JPS6341175B2 - - Google Patents

Info

Publication number
JPS6341175B2
JPS6341175B2 JP56103409A JP10340981A JPS6341175B2 JP S6341175 B2 JPS6341175 B2 JP S6341175B2 JP 56103409 A JP56103409 A JP 56103409A JP 10340981 A JP10340981 A JP 10340981A JP S6341175 B2 JPS6341175 B2 JP S6341175B2
Authority
JP
Japan
Prior art keywords
vacuum
silver
current
skeleton
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56103409A
Other languages
Japanese (ja)
Other versions
JPS585928A (en
Inventor
Ryuji Watanabe
Kyoji Iwashita
Sadami Tomita
Keiichi Kunya
Hideaki Tsuda
Hisashi Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10340981A priority Critical patent/JPS585928A/en
Publication of JPS585928A publication Critical patent/JPS585928A/en
Publication of JPS6341175B2 publication Critical patent/JPS6341175B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は真空しや断器に係り、特に3KV以上
の定格電圧と8KA以上の定格しや断電流を有す
る真空しや断器に関する。 真空しや断器の特有の現象としてさい断現象が
ある。 これは回路しや断、特に小電流しや断時に電流
が自然に零点に下がる前に突然切れて零になる現
象である。突然切れるに至つたときの電流をさい
断電流と呼ぶ。さい断現象が生じると負荷側の機
器たとえば回転機やトランスに異常に高いサージ
電圧が発生し絶縁破壊が起こりやすくなる。さい
断電流値が大きいほど絶縁破壊は起こりやすい。 他方、真空しや断器には常に定格電流が流れる
のではなく、ときには定格電流をはるかに上まわ
る短絡電流が流れる。この場合にも真空しや断器
は正常に動作し、短絡電流をしや断することが必
要である。従つて、真空しや断器はさい断電流値
が小さく低サージであるとともに大電流をしや断
できることが望まれる。大電流をしや断できるよ
うにすることを以下、しや断性能と総称する。し
や断性能がすぐれるほどすなわちしや断可能な電
流値が大きいほど、真空しや断器は短絡事故時の
しや断が可能となり、事故に対する安全性が高ま
る。 かかるさい断電流及びしや断性能を改善するた
めに、従来から主に電極の材質の改良が試みられ
ている。たとえば米国特許第3014110号明細書、
米国特許第3683138号明細書及び米国特許第
3993481号明細書にはさい断電流に着目して電極
材料を改良した例が示されている。米国特許第
3683138号明細書には、銀とタングステンカーバ
イトとの焼結合金からなる接点が示され、米国特
許第3993481号明細書にはコバルトと他の元素と
の共晶合金からなる基地にテルル、ビスマス、鉛
などを分散させた合金からなる接点が示されてい
る。 しかし、一般的にさい断電流が小さいものはし
や断性能が悪く、反対にしや断性能のよいものは
さい断電流が大きいというように一長一短があ
る。 本発明の目的は、銀とタングステンカーバイド
の焼結合金の接点を有する真空しや断器にくらべ
てさい断電流がそれほど高くなく、しや断性能が
著しくすぐれている真空しや断器を提供するにあ
る。 本発明は、真空しや断器の電極をリング状を有
する接点部材と導電性部材との張り合わせ構造と
し、かつ前記接点部材を鉄族元素のみからなるス
ケルトンの空隙に下記(1)〜(2)の少なくとも1つを
含浸した材料で構成したものである。 (1) テルル、セレン、ビスマス、鉛、タリウム、
インジウム、カドミウム、錫及びアンチモンの
少なくとも1つと銀との合金。 (2) テルル、セレン、ビスマス、鉛、タリウム、
インジウム、カドミウム、錫及びアンチモンの
少なくとも1つと銀との金属間化合物。 真空しや断器の電極は、通常、厚さ数mm〜十数
mmの平板状を有し、同一の材料で一体的に作られ
ている。前記接点材料は鉄族元素のスケルトンを
有するため、一般の銅又は銀を主成分とする電極
材料にくらべると電気抵抗が高い。従つて、この
材料で電極を一体的に作ると通電容量を大にでき
ない。この材料を接点部分にだけ用い、導電部材
との張り合わせ構造の電極とすることにより、通
電容量を大にでき、広い分野に適用しうるように
なる。 張り合わせ方法としては、ろう付、ねじ締め或
