JPS6341756A - Defrosting control device for air conditioner - Google Patents

Defrosting control device for air conditioner

Info

Publication number
JPS6341756A
JPS6341756A JP61187293A JP18729386A JPS6341756A JP S6341756 A JPS6341756 A JP S6341756A JP 61187293 A JP61187293 A JP 61187293A JP 18729386 A JP18729386 A JP 18729386A JP S6341756 A JPS6341756 A JP S6341756A
Authority
JP
Japan
Prior art keywords
temperature
compressor
current
time
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61187293A
Other languages
Japanese (ja)
Other versions
JPH067020B2 (en
Inventor
Takashi Deguchi
隆 出口
Kenichiro Miura
三浦 賢一郎
Tsutomu Nakamura
勉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61187293A priority Critical patent/JPH067020B2/en
Publication of JPS6341756A publication Critical patent/JPS6341756A/en
Publication of JPH067020B2 publication Critical patent/JPH067020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a defrosting control device which can be simplified in constitution by a method wherein heating operation is ensured during a period of time in which a given time commencing in the starting of heating operation lapses and during a time between the starting of a compressor and an increase of a detecting current from a current detecting means to a set value or more, and on and after that, defrosting operation is controlled by means of a detecting temperature form a temperature detecting means. CONSTITUTION:When heating operation is started, timer count of a given time T1 is set by means of a microcomputer 11, and heating operation is continued until a time T1 lapses. The stop or operation of a compressor 1 is decided, and when the compressor is decided to be stopped, the starting thereof is started. The starting of the compressor is detected, and it is decided whether a current value I exceeds a set value I1. Heating operation is continued until the current value I exceeds the set value I1. When the current value I exceeds the set value I1, a piping temperature (t) is read by means of a piping temperature detecting element 6, and it is decided whether the piping temperature (t) is below a set piping temperature t1. When conditions are satisfied, defrosting operation is started.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セパレート形ヒートポンプ式空気調和機の除
霜制御装置に関するもので、特に室外側熱交換器の着霜
を室内側で検知し得るようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a defrosting control device for a separate heat pump air conditioner, and particularly to a defrosting control device for detecting frost on an outdoor heat exchanger indoors. This is what I did.

従来の技術 従来の空気調和機では、特公昭59−34255号公報
に示されるように、室内側熱交換器の温度変化と室内温
度の変化の両者に基づいて室外側熱交換器への着霜状態
を検知し、暖房運転と除霜運転を制御する技術が開発さ
れている。
Prior Art In conventional air conditioners, as shown in Japanese Patent Publication No. 59-34255, frost formation on the outdoor heat exchanger is based on both temperature changes in the indoor heat exchanger and changes in the indoor temperature. Technology has been developed to detect conditions and control heating and defrosting operations.

発明が解決しようとする問題点 しかしながら、かかる従来の構成では、温度検出素子が
複数個必要となり、おのずと回路が複雑化する問題があ
る。さらに、空気調和機においては、室内側の送風量が
任意に可変設定されることが常であり、そのためにも従
来の技術に風量補正手段を加味させることは、一層目路
を複雑化にしてしまう。しかも、かかる構成は熱交換器
を流れている途中の気液混合の冷媒温度を検出している
ため、着霜時と未着霜時の温度変化が小さく、微小な範
囲で着霜判定を行わなければならず、検出精度が安定し
な%’1問題がある。
Problems to be Solved by the Invention However, in such a conventional configuration, a plurality of temperature detection elements are required, which naturally causes a problem that the circuit becomes complicated. Furthermore, in air conditioners, the amount of air blown indoors is usually set variably, and for this reason, adding an air amount correction means to the conventional technology would further complicate the route. Put it away. Moreover, since this configuration detects the temperature of the gas-liquid mixed refrigerant flowing through the heat exchanger, the temperature change between frost and non-frost is small, and frost can be determined within a minute range. Therefore, there is a problem of unstable detection accuracy.

また近年、マイクロコンピュータにて複雑な信号処理を
行わせ、制御装置を構成することが多いが、従来技術の
ように入力信号源(温度検出素子)が多いことは、その
プログラム作成に当っても弊害のもととなり、プログラ
ムの簡素化にも限界がある。
In addition, in recent years, control devices are often configured by using microcomputers to perform complex signal processing, but the fact that there are many input signal sources (temperature detection elements) as in conventional technology makes it difficult to create programs. This can cause harmful effects, and there are limits to the simplification of programs.

以上のように、従来の技術には問題点が多々あり、改善
が要求されるものである。
As described above, the conventional technology has many problems, and improvements are required.

本発明は、上記従来の問題点を解決するもので、従来技
術の利点を損うことなく、構成の簡素化がはかれる除霜
制御装置を提供することを目的とするものである。
The present invention solves the above-mentioned conventional problems, and aims to provide a defrosting control device that can be simplified in configuration without sacrificing the advantages of the prior art.

