JPS6341932B2 - - Google Patents

Info

Publication number
JPS6341932B2
JPS6341932B2 JP54166888A JP16688879A JPS6341932B2 JP S6341932 B2 JPS6341932 B2 JP S6341932B2 JP 54166888 A JP54166888 A JP 54166888A JP 16688879 A JP16688879 A JP 16688879A JP S6341932 B2 JPS6341932 B2 JP S6341932B2
Authority
JP
Japan
Prior art keywords
sheet
graphite
thin film
conductive
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54166888A
Other languages
Japanese (ja)
Other versions
JPS5690821A (en
Inventor
Zenji Hotsuta
Tsutomu Sasaki
Satoru Ookita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP16688879A priority Critical patent/JPS5690821A/en
Publication of JPS5690821A publication Critical patent/JPS5690821A/en
Publication of JPS6341932B2 publication Critical patent/JPS6341932B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 この発明は、導電性薄膜材に関する。 導電性薄膜材は、その板厚を薄くしてフイルム
状に形成することにより導電性ラツピングテー
プ、導電性接着テープ、耐薬品性導電性フイルム
等の用途に供したり、又、その板厚をある程度大
きくして電極等の電気製品素材その他異質のフイ
ルムシート材と積層したり、接着したり等多くの
用途に供することができ、将来期待される高分子
材料である。 これまで、導電性樹脂シート材の製造方法とし
て、ロールブレンダーやリボンブレンダー等の混
合機を用いて可塑剤や安定剤等と共に合成樹脂中
にカーボンブラツク、グラフアイト、貴金属等の
導電性固体微粒子を混練混合し、得られた導電性
樹脂材料をカレンダー法、キヤステイング法、エ
キストルージヨン法(溶融押出法)等で樹脂シー
ト材に成形する方法があつた。しかしながら、こ
のような導電性固体微粒子を合成樹脂中に混練混
合する従来法においては、導電性固体微粒子の含
有率が50wt%を越えるとシート成形性が著るし
く悪化するため、この導電性固体微粒子の添加量
に限度があり、この結果高い導電性を有する樹脂
シート材を得ることはできなかつた。特に、導電
性固体微粒子として安価なグラフアイトやカーボ
ンブラツクを使用する場合、例えば50wt%のグ
ラフアイト含有量率を持つポリアクリル酸n−ブ
チル樹脂材料を用いてシート状に成形して得られ
た樹脂シート材の体積固有抵抗値を測定してみる
と、1.0Ωcm以上の値を示し、充分満足できる導
電性薄膜材とは言えなかつた。 本発明者等は、かかる観点の下に高い導電性を
有する薄膜材を提供すべく鉛意研究の結果、本発
明に到達したもので、本発明はビニル系モノマー
と炭素質微粒子とをグラフト重合させて得られた
固体−樹脂グラフト重合組成物をシート状に成形
してなるものである。 本発明において、好ましい実施態様としては、
グラフト重合が亜硫酸イオンを生成せしめる化合
物の存在下、水性媒質中で炭素質微粒子とビニル
系モノマーを懸濁重合させる方法であり、又、固
体−樹脂グラフト重合組成物における炭素質微粒
子の含有率が50〜96wt%好ましくは80〜95wt%
の範囲内のものである。 本発明におけるビニル系モノマーとは、塩化ビ
ニル、フツ化ビニルのようなハロゲン化ビニル、
スチレン、α−メチルスチレンのようなスチレン
化合物、酢酸ビニルのような脂肪酸ビニルエステ
ル、アクリル酸、メタクリル酸のような不飽和カ
ルボン酸、アクリル酸メチル、アクリル酸n−ブ
チルのような不飽和カルボン酸エステル等ラジカ
ル重合可能なものをいい、これらは単独で用いて
もよく、又、二種以上を組み合せて用いてもよ
い。 また、炭素質微粒子としては、グラフアイト及
びカーボンブラツクを挙げることができ、これら
を組合せて使用してもよい。グラフアイトとして
天然のものでも、また、合成したものでもよく、
又、カーボンブラツクとしてはサーマルブラツ
ク、チヤネルブラツク、フアーネスブラツク、ア
セチレンブラツク、カラーブラツク等が使用され
る。 更に、本発明におけるグラフト重合は、ラジカ
ル重合開始剤の存在下で種々の重合法、例えば、
塊状重合法、溶液重合法等で行うことができる
が、好ましいのは水性媒質中の懸濁重合法であ
る。 懸濁重合の媒質としては水が一般的であるがこ
れに限定されず水とメタノールとの混合物など水
性媒質を用いることができる。また懸濁重合にお
ける重合開始剤としては、水性媒質中において亜
硫酸イオンを生成せしめる化合物、たとえば、二
酸化イオウガスの吹き込み、亜硫酸水溶液、ある
いは、亜硫酸水素ソーダ、亜硫酸水素アンモン等
の亜硫酸塩、さらには過硫酸カリウム、過硫酸ナ
トリウム、過硫酸アンモニウムなどの過硫酸塩な
どを単独又は混合して用いることができる。かく
して得られる固体−樹脂グラフト重合組成物は、
固体粒子の表面のフリーラジカルに対する活性点
に、重合反応により生成するビニル系ポリマーの
一部が化学的にグラフト結合されているものであ
る。 またグラフト重合によつて得られた固体−樹脂
グラフト重合組成物をシート状に成形するための
成形手段としては、エキストルージヨン法(溶融
押出Tダイ法)、キヤステイング法(溶液流延
法)、ロール圧延法、カレンダー圧延法等のシー
ト成形に適する成形手段が採用され得るもので、
薄膜材の用途、厚さ等によつて適宜選択される。 本発明において、固体−樹脂グラフト重合組成
物中の炭素質微粒子の含有率は50〜96wt%の範
囲内になるように調整する。炭素質微粒子の含有
率は製品である導電性薄膜材の体積固有抵抗値に
大きな影響を及ぼし、又、この体積固有抵抗値は
使用されるビニル系モノマーの種類によつても影
響を受ける。炭素質微粒子の含有率が50wt%以
下になると、得られた薄膜材の体積固有抵抗値が
1.0Ωcm以上になり、導電性薄膜材としては好ま
しくなく又、炭素質微粒子の含有率が96wt%以
上になるとシート状に成形することが極めて困難
である。 本発明の導電性薄膜材は、炭素質微粒子含有率
50〜96重量%の固体−樹脂グラフト重合組成物そ
れ自体をシート状に成形してなるものであるか
ら、導電性の炭素質微粒子の含有率が高くて体積
固有抵抗値0.1Ωcm以下という高導電性を有し、
また、導電性の炭素質微粒子の表面にビニル系モ
ノマーがグラフト重合して強固に結合しているの
で優れたシート成形性を有し、帯電防止用のシー
ト材として或いは、良導電性の性質を利用した電
気製品素材として広く応用できる薄膜材である。 次に本発明を実施例に基づいて更に詳細に説明
する。 〔実施例 1〕 平均粒径6μの鱗状グラフアイト450gと水4
とを5乾留装置付フラスコ内に仕込み、約60℃
に加熱した後アクリル酸n−ブチル100gを加え、
撹拌しながら6wt%亜硫酸水310ml(亜硫酸濃度
0.05mol/)を添加して約5時間グラフト重合
反応させ、次いで、濾過して水洗後乾燥してグラ
フアイト−アクリル酸n−ブチルポリマーの粉末
543g(グラフアイト含有率83wt%)を得た。得
られたグラフアイト−アクリル酸n−ブチルポリ
マー粉末をロール(長さ:300m/m、径:150
m/m)によつて約60℃で圧延成形したところグ
ラフアイト含有率が83wt%と高率であるにもか