は導電性部材に凹みを設けて、そこへ凹みよりも
若干大きめの前記部材を押し込む方法などが適用
できる。勿論、これらの方法に限定されるもので
はない。前記部材の製造時に導電性部材と複合化
させてもよいし、又は溶接、加熱圧着等の手段に
よつて複合化してもよい。 本発明を見出すにあたつては、次の発見があつ
た。すなわち、鉄族元素の電極はタングステンカ
ーバイトの電極よりもしや断性能がすぐれ、かつ
低さい断電流を有することの発見である。しか
し、真空しや断器の電極として使うためには、更
にさい断電流を低くする必要があつた。 そこで、鉄族元素よりも低さい断電流でかつ鉄
族元素と溶け合わない元素として銀を選び混合し
たところ、しや断性能を落とさずにさい断電流を
下げることができ、低サージ型真空しや断器への
適用が可能となつた。この電極に更にさい断電流
を下げる目的で低融点、高蒸気圧元素を添加した
ところ、銀合金及び/又は銀との金属間化合物の
形で含まれ、鉄族元素と溶け合わないものであれ
ば、しや断性能をそれほど悪くせずにさい断電流
を小さくできることがわかつた。このような元素
としては、テルル(Te)、セレン(Se)、ビスマ
ス(Bi)、鉛(Pb)、タリウム(Tl)、インジウム
(In)、カドミウム(Cd)、錫(Sn)及びアンチモ
ン(Sb)があつた。 鉄族元素は、他の元素と実質的に溶け合わず、
鉄族元素単独のものとして存在することが必要で
ある。鉄族元素以外の元素との合金の形にする
と、しや断性能が著しく劣化し、かつ機械的にき
わめて脆いものになつてしまう。 張り合わせ構造の電極において、接点部材はリ
ング状に成形するのがよい。リング状にすると、
リングの表面からアークが集中的に発生するよう
になる。又、リングで囲まれた凹みの底の部分に
アーク駆動用の溝を設けると、電極内を流れる電
流が前記溝の影響によつて所定の軌跡をえがくよ
うになり、その電流の軌跡によつて磁界が生じ、
前記アークが磁界の作用によつて円周方向に高速
で回転するようになる。この結果、リング状の接
点部分に発生したアークが電極表面の全域に広が
るのが防止され、リング状の接点の表面が局部的
に溶融するようになる。このように加熱され溶融
する部分が局部に限られるのでアークが切れやす
くなる。 他方、さい断現象を考えると、アーク中には金
属蒸気が存在し、その金属蒸気によつてアークが
さい断されるのを防止した方がよい。 この一見矛盾する両方の性質を具備させるに
は、磁界の強さをアークがリング部以外に広がら
ない程度の強さにとどめ、リング状をした部分か
らだけ金属蒸気が放出されるようにすることが考
えられる。本発明における接点部材は磁性体であ
るために、この部材でリング部を形成すると、磁
束の一部がリングの内部を通るようになる。この
ためアークを回転させるために作用する磁界が弱
まり、アークの回転が弱まつて金属蒸気がとぎれ
にくくなる。従つて、さい断しにくくなり、さい
断電流が小さくなる。 本発明において、鉄族元素とは鉄、コバルト及
びニツケルを意味する。これらは単体金属或は鉄
族元素同志の合金の形で含まれる。 鉄族元素のスケルトンは、前述の形を有する粉
末或は、ワイヤ状の原料を混合し、バインダーに
よつて結合或は焼結によつて一体化することによ
つて作られる。この際、スケルトンの空隙に充填
する材料の一部又は全部を一緒に混ぜることが可
能である。 スケルトンの空隙率は10〜90%が望ましい。空
隙率が10%よりも高いとアークにより加熱されて
も変形しにくく、元の形状を保つことができる。
空隙率が90%以下であれば銀合金、銀の金属間化
合物によるさい断防止の効果が十分に発揮され
る。 鉄族元素のスケルトンに充填する材料は、溶融
状態にしたものを鉄族元素のスケルトンの空隙に
含浸させることによつて充填することができる。
或は前述のようにスケルトンを作るときに同時に
混合することによつても充填させることができ
る。 接点部材の特に望ましい成分構成は、コバル
ト、鉄、ニツケルの単体金属或はコバルト−鉄合
金からなるスケルトンの空隙に、銀が充填され、
更に銀とテルル及び/又はセレンの金属間化合物
が充填されたものである。 本発明の真空しや断器は、10-4torr以下の雰囲
気中で効果的に使用でき、すぐれたさい断電流特
性及びしや断性能を発揮する。 本発明の真空しや断器において、100Vの回路
で10A以下の電流をしや断した模擬試験における
さい断電流の測定値が最大で3A以下、平均で
1.5A以下であるものは、3.6〜36KVの定格電圧と
8〜20KAの定格電流を有する真空しや断器に適
用した場合に、米国特許第3683138号明細書に記
載されたものに較べてもそん色のないさい断電流
特性を有し、かつ著しくすぐれたしや断性能を有
する。 接点部材の望ましい製造法は、次の各工程を順
次経て製造されることである。 (1) 鉄族元素の粉末或はそれと銀粉末とを混合
し、金型に入れる。必要に応じて圧縮成形す
る。圧縮成形の前に水素中で適当な温度に加熱
して還元処理して粉末表面を清浄にしておくの
は望ましい。 (2) 次いで還元処理し、更に真空中で加熱処理し
て焼結されたスケルトンを得る。かかる処理に