問題点を解決するための手段 上記問題点を解決するために本発明は、第1図に示すよ
うに、暖房サイクルから除霜サイクルに切換える制御装
置を、暖房運転開始からの時間を計測する時間計測手段
と、あらかじめ設定された時間T1を記憶している設定
時間Tユ記憶手段と、前記時間計測手段により検出した
時間と前記設定時間T1記憶手段に設定された時間の一
致を検出し出力する第1の比較手段と、室内側熱交換器
の冷媒入口側に連結された配管の温度を検出する温度検
出手段と、暖房サイクルを除霜サイクルに切換える境界
値温度t8を記憶した設定温度t1記憶手段と、前記温
度検出手段により検出した温度が前記設定温度t1記憶
手段に記憶された境界値温度より低下したことを検出し
出力する第2の比較手段と、電源電流を検出する電流検
出手段と、あらかじめ設定された境界値電流I1を記憶
した設定電流Ii記憶手段と、圧縮機の駆動を検出する
圧縮機駆動検出手段と、前記電流検出手段により検出し
た電流が前記設定電流I1記憶手段に記憶された境界値
電流11より圧縮機始動後に上昇したことを検出して出
力し、圧縮機停止時には出力をクリアーする第3の比較
手段と、前記第1の比較手段による設定時間Tユ経過信
号と、前記第3の比較手段による境界値上昇信号と、前
記第2の比較手段による境界値低下信号により、圧縮機
停止中を除き暖房サイクルから除霜サイクルへの切換え
を判定する判定手段と、前記判定手段の出力に応じて前
記冷凍サイクルを暖房運転から除霜運転へ制御する選択
出力手段より構成したものである。
Means for Solving the Problems In order to solve the above problems, the present invention, as shown in FIG. a measuring means, a set time storage means storing a preset time T1, and detecting and outputting a match between the time detected by the time measuring means and the time set in the set time T1 storage means. a first comparison means, a temperature detection means for detecting the temperature of the pipe connected to the refrigerant inlet side of the indoor heat exchanger, and a set temperature t1 memory storing a boundary value temperature t8 for switching the heating cycle to the defrosting cycle. means, second comparison means for detecting and outputting that the temperature detected by the temperature detection means has fallen below the boundary value temperature stored in the set temperature t1 storage means, and current detection means for detecting a power supply current. , a set current Ii storage means that stores a preset boundary value current I1, a compressor drive detection means that detects the drive of the compressor, and a current detected by the current detection means is stored in the set current I1 storage means. a third comparison means that detects and outputs an increase in the boundary value current 11 after the compressor is started based on the boundary value current 11, and clears the output when the compressor is stopped; and a set time elapsed signal from the first comparison means. , determination means for determining switching from the heating cycle to the defrosting cycle except when the compressor is stopped, based on the boundary value increase signal from the third comparison means and the boundary value decrease signal from the second comparison means; The apparatus includes selection output means for controlling the refrigeration cycle from heating operation to defrosting operation in accordance with the output of the determination means.

作用 この構成により、暖房運転開始から所定時間T工が経過
するまでとサーモスタット○Nなどによる圧縮機始動か
ら電流検出手段の検出電流が11以上となるまでは暖房
運転が確保され、その後において、温度検出手段の検出
温度により、除霜運転が制御される。
Effect With this configuration, heating operation is ensured from the start of heating operation until a predetermined time period T elapses and from the time when the compressor is started by the thermostat ○N until the detected current of the current detection means becomes 11 or more.After that, the temperature Defrosting operation is controlled by the temperature detected by the detection means.

実施例 以下、本発明の一実施例を第2図〜第7図を参照にして
説明する。第2図は本発明の一実施例を示す冷凍サイク
ル図である。第2図において、冷凍サイクルは圧縮機1
、四方切換弁2、室内側熱交換器3、減圧器4、室外側
熱交換器5を順次連結することにより構成されている。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 2 to 7. FIG. 2 is a refrigeration cycle diagram showing one embodiment of the present invention. In Figure 2, the refrigeration cycle consists of compressor 1
, a four-way switching valve 2, an indoor heat exchanger 3, a pressure reducer 4, and an outdoor heat exchanger 5 are connected in sequence.

6は配管温度検出素子であり、暖房時において室内側熱
交換器3(凝縮器)の冷媒入口側となる配管に取り付け
られている。この場合、冷房運転時は第2図の実線矢印
の方向に冷媒が流れ、暖房運転時には四方切換弁2が切
換ねることにより第2図の破線矢印の方向に冷媒が流れ
るようになっている。
Reference numeral 6 denotes a pipe temperature detection element, which is attached to a pipe that is on the refrigerant inlet side of the indoor heat exchanger 3 (condenser) during heating. In this case, during cooling operation, the refrigerant flows in the direction of the solid arrow in FIG. 2, and during heating operation, the four-way switching valve 2 switches, so that the refrigerant flows in the direction of the broken arrow in FIG. 2.