かわらず、そのシート成形性が極めて良好であつ
た。得られたシートの体積固有抵抗値を測定した
結果は別表の通り、0.1Ωcm以下であり、良好な
導電性薄膜材であることが確認された。 〔実施例2及び3〕 アクリル酸n−ブチルの使用量を夫々60g、32
gとし、上記実施例1と全く同様にして実施した
場合においても、上記実施例1と同様にシート成
形性が良好で得られたシート材の体積固有抵抗値
はいずれも0.1Ωcm以下であり、導電性薄膜材で
あることが確認された。 〔実施例 4〕 ビニル系モノマーとしてアクリル酸メチル82g
を用いた場合も、上記実施例1と同様にシート成
形性が良好で得られたシート材は別表の通り、良
好な導電性薄膜材であることが確認された。 〔比較例 1〜3〕 アクリル酸n−ブチルポリマーに平均粒径6μ
の鱗状グラフアイトを夫々50wt%、65wt%及び
85wt%の割合で混合し、ロールブレンダーで良
く混練した後、ロール(長さ:300m/m、径:
150m/m)によつて約60℃又は40〜100℃の成形
条件で成形し、そのシート成形性を調べた結果、
グラフアイト含有率が50wt%の場合はシート成
形性が良好であつたが65wt%になると不安定に
なり、85wt%では全くシートが成形されなかつ
た。 以上各実施例及び比較例において得られたシー
ト材の体積固有抵抗値をJISK6911−1970の試験
法に準じて測定した結果を下記表に示した。この
結果、本発明によれば、グラフアイト含有率が高
い場合においても良好なシート材が得られ、又、
その体積固有抵抗値も0.1Ωcm以下と従来の混練
法による場合に比べて比較にならない程小さくな
り、導電性が著るしく向上していることがわかつ
た。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive thin film material. Conductive thin film materials can be used for applications such as conductive wrapping tapes, conductive adhesive tapes, and chemical-resistant conductive films by reducing their thickness and forming them into films. It is a polymeric material with great promise in the future, as it can be enlarged to a certain extent and used for many purposes, such as laminating or bonding with materials for electrical products such as electrodes, and other different film sheet materials. Until now, as a manufacturing method for conductive resin sheet materials, conductive solid fine particles such as carbon black, graphite, and precious metals have been mixed into synthetic resin with plasticizers, stabilizers, etc. using a mixer such as a roll blender or a ribbon blender. There is a method of kneading and mixing and forming the obtained conductive resin material into a resin sheet material by a calendering method, a casting method, an extrusion method (melt extrusion method), or the like. However, in the conventional method of kneading and mixing such conductive solid fine particles into synthetic resin, sheet formability deteriorates significantly when the content of conductive solid fine particles exceeds 50 wt%. There is a limit to the amount of fine particles added, and as a result, it has been impossible to obtain a resin sheet material with high conductivity. In particular, when using inexpensive graphite or carbon black as the conductive solid particles, for example, it is possible to form a sheet using n-butyl polyacrylate resin material with a graphite content of 50 wt%. When the volume resistivity value of the resin sheet material was measured, it showed a value of 1.0 Ωcm or more, and could not be said to be a fully satisfactory conductive thin film material. The present inventors have arrived at the present invention as a result of prospective research in order to provide a thin film material having high conductivity based on this viewpoint. The resulting solid-resin graft polymer composition is molded into a sheet shape. In the present invention, preferred embodiments include:
Graft polymerization is a method in which carbonaceous fine particles and a vinyl monomer are subjected to suspension polymerization in an aqueous medium in the presence of a compound that generates sulfite ions, and the content of carbonaceous fine particles in the solid-resin graft polymerization composition is 50-96wt% preferably 80-95wt%
It is within the range of Vinyl monomers in the present invention include vinyl chloride, vinyl halides such as vinyl fluoride,