よりスケルトンは清浄になり、ガスが実質的に
存在しなくなる。ガスが含まれなくなることは
きわめて望ましいことである。 (3) 充填材料を前述のスケルトンの空隙に適当な
方法で含浸させる。銀とテルル及び/又はセレ
ンを充填する場合には、これらを一緒にして溶
融状態にして、スケルトンの空隙に含浸させ
る。このようにすると、含浸の際にテルル、セ
レンなどが蒸発し損失するのを阻止できる。充
填材料の溶融も又、真空中などの非酸化性雰囲
気中で行なうとよい。 (4) 充填作業を終えたならば、機械加工を行なつ
て所定の形状に仕上げる。その後、必要に応じ
て導電性部材と張り合わせる。 このようにして製造したものは、鉄族元素のス
ケルトンの空隙の奥深くまで充填材料が充填され
るようになる。スケルトンの空隙にガス溜りが生
じないので、しや断時のガス放出が殆どない。従
つて、ガス放出によつて充填材料が電極表面に押
し出され、テルル、セレンなどの低融点材料が必
要以上に溶解、蒸発してしまうことがない。 本発明の真空しや断器は、たとえば第1図に示
す構造を有する。 かかる真空しや断器は、セラミツクのように絶
縁材でできた筒状ケース1を有し、その内部に一
対の電極すなわち固定側電極2と可動側電極3を
有する。電極2及び3はいずれも張り合わせ構造
となつている。接点部材4,5は、鉄族元素のス
ケルトンの空隙に前述の銀合金、銀の金属間化合
物の少なくとも1種を充填したものからなる。導
電性部材6,7の材質はたとえば純銅である。ケ
ース1は外気の影響を受けないように両端をキヤ
ツプ8,9で密封してあり、キヤツプの一方に排
気管10が設けられている。筒状ケースとキヤツ
プ及び排気管によつて真空容器が構成される。排
気管10を真空ポンプに接続することによつてケ
ース1内は真空に排気される。電極2,3はホル
ダー11,12に固定される。可動側電極3に固
定されたホルダー12の一部とキヤツプ9との間
にはベローズ13が設けられ、ホルダー12とキ
ヤツプ9の隙間から外気が入り気密が損なわれる
のを防止している。ケース1内には一対の電極を
取り囲むようにシールド板14が設けられ、しや
断時に電極構成部材が蒸発してケース1の内壁に
付着するのを防止している。 第2図は電極2の斜視図であり、第3図は電極
3の斜視図である。かかる電極はいずれもリング
状を有する接点部材4,5を導電性部材6,7に
張り合わせ、かつ導電性部材の表面にアーク駆動
用の溝15,16を設けたものである。 実施例 1 第2,3図に示す構造の電極が、コバルト製ス
ケルトンの空隙に銀−テルル合金溶湯を含浸した
ものからなるリング状の接点部材と純銅の導電性
部材とによつて作られた。接点部材はコバルト粉
末を混合し、成形してリング状のスケルトンを作
り、スケルトンの空隙へ銀−テルル合金の溶湯を
含浸させることにより製造された。そして導電性
部材にろう付された。固体の状態における接点部
材の構成は、コバルトと銀及び銀・テルルの金属
間化合物からなるものであり、コバルトが50重量
%、銀が45重量%及び銀・テルルの金属間化合物
5重量%からなる組成を有していた。 かかる電極を有する定格電圧7.2KV、定格しや
断電流12.5KVの真空しや断器は、さい断電流が
最大でも2A以下であり、回転機やトランスの実
際の負荷試験を通して性能が満足された。 実施例 2 鉄族元素のスケルトンの空隙に銀、銀とテルル
及び/又はセレンの金属間化合物を充填した部材
で7種類の接点を作り、純銅製の導電性部材と張
り合わせたのちさい断電流及びしや断性能をテス
トした。接点部材は以下のようにして製造した。 コバルト粉末を水素中500〜550℃で還元し、所
定の気孔率が得られるように内径30mmφで高さ
130mmの金型に入れて加圧し、所定の空隙率を有
するスケルトンを作つた。加圧力は0.4〜
8.0ton/cm2の範囲で種々調整し、空隙率が60%以
下の任意の大きさになるようにした。その後、水
素中で900〜1000℃で還元処理し、次いで真空中
1000〜1100℃で脱ガス処理した。 次いで真空溶解した銀、銀−テルル合金、銀−
セレン合金及び銀−テルル−セレン合金を前記ス
ケルトンの空隙に含浸させた。含浸方法は、真空
に保たれた溶解炉内で950〜1000℃に保持された
前記溶湯中にコバルトからなるスケルトンを入
れ、直ちにアルゴンガスを封入し、溶湯表面を1
〜1.5気圧で加圧することにより行なつた。含浸
終了後、機械加工して板状の純銅製導電性部材と
ろう付し、最終的に直径20mmφ、高さ25mmの円形
をした試験用電極を得た。 コバルト70重量%、銀27重量%、残りテルルか
らなる化学組成を有する電極の顕微鏡組織図(倍
率約500倍)を第4図に示す。符号20がコバル
ト相、21が銀とテルルの金属間化合物及び22
が銀である。テルルと金属間化合物を作らなかつ
た残りの銀がこのように単体の形で存在する。 試験用電極を真空排気セツト中のホルダに取付
け300℃の脱ガス用ベーキングを施した。この後、
最大60KVの高電圧を電極間に印加し電極表面の
クリーニングを施した。そしてさい断電流としや
断性能を測定した。さい断電流測定は約50Hzの