さらに、上記圧縮機1、四方切換弁2、減圧器4、室外
側熱交換器5および室外送風機8は室外ユニットAに設
けられ、上記室内側熱交換器3、配管温度検出素子6、
および室内送風機7、さらに電源電流を検出する電流検
出素子9、ならびにタイマ機能や温度調節機能などがプ
ログラムされたマイクロコンピュータ(以下マイコンと
略称する)を有する運転制御部(図示せず)は室内ユニ
ットBに設けられている。ここで、配管温度検出素子6
は室内送風機7の送風の影響を受けない風回路からはず
れた箇所に取付けられている。また、室内ユニットBの
近辺でもよい。
Further, the compressor 1, the four-way switching valve 2, the pressure reducer 4, the outdoor heat exchanger 5, and the outdoor blower 8 are provided in the outdoor unit A, and the indoor heat exchanger 3, the pipe temperature detection element 6,
and an indoor fan 7, a current detection element 9 that detects the power supply current, and an operation control section (not shown) that includes a microcomputer (hereinafter referred to as microcomputer) programmed with a timer function, temperature control function, etc., is an indoor unit. It is provided in B. Here, the pipe temperature detection element 6
is installed at a location away from the wind circuit that is not affected by the air blowing from the indoor blower 7. Alternatively, the location may be near the indoor unit B.

第3図は運転制御部における主要回路図である。FIG. 3 is a main circuit diagram of the operation control section.

第3図において、マイコン11内には運転時間を判定す
るタイムカウント値を記憶する記憶部12、この記憶部
12に記憶されたタイムカウント値と入力値との比較に
より適宜出力信号を発生する駆動信号発生手段13を有
している。このマイコン11の入力側には、コンパレー
タ14を介して温度検出手段である配管温度検出素子6
(たとえば配管サーミスタあるいは熱電対素子など)と
必要に応じて抵抗値が変えられる温度設定用抵抗15.
16.17とが接続され、さらに、コンパレータ18を
介してffi流検出手段である電流検出素子9 (たと
えば電流変成器)とtlt流値を電圧値に変換する電流
−電圧変換回路21と必要に応じて抵抗値が変えられる
電流設定用抵抗19.20とが接続されている。
In FIG. 3, the microcomputer 11 includes a storage unit 12 that stores a time count value for determining the operating time, and a drive unit that generates an appropriate output signal by comparing the time count value stored in the storage unit 12 with an input value. It has signal generating means 13. On the input side of this microcomputer 11, a piping temperature detection element 6, which is a temperature detection means, is connected via a comparator 14.
(for example, a piping thermistor or thermocouple element) and a temperature setting resistor 15 whose resistance value can be changed as necessary.
16 and 17 are connected, and furthermore, via a comparator 18, a current detection element 9 (for example, a current transformer) which is an FFI current detection means and a current-voltage conversion circuit 21 that converts a TLT current value into a voltage value are connected. Current setting resistors 19 and 20 whose resistance value can be changed accordingly are connected.

一方、マイコン11の出力側には、スイッチ用トランジ
スタTR,〜TR,を介して駆動手段である四方切換弁
コイルを駆動するリレーRユ、室内送風機7を駆動する
リレーRよ、室外送風機8を駆動するリレーR3、圧縮
機1を駆動するリレーR4が接続されている。
On the other hand, on the output side of the microcomputer 11, a relay R for driving a four-way switching valve coil serving as a driving means, a relay R for driving an indoor blower 7, and an outdoor blower 8 are connected to the output side of the microcomputer 11 through switching transistors TR, ~TR. A relay R3 for driving and a relay R4 for driving the compressor 1 are connected.