Styrene compounds such as styrene and α-methylstyrene, fatty acid vinyl esters such as vinyl acetate, unsaturated carboxylic acids such as acrylic acid and methacrylic acid, and unsaturated carboxylic acids such as methyl acrylate and n-butyl acrylate. It refers to radically polymerizable substances such as esters, and these may be used alone or in combination of two or more. Further, examples of the carbonaceous fine particles include graphite and carbon black, and these may be used in combination. Graphite may be natural or synthetic.
Further, as the carbon black, thermal black, channel black, furnace black, acetylene black, color black, etc. are used. Furthermore, the graft polymerization in the present invention can be carried out using various polymerization methods in the presence of a radical polymerization initiator, such as
The polymerization can be carried out by bulk polymerization, solution polymerization, etc., but suspension polymerization in an aqueous medium is preferred. The medium for suspension polymerization is generally water, but is not limited thereto, and an aqueous medium such as a mixture of water and methanol can be used. In addition, as a polymerization initiator in suspension polymerization, compounds that generate sulfite ions in an aqueous medium, such as blowing sulfur dioxide gas, a sulfite aqueous solution, sulfites such as sodium hydrogen sulfite and ammonium hydrogen sulfite, and even persulfuric acid. Persulfates such as potassium, sodium persulfate, and ammonium persulfate can be used alone or in combination. The solid-resin graft polymer composition thus obtained is
A portion of a vinyl polymer produced by a polymerization reaction is chemically grafted onto active sites for free radicals on the surface of solid particles. Molding methods for molding the solid-resin graft polymer composition obtained by graft polymerization into a sheet include an extrusion method (melt extrusion T-die method) and a casting method (solution casting method). , a forming method suitable for sheet forming such as a roll rolling method, a calender rolling method, etc. can be adopted,
It is selected appropriately depending on the purpose, thickness, etc. of the thin film material. In the present invention, the content of carbonaceous fine particles in the solid-resin graft polymerization composition is adjusted to fall within the range of 50 to 96 wt%. The content of carbonaceous fine particles has a great effect on the volume resistivity of the conductive thin film material, which is a product, and this volume resistivity is also influenced by the type of vinyl monomer used. When the content of carbonaceous fine particles becomes 50wt% or less, the volume resistivity of the obtained thin film material decreases.
If the content of carbonaceous fine particles exceeds 96 wt %, it is extremely difficult to form into a sheet. The conductive thin film material of the present invention has a carbonaceous fine particle content of
Since it is made by molding a 50 to 96% by weight solid-resin graft polymer composition itself into a sheet shape, it has a high content of conductive carbonaceous particles and has a high conductivity with a volume resistivity of 0.1 Ωcm or less. have sex,
In addition, since the vinyl monomer is graft-polymerized and firmly bonded to the surface of the conductive carbonaceous particles, it has excellent sheet formability and can be used as an antistatic sheet material or with good conductivity. It is a thin film material that can be widely applied as a material for electrical products. Next, the present invention will be explained in more detail based on examples. [Example 1] 450g of scale-like graphite with an average particle size of 6μ and 44g of water