100V回路で10A以下の小電流をしや断した際に、
最大のさい断電流が発生するように電流を調節し
ておき、この小電流しや断時のさい断電流を100
回測定し最大値と平均値を求めた。しや断性能試
験は周波数約50Hzで高電圧(6000〜7000V)をか
け、しや断電流を約500〜1000Aステツプで増加
させながらしや断し、この時限界となるしや断電
流を求めるようにした。 接点部材の化学組成及び試験結果を第1表に示
す。同表には比較のために米国特許第3683138に
記載された銀−タングステンカーバイト焼結合金
接点及び銅−鉛−ビスマス合金接点の測定結果も
示した。 なお、しや断性能の値は、銀−70重量%タング
ステンカーバイト焼結合金接点の限界しや断電流
の値を100%とし、それに対する割合で示した。
The present invention relates to a vacuum sheath breaker, and particularly to a vacuum sheath breaker having a rated voltage of 3KV or more and a rated sheath breaker of 8KA or more. There is a severing phenomenon that is unique to vacuum shields and breaker. This is a phenomenon in which when a circuit breaks, especially a small current, the current suddenly drops to zero before it naturally drops to zero. The current that suddenly cuts out is called the cutting current. When a disconnection phenomenon occurs, an abnormally high surge voltage occurs in load-side equipment such as rotating machines and transformers, making dielectric breakdown more likely to occur. The larger the cutting current value, the more likely dielectric breakdown will occur. On the other hand, the rated current does not always flow through a vacuum circuit breaker, but sometimes a short circuit current that far exceeds the rated current flows. In this case as well, the vacuum circuit breaker must operate normally and interrupt the short circuit current. Therefore, it is desired that the vacuum shield breaker has a small cutting current value, low surge, and is capable of cutting off large currents. The ability to withstand large currents is hereinafter collectively referred to as shearing performance. The better the insulation performance is, that is, the larger the current value that can be used for insulation, the more the vacuum insulation breaker can disconnect in the event of a short-circuit accident, and the higher the safety against accidents. In order to improve the shearing current and shearing performance, attempts have been made to improve the materials of the electrodes. For example, US Pat. No. 3,014,110,
U.S. Patent No. 3,683,138 and U.S. Patent No.
The specification of No. 3993481 shows an example in which the electrode material was improved by focusing on the cutting current. US Patent No.
