the table and figure (indicated by ■ in the figure). Comparative Example 3 100 parts of epoxy resin GY-260, methyl
55 parts of a condensation mixture obtained by mixing 100 parts of THPA with 50 parts of bisphenol A and 50 parts of hydrogenated bisphenol A, 1 part of zinc octylate, and 360 parts of alumina powder were stirred at 60°C under reduced pressure to form an epoxy resin composition. Prepared. The properties of the obtained composition and the properties upon curing were measured in the same manner as in Example 1. The results are shown in the table and figure (x mark in the figure). In the Examples and Comparative Examples, the filler concentration with respect to the epoxy resin composition was approximately 70%, and the amount of curing agent was blended with the epoxy resin at an equivalent ratio of 0.8. Effects of the Invention The epoxy resin composition of the present invention not only provides a cast insulator with excellent properties of both high HDT and thermal shock resistance, but also has high productivity and quality stability. Furthermore, resin loss can be reduced in the manufacturing process, resulting in resource conservation.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、実施例1〜4および比較例1〜3で調整
したエポキシ樹脂組成物の60℃における粘度の経
時変化を示す線図である。
The figure is a diagram showing changes in viscosity over time at 60°C of the epoxy resin compositions prepared in Examples 1 to 4 and Comparative Examples 1 to 3.

Claims (1)

【特許請求の範囲】 1 (a) エポキシ当量が200以下のエポキシ樹脂、 (b) 硬化剤として、多塩基性カルボン酸無水物
100重量部に対し、式()で表わされるビス
フエノールA 10〜40重量部と、 式()で表わされる水添ビスフエノールA 10〜40重量部との縮合混合物、及び (c) 充填材として無機質粉末とから成るエポキシ
樹脂組成物。
[Scope of Claims] 1 (a) an epoxy resin having an epoxy equivalent of 200 or less, (b) a polybasic carboxylic acid anhydride as a curing agent
Bisphenol A represented by the formula () per 100 parts by weight 10 to 40 parts by weight and hydrogenated bisphenol A represented by formula () and (c) an inorganic powder as a filler.
JP24042584A 1984-11-16 1984-11-16 Epoxy resin composition Granted JPS61120825A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP24042584A JPS61120825A (en) 1984-11-16 1984-11-16 Epoxy resin composition
KR1019850004773A KR900000190B1 (en) 1984-11-16 1985-07-03 Epoxy resin composition
US06/775,332 US4647605A (en) 1984-11-16 1985-09-12 Epoxy resin composition
EP85111816A EP0187897B1 (en) 1984-11-16 1985-09-18 Epoxy resin composition
DE8585111816T DE3569250D1 (en) 1984-11-16 1985-09-18 Epoxy resin composition
CN85107222A CN85107222B (en) 1984-11-16 1985-09-24 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24042584A JPS61120825A (en) 1984-11-16 1984-11-16 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS61120825A JPS61120825A (en) 1986-06-07
JPS6341935B2 true JPS6341935B2 (en) 1988-08-19

Family

ID=17059286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24042584A Granted JPS61120825A (en) 1984-11-16 1984-11-16 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS61120825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225111A (en) * 1988-07-14 1990-01-26 Matsushita Electric Ind Co Ltd Phase locked oscillator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051186A1 (en) * 2007-10-19 2009-04-23 Nissan Chemical Industries, Ltd. Polyester composition for production of thermally cured film
JP6362558B2 (en) * 2014-05-13 2018-07-25 日本化薬株式会社 Polyfunctional acid anhydride and thermosetting resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225111A (en) * 1988-07-14 1990-01-26 Matsushita Electric Ind Co Ltd Phase locked oscillator

Also Published As

Publication number Publication date
JPS61120825A (en) 1986-06-07

Similar Documents

Publication Publication Date Title
EP0187895B1 (en) An automatically rising and falling movable toy
JPS6220555A (en) Epoxy resin composition
EP0199180B1 (en) Epoxy resin composition
JPS58198525A (en) Epoxy resin composition
KR890003363B1 (en) Epoxy resin composition
EP0187897B1 (en) Epoxy resin composition
JPS6249292B2 (en)
JPS6341935B2 (en)
JPH0226644B2 (en)
JPS6336617B2 (en)
KR870001963B1 (en) Epoxy resin composition
JPS6136854B2 (en)
JPS6336615B2 (en)
KR900000192B1 (en) Epoxy resin composition
JP3450260B2 (en) Epoxy resin composition and coil casting
KR900000191B1 (en) Epoxy resin composition
JPH11292956A (en) Epoxy resin composition
JPH06239976A (en) Epoxy resin composition and sealed semiconductor device
JPS6138729B2 (en)
KR880001519B1 (en) Composition of epoxy resin
JPH0314050B2 (en)
JPS6248686B2 (en)
JPH1139947A (en) Injection resin composition for electric apparatus insulation
JPH06228282A (en) Epoxy resin composition and sealed semiconductor device