and into a flask equipped with a carbonization device, and heated to approximately 60℃.
After heating to , add 100g of n-butyl acrylate,
While stirring, add 310ml of 6wt% sulfite water (sulfite concentration
0.05 mol/) was added to allow a graft polymerization reaction for about 5 hours, and then filtered, washed with water, and dried to obtain graphite-n-butyl acrylate polymer powder.
543 g (graphite content: 83 wt%) was obtained. The obtained graphite-n-butyl acrylate polymer powder was rolled into a roll (length: 300 m/m, diameter: 150
When the sheet was rolled at approximately 60° C. using a 100-m/m millimeter (m/m), the sheet formability was extremely good despite the high graphite content of 83 wt%. The volume resistivity value of the obtained sheet was measured, and as shown in the attached table, it was 0.1 Ωcm or less, confirming that it was a good conductive thin film material. [Example 2 and 3] The amount of n-butyl acrylate used was 60 g and 32 g, respectively.
g, and when carried out in exactly the same manner as in Example 1 above, the sheet material had good sheet formability as in Example 1, and the volume resistivity values of the obtained sheet materials were all 0.1 Ωcm or less, It was confirmed that it is a conductive thin film material. [Example 4] 82 g of methyl acrylate as vinyl monomer
In the case of using , the sheet material obtained had good sheet formability as in Example 1, and was confirmed to be a good conductive thin film material as shown in the attached table. [Comparative Examples 1 to 3] N-butyl acrylate polymer with an average particle size of 6μ
50wt%, 65wt% and scaly graphite, respectively.
After mixing at a ratio of 85wt% and kneading well with a roll blender, a roll (length: 300m/m, diameter:
150m/m) under forming conditions of approximately 60℃ or 40 to 100℃, and the sheet formability was investigated.
When the graphite content was 50 wt%, sheet formability was good, but when it became 65 wt%, it became unstable, and when it was 85 wt%, no sheet was formed at all. The volume resistivity values of the sheet materials obtained in the above Examples and Comparative Examples were measured according to the test method of JISK6911-1970, and the results are shown in the table below. As a result, according to the present invention, a good sheet material can be obtained even when the graphite content is high, and
The volume resistivity value was also 0.1 Ωcm or less, which was incomparably smaller than that obtained using the conventional kneading method, and it was found that the conductivity was significantly improved. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ビニル系モノマーとグラフアイト及び/又は
カーボンブラツクからなる炭素質微粒子とをグラ
フト重合させて得られた炭素質微粒子含有率50〜
96重量%の固体−樹脂グラフト重合組成物それ自
体をシート状に成形してなる導電性薄膜材。
1. Carbonaceous fine particle content obtained by graft polymerization of vinyl monomer and carbonaceous fine particles consisting of graphite and/or carbon black: 50~
A conductive thin film material formed by forming a 96% by weight solid-resin graft polymer composition itself into a sheet.
JP16688879A 1979-12-24 1979-12-24 Electroconductive film material Granted JPS5690821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16688879A JPS5690821A (en) 1979-12-24 1979-12-24 Electroconductive film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16688879A JPS5690821A (en) 1979-12-24 1979-12-24 Electroconductive film material