No. 3,683,138 discloses a contact made of a sintered alloy of silver and tungsten carbide, and U.S. Pat. No. 3,993,481 discloses a contact made of a eutectic alloy of cobalt and other elements with tellurium and bismuth. , contacts made of alloys with dispersed lead, etc. are shown. However, in general, those with a small severing current have poor shearing performance and, conversely, those with good shearing performance have a large severing current, so they have advantages and disadvantages. An object of the present invention is to provide a vacuum shear breaker which has a less high severing current and has significantly superior shearing performance than a vacuum breaker which has contacts made of a sintered alloy of silver and tungsten carbide. There is something to do. The present invention provides an electrode of a vacuum shield and disconnector having a structure in which a ring-shaped contact member and a conductive member are laminated together, and the contact member is placed in the void of a skeleton made only of iron group elements as shown in (1) to (2) below. ) is made of a material impregnated with at least one of the following. (1) Tellurium, selenium, bismuth, lead, thallium,
An alloy of silver and at least one of indium, cadmium, tin and antimony. (2) Tellurium, selenium, bismuth, lead, thallium,
An intermetallic compound of silver and at least one of indium, cadmium, tin, and antimony. The electrodes of vacuum shields are usually several mm to several dozen thick.
It has a flat plate shape of mm and is integrally made of the same material. Since the contact material has a skeleton of an iron group element, it has a higher electrical resistance than a general electrode material whose main component is copper or silver. Therefore, if the electrode is made integrally with this material, the current carrying capacity cannot be increased. By using this material only in the contact portion and creating an electrode with a laminated structure with a conductive member, the current carrying capacity can be increased and it can be applied to a wide range of fields. As a bonding method, brazing, screw tightening, or a method in which a recess is provided in the conductive member and the member slightly larger than the recess is pushed into the recess can be used. Of course, the method is not limited to these methods. It may be combined with a conductive member during the production of the member, or it may be combined by means such as welding or heat-pressing. In discovering the present invention, the following discoveries were made. That is, it was discovered that an electrode made of an iron group element has superior breaking performance and a lower breaking current than an electrode made of tungsten carbide. However, in order to use it as an electrode for a vacuum chamber or disconnector, it was necessary to lower the disconnection current even further. Therefore, by selecting and mixing silver as an element that has a lower cutting current than iron group elements and does not dissolve with iron group elements, it is possible to lower the cutting current without reducing the cutting performance, and it is possible to create a low-surge vacuum. It has become possible to apply this method to breaker. When a low melting point, high vapor pressure element was added to this electrode for the purpose of further lowering the cutting current, it was found that it was contained in the form of a silver alloy and/or an intermetallic compound with silver and did not dissolve with the iron group elements. For example, it was found that the cutting current could be reduced without significantly degrading the cutting performance. Such elements include tellurium (Te), selenium (Se), bismuth (Bi), lead (Pb), thallium (Tl), indium (In), cadmium (Cd), tin (Sn) and antimony (Sb). ) was hot. Iron group elements are virtually insoluble with other elements;
It is necessary that the iron group element exists as a single element. When made into an alloy with elements other than iron group elements, the shearing performance deteriorates significantly and the material becomes mechanically extremely brittle. In an electrode having a laminated structure, the contact member is preferably formed into a ring shape. When made into a ring shape,
Arcs will be generated intensively from the surface of the ring. Furthermore, if a groove for arc driving is provided at the bottom of the recess surrounded by the ring, the current flowing inside the electrode will follow a predetermined trajectory due to the influence of the groove, and the trajectory of the current will A magnetic field is generated,
The arc rotates at high speed in the circumferential direction due to the action of the magnetic field. As a result, the arc generated at the ring-shaped contact portion is prevented from spreading over the entire electrode surface, and the surface of the ring-shaped contact is locally melted. Since the heated and melted portion is limited to a localized area, the arc is likely to break. On the other hand, when considering the severing phenomenon, metal vapor exists in the arc, and it is better to prevent the arc from being severed by the metal vapor. In order to achieve both of these seemingly contradictory properties, the strength of the magnetic field must be kept to a level that prevents the arc from spreading beyond the ring portion, and the metal vapor must be emitted only from the ring-shaped portion. is possible. Since the contact member in the present invention is a magnetic material, when a ring portion is formed of this member, part of the magnetic flux will pass through the inside of the ring. This weakens the magnetic field that acts to rotate the arc, weakens the rotation of the arc, and makes it difficult for the metal vapor to stop. Therefore, it becomes difficult to cut, and the cutting current becomes small. In the present invention, iron group elements mean iron, cobalt and nickel. These are contained in the form of single metals or alloys of iron group elements. The iron group element skeleton is made by mixing powder or wire-like raw materials having the above-mentioned shapes and combining them with a binder or integrating them by sintering. At this time, it is possible to mix together some or all of the materials to be filled into the voids of the skeleton. The porosity of the skeleton is preferably 10 to 90%. When the porosity is higher than 10%, it is difficult to deform even when heated by an arc, and can maintain its original shape.