ここで、第3図の構成と第1図の構成を対比すると、配
管温度検出素子6および抵抗15は第1図の温度検出手
段に相当し、コンパレータ14は第1図の第2の比較手
段に相当し、抵抗16.17によって作られる電圧は第
1図の設定温度t1記憶手段の信号に相当し、電流検出
素子9および電流電圧変換回路21は第1図の電流検出
手段に相当し、コンパレータ18は第1図の第3の比較
手段の一部に相当し、抵抗19.20によって作られる
電圧は第1図の設定電流I工記憶手段の信号に相当し、
記憶部12を含むマイコン11は第1図の設定時間T1
記憶手段、時間計測手段、圧縮機駆動検出手段、第1の
比較手段、第3の比較手段の一部、判定手段、選択出力
手段に相当し、中でも駆動信号発生手段13は判定手段
、選択出力手段に相当する。
Here, when comparing the configuration in FIG. 3 with the configuration in FIG. 1, the pipe temperature detection element 6 and the resistor 15 correspond to the temperature detection means in FIG. 1, and the comparator 14 corresponds to the second comparison means in FIG. The voltage generated by the resistors 16 and 17 corresponds to the signal of the set temperature t1 storage means in FIG. 1, and the current detection element 9 and current-voltage conversion circuit 21 correspond to the current detection means in FIG. The comparator 18 corresponds to a part of the third comparison means in FIG. 1, and the voltage produced by the resistor 19.20 corresponds to the signal of the setting current I memory means in FIG.
The microcomputer 11 including the storage section 12 operates at the set time T1 in FIG.
It corresponds to a storage means, a time measurement means, a compressor drive detection means, a first comparison means, a part of the third comparison means, a determination means, and a selection output means, among which the drive signal generation means 13 is a determination means and a selection output means. It corresponds to the means.

次に、暖房運転の開始から除霜運転に至るまでの動作に
ついて説明する。圧縮機1の吐出冷媒温度をTd、圧縮
機1の吸入冷媒温度をTs、圧縮機1の吐出圧力をPd
、圧縮機1の吸入圧力をPsとし、ポリトロープ指数を
n (ただし、1 < n < kの関係で、kは断熱
圧縮指数)とすると、吐出冷媒温度Tdは次式で表わさ
れる。
Next, the operation from the start of heating operation to defrosting operation will be explained. The discharge refrigerant temperature of the compressor 1 is Td, the suction refrigerant temperature of the compressor 1 is Ts, and the discharge pressure of the compressor 1 is Pd.
, the suction pressure of the compressor 1 is Ps, and the polytropic index is n (where 1 < n < k, where k is the adiabatic compression index), then the discharge refrigerant temperature Td is expressed by the following equation.

T d = T s・(−!−!り″″s したがって、室外側熱交換器5が未−je!霜時は吸入
冷媒温度Tsが高く、また吐出冷媒温度Tdも高いが、
外気が下がり、着霜が成長するにつれて吸入冷媒温度T
sは低下し、吐出冷媒温度Tdも下がる。
T d = T s・(-!-!RI''''s Therefore, the outdoor heat exchanger 5 is not -je!During frost, the suction refrigerant temperature Ts is high and the discharge refrigerant temperature Td is also high,
As the outside air drops and frost grows, the suction refrigerant temperature T
s decreases, and the discharge refrigerant temperature Td also decreases.

配管温度検出素子6は室内側熱交換器3の入口配管に設
けられ、圧縮機1から吐出された高温高圧の過熱域冷媒
ガスが流れる部分の温度を検出するが、実際その温度は
吐出ガスに比べて室内外接続配管などでの熱損失により
所定温度低下した温度である。したがって第4図に示す
ように、室外側熱交換器5が未着霜時は、圧縮機1の吸
入冷媒温度Ts、室内側熱交換器3の入口配管温度りは
ともに高く1着霜が進むにつれて徐々に低下し、そして
暖房能力を大巾に低下させて着霜に至ると。
The pipe temperature detection element 6 is installed in the inlet pipe of the indoor heat exchanger 3, and detects the temperature of the part through which the high-temperature, high-pressure superheated refrigerant gas discharged from the compressor 1 flows. In comparison, the temperature is lowered by a predetermined temperature due to heat loss in indoor/outdoor connecting pipes, etc. Therefore, as shown in FIG. 4, when the outdoor heat exchanger 5 is not frosted, both the suction refrigerant temperature Ts of the compressor 1 and the inlet pipe temperature of the indoor heat exchanger 3 are high, and frosting progresses. As time goes on, the heating capacity gradually decreases, leading to frost formation.

室内側熱交換器3の入口配管温度tは極端に低下する。The inlet pipe temperature t of the indoor heat exchanger 3 drops extremely.

また、空気調和機の電源電流は概ね吐出冷媒温度Tdに
比例追随する値となり、第4図に示すように、配管温度
検出素子6の検出温度に概ね追随した値となる。すなわ
ち、入口配管温度tが設定配管温度し、以下になれば、
暖房能力は低下し、Fj霜が進んでいるので除霜する必
要がある。
Further, the power supply current of the air conditioner has a value that roughly follows the discharge refrigerant temperature Td in proportion, and as shown in FIG. 4, it has a value that roughly follows the temperature detected by the pipe temperature detection element 6. In other words, if the inlet pipe temperature t is equal to or less than the set pipe temperature,
Heating capacity has decreased and Fj frost has progressed, so it is necessary to defrost.