Publications (2)

Publication Number Publication Date
JPS5690821A JPS5690821A (en) 1981-07-23
JPS6341932B2 true JPS6341932B2 (en) 1988-08-19

Family

ID=15839475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16688879A Granted JPS5690821A (en) 1979-12-24 1979-12-24 Electroconductive film material

Country Status (1)

Country Link
JP (1) JPS5690821A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975939A (en) * 1982-10-26 1984-04-28 San Aroo Kagaku Kk Production of vinyl chloride polymer composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978733A (en) * 1972-12-04 1974-07-30
JPS49111242A (en) * 1973-02-23 1974-10-23
JPS5138357A (en) * 1974-09-28 1976-03-31 Toray Industries AKURIRONITORIRUJUGOTAIFUIRUMU NO ENSHINHOHO

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4978733A (en) * 1972-12-04 1974-07-30
JPS49111242A (en) * 1973-02-23 1974-10-23
JPS5138357A (en) * 1974-09-28 1976-03-31 Toray Industries AKURIRONITORIRUJUGOTAIFUIRUMU NO ENSHINHOHO

Also Published As

Publication number Publication date
JPS5690821A (en) 1981-07-23

Similar Documents

Publication Publication Date Title
US4665129A (en) Electrically conductive thermoplastic mixtures of macromolecular compounds and finely divided pyrrole polymers
EP0160207B1 (en) Processable conductive polymers
JPS62164717A (en) Processable conductive polymer
MXPA01004766A (en) Plastics additives: improved process, products, and articles containing same.
JP3631360B2 (en) Vinyl chloride resin composition
JPH0788415B2 (en) Transparency and impact improver for polyvinyl chloride
JPS59189152A (en) Soft polymer alloy
US3775364A (en) Process for curing methyl methacrylate in the presence of peroxy catalysts
JPH0680709A (en) Dispersant
JPS6341932B2 (en)
JPS6132346B2 (en)
JPS6410004B2 (en)
JPS6312089B2 (en)
US4536548A (en) Highly transparent, impact-resistant modified polyvinyl chloride molding compositions
KR100868458B1 (en) Method of preparing polyvinylchloride for manufacturing of low-absorption plastisol
JPS6225693B2 (en)
JPH0353341B2 (en)
JPS6268807A (en) Production of cellulosic graft copolymer
JPH0247501B2 (en)
JPH0468322B2 (en)
JPH0768315B2 (en) Aqueous copolymer emulsion containing vinylsilane and diallyl dibasic acid ester and method for producing the same
JP3434050B2 (en) Method for producing methacrylic polymer
JPH05507309A (en) Process for producing vinyl chloride graft copolymer granules and their use as viscosity-lowering and matting agents
KR100208972B1 (en) Highly heat stable vinylcholride polymer for paste processing
JPS606741A (en) Vinyl chloride resin composition