If the porosity is 90% or less, the effect of silver alloy and silver intermetallic compound in preventing scission is fully exhibited. The material to be filled into the iron group element skeleton can be filled by impregnating a molten material into the voids of the iron group element skeleton.
Alternatively, it can be filled by mixing at the same time as making the skeleton as described above. A particularly desirable composition of the contact member is that the voids of a skeleton made of single metals such as cobalt, iron, or nickel or a cobalt-iron alloy are filled with silver;
Furthermore, it is filled with an intermetallic compound of silver and tellurium and/or selenium. The vacuum shear breaker of the present invention can be effectively used in an atmosphere of 10 -4 torr or less, and exhibits excellent shear current characteristics and shear breaker performance. In the vacuum breaker of the present invention, the measured value of the severing current in a mock test in which a current of 10A or less was interrupted in a 100V circuit was 3A or less at the maximum, and the average was 3A or less.
1.5A or less, when applied to a vacuum disconnector with a rated voltage of 3.6 to 36 KV and a rated current of 8 to 20 KA, compared to that described in U.S. Patent No. 3,683,138. It has consistent severing current characteristics and extremely excellent severing performance. A desirable method for manufacturing the contact member is to sequentially perform the following steps. (1) Mix iron group element powder or silver powder and put it into a mold. Compression mold if necessary. It is desirable to clean the surface of the powder by heating it in hydrogen to an appropriate temperature and performing a reduction treatment before compression molding. (2) Next, reduction treatment is performed, and further heat treatment is performed in a vacuum to obtain a sintered skeleton. Such treatment leaves the skeleton clean and substantially free of gases. The absence of gas is highly desirable. (3) Filling material is impregnated into the voids of the skeleton by an appropriate method. When filling with silver and tellurium and/or selenium, these are combined in a molten state and impregnated into the voids of the skeleton. This can prevent tellurium, selenium, etc. from evaporating and being lost during impregnation. Melting of the filler material may also be carried out in a non-oxidizing atmosphere, such as in a vacuum. (4) Once the filling operation is completed, the material is machined to the desired shape. Thereafter, it is pasted with a conductive member if necessary. In the product manufactured in this way, the filler material is filled deep into the voids of the iron group element skeleton. Since no gas accumulation occurs in the voids of the skeleton, there is almost no gas released when the weld is cut off. Therefore, the filling material is pushed out to the electrode surface by gas release, and low melting point materials such as tellurium and selenium are not melted or evaporated more than necessary. The vacuum shield breaker of the present invention has a structure shown in FIG. 1, for example. Such a vacuum shield disconnector has a cylindrical case 1 made of an insulating material such as ceramic, and has a pair of electrodes, a fixed electrode 2 and a movable electrode 3 inside the case. Both electrodes 2 and 3 have a laminated structure. The contact members 4 and 5 are made by filling the voids in the skeleton of an iron group element with at least one of the above-mentioned silver alloy and silver intermetallic compound. The material of the conductive members 6 and 7 is, for example, pure copper. Both ends of the case 1 are sealed with caps 8 and 9 so as not to be affected by outside air, and an exhaust pipe 10 is provided on one of the caps. A vacuum container is composed of a cylindrical case, a cap, and an exhaust pipe. By connecting the exhaust pipe 10 to a vacuum pump, the inside of the case 1 is evacuated to a vacuum. Electrodes 2 and 3 are fixed to holders 11 and 12. A bellows 13 is provided between a portion of the holder 12 fixed to the movable electrode 3 and the cap 9 to prevent outside air from entering through the gap between the holder 12 and the cap 9 and damaging the airtightness. A shield plate 14 is provided in the case 1 so as to surround the pair of electrodes, and prevents the electrode constituent members from evaporating and adhering to the inner wall of the case 1 when the electrodes are cut off. FIG. 2 is a perspective view of the electrode 2, and FIG. 3 is a perspective view of the electrode 3. Each of these electrodes has ring-shaped contact members 4, 5 attached to conductive members 6, 7, and grooves 15, 16 for arc driving are provided on the surface of the conductive member. Example 1 An electrode having the structure shown in Figs. 2 and 3 was made of a ring-shaped