このように室内側熱交換器3の入口配管温度tは過熱域
冷媒ガスの温度であるため、室内送風機7の風量の影響
を受けにくく、室内側熱交換器3の入口配管温度にて適
確な除霜運転の判断を行うことができる。
In this way, since the inlet pipe temperature t of the indoor heat exchanger 3 is the temperature of the refrigerant gas in the superheated region, it is not easily affected by the air volume of the indoor blower 7, and can be determined appropriately at the inlet pipe temperature of the indoor heat exchanger 3. It is possible to make accurate defrosting operation decisions.

また設定された室温で動作するサーモスタットのON、
OFFにより圧縮機の運転、停止が発生した場合、圧縮
機の再始動の際、圧縮機の吸入冷媒温度Ts、室内側熱
交換器3の入口配管温度t。
Also, turn on the thermostat to operate at the set room temperature,
When the compressor is operated or stopped due to OFF, when the compressor is restarted, the suction refrigerant temperature Ts of the compressor and the inlet pipe temperature t of the indoor heat exchanger 3 are changed.

電源′電流値Iはそれぞれ第6図に示すように過渡的な
挙動を示す。したがって圧縮機停止中および再始動後電
源電流値が工、以下の間は除霜判定を中止することによ
り、除霜判定の誤動作を防止することができる。
The power supply' current value I exhibits transient behavior as shown in FIG. Therefore, by suspending the defrosting determination while the compressor is stopped and while the power supply current value is low or below after the compressor is restarted, malfunctions in the defrosting determination can be prevented.

以上の説明に基づき、第3図に示す制御回路は第5図に
示すフローチャートの内容の制御を行う。
Based on the above explanation, the control circuit shown in FIG. 3 controls the contents of the flowchart shown in FIG. 5.

すなわち、第S図のステップ(1)で示すように暖房運
転が開始されると、マイコン11で所定時間T、のタイ
マーカウントがセットされる(ステップ(2) ’) 
、このタイマーカウントセットは、暖房運転開始から1
0時間(たとえば1時間)暖房運転を確保するためのも
ので、゛たとえば強制的にTユ時時間37Fを連続する
ことも一つの手段である。
That is, when the heating operation is started as shown in step (1) in Fig. S, a timer count for a predetermined time T is set in the microcomputer 11 (step (2)').
, this timer count set is 1 from the start of heating operation.
This is to ensure heating operation for 0 hours (for example, 1 hour), and one means is to forcibly continue the T-hour period 37F, for example.

そしてタイマーカウントがセットされると、ステップ(
3)でT□時間経過が判定される。T、時間経過するま
では暖房運転が継続される。
And once the timer count is set, step (
In 3), the elapse of T□ time is determined. T. Heating operation continues until the time elapses.

次にステップ(4)で圧縮機の停止、運転を判定し、停
止の場合は始動開始待となる0次にステップ(5)で圧
縮機始動を検出し、ステップ(6)で電流値工が設定値
I工より高いかどうかが判定される。
Next, in step (4), it is determined whether the compressor is stopped or running, and if the compressor is stopped, it will wait for starting. Next, in step (5), compressor starting is detected, and in step (6), the current value is set. It is determined whether or not it is higher than the set value I.

具体的には第3図のコンパレータ18が判定する。Specifically, the comparator 18 shown in FIG. 3 makes the determination.

ステップ(6)による判定は暖房運転を確保するための
もので、圧縮機始動時の過渡的な状況の中で。
The determination in step (6) is to ensure heating operation, in a transient situation when the compressor is started.

誤って除霜動作に入ることを防止するものである。This prevents erroneously entering defrosting operation.

電流値工が設定値I1を越えるまでは暖房運転が継続さ
れる。
Heating operation continues until the current value exceeds the set value I1.

そして電流値工が設定値11を越えるとステップ(7)
へ移り、配管温度検出素子6による配管温度tの読み込
みが行われ、ステップ(8)に移って配管温度tが設定
配管温度t工よりも低いかどうかが判定される。具体的
には第3図のコンパレータ14が判定する。
Then, when the current value exceeds the set value 11, step (7)
Then, the pipe temperature t is read by the pipe temperature detection element 6, and the process moves to step (8), where it is determined whether the pipe temperature t is lower than the set pipe temperature t. Specifically, the comparator 14 in FIG. 3 makes the determination.

ステップ(8)の条件が満足されない場合は、ステップ
(4)に戻り、再び圧縮機の0N10 F Fを監視す
ることとなる。
If the condition of step (8) is not satisfied, the process returns to step (4) and the 0N10 FF of the compressor is monitored again.

そしてステップ(8)の条件が満足されると、ステップ
(9)へ移り、除霜運転が開始される。すなわち、第3
図のトランジスタTR工、TR2,TR,。
When the conditions of step (8) are satisfied, the process moves to step (9) and defrosting operation is started. That is, the third
The transistor TR construction shown in the figure, TR2, TR,.