contact member made of a cobalt skeleton impregnated with molten silver-tellurium alloy and a pure copper conductive member. . The contact member was manufactured by mixing cobalt powder, molding it to form a ring-shaped skeleton, and impregnating the voids of the skeleton with molten silver-tellurium alloy. Then, it was brazed to a conductive member. The structure of the contact member in a solid state is composed of cobalt, silver, and an intermetallic compound of silver and tellurium, with 50% by weight of cobalt, 45% by weight of silver, and 5% by weight of an intermetallic compound of silver and tellurium. It had the following composition. A vacuum shield breaker with such an electrode, with a rated voltage of 7.2 KV and a rated shear breaking current of 12.5 KV, has a maximum breaking current of 2 A or less, and its performance has been satisfied through actual load tests on rotating machines and transformers. . Example 2 Seven types of contacts were made using members filled with silver, silver, tellurium, and/or selenium intermetallic compounds in the voids of the skeleton of iron group elements, and after laminating them with conductive members made of pure copper, no current was generated. The shear cutting performance was tested. The contact member was manufactured as follows. Cobalt powder is reduced in hydrogen at 500 to 550℃, and the inner diameter is 30mmφ and the height is
It was placed in a 130 mm mold and pressurized to create a skeleton with a predetermined porosity. Pressure force is 0.4~
Various adjustments were made within the range of 8.0 ton/cm 2 so that the porosity could be any size below 60%. Afterwards, reduction treatment was performed at 900-1000℃ in hydrogen, and then in vacuum.
Degas treatment was performed at 1000-1100°C. Next, vacuum melted silver, silver-tellurium alloy, silver-
Selenium alloy and silver-tellurium-selenium alloy were impregnated into the voids of the skeleton. In the impregnation method, a skeleton made of cobalt is placed in the molten metal kept at 950 to 1000°C in a melting furnace kept in a vacuum, and argon gas is immediately filled in to coat the surface of the molten metal.
This was done by pressurizing to ~1.5 atm. After the impregnation was completed, it was machined and brazed with a plate-shaped pure copper conductive member to finally obtain a circular test electrode with a diameter of 20 mmφ and a height of 25 mm. FIG. 4 shows a microscopic structure diagram (approximately 500 times magnification) of an electrode having a chemical composition of 70% by weight cobalt, 27% by weight silver, and the remainder tellurium. 20 is a cobalt phase, 21 is an intermetallic compound of silver and tellurium, and 22
is silver. The remaining silver that has not formed an intermetallic compound with tellurium exists in the form of a simple substance. The test electrode was attached to a holder in a vacuum evacuation set and baked at 300°C for degassing. After this,
A high voltage of up to 60KV was applied between the electrodes to clean the electrode surface. Then, the cutting current and shearing performance were measured. The cutting current measurement is approximately 50Hz.
When a small current of 10A or less is interrupted in a 100V circuit,
The current is adjusted so that the maximum severing current occurs, and the severing current at the time of this small current severing is set to 100%.
Measurements were made twice and the maximum and average values were determined. The shearing performance test is performed by applying a high voltage (6000 to 7000V) at a frequency of approximately 50Hz, increasing the shearing current in steps of approximately 500 to 1000A, and determining the limiting shearing current. I did it like that. The chemical composition and test results of the contact member are shown in Table 1. For comparison, the table also shows the measurement results of the silver-tungsten carbide sintered alloy contact and the copper-lead-bismuth alloy contact described in US Pat. No. 3,683,138. Note that the value of the shearing performance is expressed as a percentage with respect to the value of the critical shearing current of the silver-70% by weight tungsten carbide sintered alloy contact as 100%.

【表】 実施例 3 第2表に示す成分組成を有する接点部材を有す
る電極が実施例2と同じようにして作られた。か
かる電極を用い実施例2と同じ条件でさい断電流
及びしや断性能を試験した。試験結果を第2表に
示す。しや断性能は実施例2の銀−70重量%タン
グステンカーバイト接点のしや断性能を100%と
し、それに対する割合で表した。
[Table] Example 3 An electrode having a contact member having the component composition shown in Table 2 was made in the same manner as in Example 2. Using this electrode, the shearing current and shearing performance were tested under the same conditions as in Example 2. The test results are shown in Table 2. The shearing performance was expressed as a percentage with respect to the shearing performance of the silver-70% by weight tungsten carbide contact of Example 2, which was taken as 100%.