TR,がそれぞれ動作し、四方切換弁2を切換え、必要
に応じてその前に圧縮機1を一定時間停止し、室内送風
機7および室外送風機8を停止する。そして冷房サイク
ルにて除霜を行う、この除霜運転の内容は従来周知のた
め、詳細な説明を省略する。
TR, respectively operate to switch the four-way switching valve 2, and if necessary, before that, the compressor 1 is stopped for a certain period of time, and the indoor blower 7 and the outdoor blower 8 are stopped. Since the contents of this defrosting operation in which defrosting is performed in the cooling cycle are conventionally well known, detailed explanation will be omitted.

また暖房運転の復帰についても従来より周知のごとく、
適宜手段にて実施できる。
Also, as is well known, regarding the return of heating operation,
This can be done by any appropriate means.

なお、本実施例においては、除霜運転を暖房サイクルか
ら冷房サイクルへの切換えによって行うようにしたが、
たとえば暖房サイクルを維持したままとして室外側熱交
換器へ別途蓄熱していた冷媒を流す構成、あるいは別熱
源にて霜を溶かす構成として聾よいことは言うまでもな
い、また圧縮機1は除霜運転へ切換え時には連続運転と
し、暖房運転復帰前に一時停止させるようにしてもよい
In this embodiment, the defrosting operation is performed by switching from the heating cycle to the cooling cycle.
For example, it goes without saying that a configuration in which the heating cycle is maintained and the refrigerant that has been stored separately is flowed to the outdoor heat exchanger, or a configuration in which frost is melted using a separate heat source, is useful. At the time of switching, continuous operation may be performed, and the heating operation may be temporarily stopped before returning to heating operation.

発明の効果 以上述べたように本発明によれば、過熱域冷媒ガスの温
度を室内側熱交換器入口配管にて検出し、室内風量の影
響をあまり受けずに、適確な除霜運転を1点の温度検出
で行うことができ、構成を非常に簡単にできる。また冷
媒が暖房を行う熱量を十分に有しているか否かの判定が
室内側熱交換器の入口側で行えるため、実際の暖房能力
の有無を確実に判断して除霜を行うことができる。
Effects of the Invention As described above, according to the present invention, the temperature of the refrigerant gas in the superheated region is detected at the indoor heat exchanger inlet pipe, and an appropriate defrosting operation can be performed without being affected by the indoor air volume. This can be done by detecting the temperature at one point, making the configuration extremely simple. In addition, since it can be determined at the inlet side of the indoor heat exchanger whether or not the refrigerant has sufficient heat for heating, defrosting can be performed by reliably determining the presence or absence of actual heating capacity. .

さらに、詳述すると、本発明は完全に着霜が発生してい
る冷媒の温度が熱交換器の入口部、中間部に差がなく、
未着霜時に入口冷媒温度の方が中間部の冷媒温度に比へ
て著しく高い点に着眼し、入口側の冷媒温度を検出する
ことによって、未着霜から着霜に至るまでの温度変化が
大きくとれ、1点の温度検出で限界に近い暖房能力を引
き出すことができる。また暖房開始から一定時間経過す
るまで着霜を検出しないため、その一定時間は暖房能力
が確保され、快適さが損われることもない。
Furthermore, in detail, the present invention has the advantage that there is no difference in the temperature of the refrigerant at which frost has formed completely between the inlet part and the middle part of the heat exchanger.
By focusing on the fact that the inlet refrigerant temperature is significantly higher than the refrigerant temperature in the middle part when no frost has formed, and by detecting the refrigerant temperature on the inlet side, it is possible to calculate the temperature change from no frost to frost. It has a large capacity and can bring out near-limit heating capacity by detecting the temperature at one point. Furthermore, since frost formation is not detected until a certain period of time has elapsed from the start of heating, heating capacity is ensured during that certain period of time, and comfort is not impaired.

また、サーモスタットのOFFなどにより、暖rJ運転
中に圧縮機が停止することがあるが、圧縮機停止中およ
び始動後電源電流が低いうちは除霜判定を行わないため
、これらの期間に除霜の誤動作を行うこともない。
In addition, the compressor may stop during warm RJ operation due to turning off the thermostat, etc., but defrosting judgment is not performed while the compressor is stopped or while the power supply current is low after startup, so defrosting is not performed during these periods. There will be no malfunction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の除霜制御装置を機能実現手段で表現し
たブロック図、第2図は本発明の一実施例を示す空気調
和機の冷凍サイクル図、第3図は同空気調和機における
除霜制御装置の回路図、第1LAは同除霜制御装置にお
ける室内側熱交換器へ流入する冷媒温度と圧縮機吸入冷
媒温度と空気調和機の電源電流の関係を示す特性図、第
5図は同除霜制御装置の動作内容を示すフローチャート
、第6図はサーモスタットのOFFを含む同除霜制御装
置における室内側熱交換器へ流入する冷媒温度と圧縮機
吸入冷媒温度および空気調和機の電源電流の関係を示す
特性図である。 1・・・圧縮機、2・・・四方切換弁、3・・・室内側
熱交換器、4・・・減圧器、5・・・室外側熱交換器、
6・・・配管温度検出素子、7・・・室内送風機、8・
・室外送風機、9・・・電流検出素子、11・・・マイ
クロコンピュータ、 12・・・記憶部、13・・・駆
動信号発生手段、14.18・・・コンパレータ、15
〜17・・・温度設定用抵抗、19゜20・・・電流設
定用抵抗、21・・・電流−電圧変換回路、A・・・室
外ユニット、B・・・室内ユニット。 代理人   森  本  義  弘 第2図 R 1−ガ!fl情 3・−一室ttjf4フク#(とI乏DJG4−滅ル器 3−49c(θす1(9595イ【?(器6−−1カど
菅温l1iI安−Bゑ) 7−=室lη鴬!@璃 3−一一宮タ#ヨt×二ノ@纒 ターーー電腕#:f:氷娶 第3図 !!−−−マイク07>C’、−タ tz−−−5ど・l恐gp ’3−J!i’ h/g’3発主テn 14、y!l−1;/1’L−7 zt−f;tt−電&変qatau 第4図 1、−一室tr11RqfjZ’:Eja#y>入0a
どKiELTs−1−丘tf6磯の哩λ々〃梨温屓1−
−−電源電、&f1 ftj図
Fig. 1 is a block diagram expressing the defrosting control device of the present invention using function realizing means, Fig. 2 is a refrigeration cycle diagram of an air conditioner showing an embodiment of the present invention, and Fig. 3 is a block diagram of the defrosting control device of the present invention. FIG. 5 is a circuit diagram of the defrosting control device, and the first LA is a characteristic diagram showing the relationship between the refrigerant temperature flowing into the indoor heat exchanger, the compressor suction refrigerant temperature, and the air conditioner power supply current in the defrosting control device. is a flowchart showing the operation contents of the defrosting control device, and Fig. 6 shows the temperature of the refrigerant flowing into the indoor heat exchanger, the temperature of the refrigerant sucked into the compressor, and the power supply of the air conditioner in the defrosting control device, including turning off the thermostat. FIG. 3 is a characteristic diagram showing the relationship between currents. 1... Compressor, 2... Four-way switching valve, 3... Indoor heat exchanger, 4... Pressure reducer, 5... Outdoor heat exchanger,
6... Piping temperature detection element, 7... Indoor blower, 8...
- Outdoor blower, 9... Current detection element, 11... Microcomputer, 12... Storage section, 13... Drive signal generation means, 14.18... Comparator, 15
~17...Resistor for temperature setting, 19°20...Resistor for current setting, 21...Current-voltage conversion circuit, A...Outdoor unit, B...Indoor unit. Agent Yoshihiro Morimoto Figure 2 R 1-ga! fljo3・-1roomttjf4fuku#(andIpoDJG4-destruction device3-49c(θsu1(9595i【?(device6--1kadokanonl1iIan-Bゑ) 7-= Muro lη Tsumugi! @ Ri 3 - Ichinomiya Ta # Yot x Nino @ Kinta - Electric arm #: f: Ice 3rd figure!! --- Mike 07 >C', -ta tz --- 5 etc.・l fear gp '3-J!i'h/g'3 originator ten n 14,y!l-1;/1'L-7 zt-f;tt-den&hen qatau Fig. 4 1,- 1 room tr11RqfjZ': Eja#y>Enter 0a
DoKiELTs-1-Oka tf6 Isono no Maki λnashi Pear 1-
--Power supply, &f1 ftj diagram

Claims (1)

【特許請求の範囲】[Claims] 1.圧縮機、室内側熱交換器、減圧装置、室外側熱交換
器を具備した冷凍サイクルにおける暖房サイクルから除
霜サイクルに切換える制御装置を、暖房運転開始からの
時間を計測する時間計測手段と、あらかじめ設定された
時間T_1を記憶している設定時間T_1記憶手段と、
前記時間計測手段により検出した時間と前記設定時間T
_1記憶手段に設定された時間の一致を検出し出力する
第1の比較手段と、前記室内側熱交換器の冷媒入口側に
連結された配管の温度を検出する温度検出手段と、暖房
サイクルを除霜サイクルに切換える境界値温度t_1を
記憶した設定温度t_1記憶手段と、前記温度検出手段
により検出した温度が前記設定温度t_1記憶手段に記
憶された境界値温度より低下したことを検出し出力する
第2の比較手段と、電源電流を検出する電流検出手段と
、あらかじめ設定された境界値電流I_1を記憶した設
定電流I_1記憶手段と、圧縮機の駆動を検出する圧縮
機駆動検出手段と、前記電流検出手段により検出した電
流が前記設定電流I_1記憶手段に記憶された境界値電
流I_1より圧縮機始動後に上昇したことを検出して出
力し、圧縮機停止時には出力をクリアーする第3の比較
手段と、前記第1の比較手段による設定時間T_1経過
信号と、前記第3の比較手段による境界値上昇信号と、
前記第2の比較手段による境界値低下信号により、圧縮
機停止中を除き暖房サイクルから除霜サイクルへの切換
えを判定する判定手段と、前記判定手段の出力に応じて
前記冷凍サイクルを暖房運転から除霜運転へ制御する選
択出力手段より構成した空気調和機の除霜制御装置。
1. A control device for switching from a heating cycle to a defrosting cycle in a refrigeration cycle equipped with a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger is equipped with a time measuring means for measuring the time from the start of heating operation, and a set time T_1 storage means for storing the set time T_1;
The time detected by the time measuring means and the set time T
_1 a first comparison means for detecting and outputting the coincidence of times set in the storage means; a temperature detection means for detecting the temperature of a pipe connected to the refrigerant inlet side of the indoor heat exchanger; A set temperature t_1 storage means that stores a boundary value temperature t_1 for switching to a defrosting cycle, and detects and outputs that the temperature detected by the temperature detection means has fallen below the boundary value temperature stored in the set temperature t_1 storage means. a second comparison means, a current detection means for detecting the power supply current, a set current I_1 storage means for storing a preset boundary value current I_1, a compressor drive detection means for detecting the drive of the compressor; Third comparison means detects and outputs that the current detected by the current detection means has increased from the boundary value current I_1 stored in the set current I_1 storage means after the compressor is started, and clears the output when the compressor is stopped. , a set time T_1 elapsed signal from the first comparing means, and a boundary value increase signal from the third comparing means,
determining means for determining whether to switch from the heating cycle to the defrosting cycle, except when the compressor is stopped, based on the boundary value decrease signal from the second comparing means; A defrosting control device for an air conditioner comprising selection output means for controlling defrosting operation.
JP61187293A 1986-08-08 1986-08-08 Defrost control device for air conditioner Expired - Lifetime JPH067020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61187293A JPH067020B2 (en) 1986-08-08 1986-08-08 Defrost control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61187293A JPH067020B2 (en) 1986-08-08 1986-08-08 Defrost control device for air conditioner

Publications (2)

Publication Number Publication Date
JPS6341756A true JPS6341756A (en) 1988-02-23
JPH067020B2 JPH067020B2 (en) 1994-01-26

Family

ID=16203460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61187293A Expired - Lifetime JPH067020B2 (en) 1986-08-08 1986-08-08 Defrost control device for air conditioner

Country Status (1)

Country Link
JP (1) JPH067020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207315A (en) * 2019-06-06 2019-09-06 珠海格力电器股份有限公司 Defrosting method for air conditioner outdoor unit and air conditioner system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009936U (en) * 1994-06-02 1995-04-18 松田鉄工株式会社 Immersion rod for liquid level measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207315A (en) * 2019-06-06 2019-09-06 珠海格力电器股份有限公司 Defrosting method for air conditioner outdoor unit and air conditioner system

Also Published As

Publication number Publication date
JPH067020B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
KR900005722B1 (en) Defrosting control apparatus for a temperature control system
JPS62223552A (en) Defrosting control unit of air conditioner
JPS62218748A (en) Defrosting controller for air-conditioning machine
JPS6341756A (en) Defrosting control device for air conditioner
JPS62210336A (en) Control device for defrosting of air-conditioning machine
JPH0566498B2 (en)
JPH081324B2 (en) Defrost control device for air conditioner
JPH0583819B2 (en)
JPH0566497B2 (en)
JPH0566489B2 (en)
JPH0566496B2 (en)
JPH065133B2 (en) Defrost control device for air conditioner
JPS62223548A (en) Defrosting control unit of air conditioner
JPH07117270B2 (en) Defrost control device for air conditioner
JPH0566488B2 (en)
JPH0454858B2 (en)
JPS62186155A (en) Defrosting control unit of air conditioner
JPH0566490B2 (en)
JPS62218749A (en) Defrosting controller for air-conditioning machine
JPH07117271B2 (en) Defrost control device for air conditioner
JPS62218750A (en) Defrosting controller for air-conditioning machine
JPS63189731A (en) Defrosting controller of air conditioner
JPS62223551A (en) Defrosting control unit of air conditioner
JPS62210341A (en) Control device for defrosting of air-conditioning machine
JPS62213637A (en) Defrost control device for air conditioner