【表】【table】

【表】 以上の実施例から明らかなように、本発明によ
れば、さい断電流が小さくかつしや断性能のすぐ
れた真空しや断器を得ることができる。
[Table] As is clear from the above examples, according to the present invention, it is possible to obtain a vacuum shield and disconnector with a small cutting current and excellent cutting performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による真空しや断器
の断面図、第2図及び第3図は電極の斜視図及び
第4図は本発明の一実施例による接点部材の顕微
鏡組織図である。 1……筒状ケース、2,3……電極、4,5…
…接点部材、6,7……導電性部材、8,9……
キヤツプ、10……排気管。
FIG. 1 is a sectional view of a vacuum shield breaker according to an embodiment of the present invention, FIGS. 2 and 3 are perspective views of an electrode, and FIG. 4 is a microscopic structure diagram of a contact member according to an embodiment of the present invention. It is. 1... Cylindrical case, 2, 3... Electrode, 4, 5...
...Contact member, 6, 7... Conductive member, 8, 9...
Cap, 10...exhaust pipe.

Claims (1)

【特許請求の範囲】 1 真空容器とその容器内に配置された一対の電
極を有する真空しや断器において、前記電極の少
なくとも一方は、鉄族元素のみからなるスケルト
ンの空隙に下記 (1)と(2)の少なくとも1つが充填された材料から
なり且つリング状を有する接点部材と導電性部材
との張り合せ構造を有することを特徴とする真空
しや断器。 (1) テルル、セレン、ビスマス、鉛、タリウム、
インジウム、カドミウム、錫及びアンチモンの
少なくとも1つと銀との合金、 (2) テルル、セレン、ビスマス、鉛、タリウム、
インジウム、カドミウム、錫及びアンチモンの
少なくとも1つと銀との金属間化合物。 2 特許請求の範囲第1項において、前記鉄族元
素の空隙にテルル及びセレンの少なくとも1つと
銀との金属間化合物及び銀が充填されていること
を特徴とする真空しや断器。 3 特許請求の範囲第1項において、前記スケル
トンは鉄族元素の粉末成型品からなることを特徴
とする真空しや断器。 4 特許請求の範囲第1項又は第3項において、
前記スケルトンの空隙率が10〜90%からなること
を特徴とする真空しや断器。 5 特許請求の範囲第1項において、前記導電性
部材の前記接点部材との張り合わせ面にアーク駆
動溝を有することを特徴とする真空しや断器。
[Scope of Claims] 1. In a vacuum breaker having a vacuum container and a pair of electrodes arranged in the container, at least one of the electrodes has the following structure in the void of a skeleton made only of iron group elements: (1) A vacuum shield breaker is characterized in that it is made of a material filled with at least one of (2) and has a laminated structure of a ring-shaped contact member and a conductive member. (1) Tellurium, selenium, bismuth, lead, thallium,
An alloy of silver and at least one of indium, cadmium, tin and antimony, (2) tellurium, selenium, bismuth, lead, thallium,
An intermetallic compound of silver and at least one of indium, cadmium, tin, and antimony. 2. The vacuum shear breaker according to claim 1, wherein the voids in the iron group element are filled with an intermetallic compound of silver and at least one of tellurium and selenium, and silver. 3. The vacuum shear disconnector according to claim 1, wherein the skeleton is made of a powder molded product of an iron group element. 4 In claim 1 or 3,
A vacuum breaker characterized in that the skeleton has a porosity of 10 to 90%. 5. The vacuum shear disconnector according to claim 1, characterized in that the conductive member has an arc drive groove on the surface of the conductive member that is bonded to the contact member.
JP10340981A 1981-07-03 1981-07-03 Vacuum breaker Granted JPS585928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10340981A JPS585928A (en) 1981-07-03 1981-07-03 Vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10340981A JPS585928A (en) 1981-07-03 1981-07-03 Vacuum breaker

Publications (2)

Publication Number Publication Date
JPS585928A JPS585928A (en) 1983-01-13
JPS6341175B2 true JPS6341175B2 (en) 1988-08-16

Family

ID=14353247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10340981A Granted JPS585928A (en) 1981-07-03 1981-07-03 Vacuum breaker

Country Status (1)

Country Link
JP (1) JPS585928A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054124A (en) * 1983-09-02 1985-03-28 株式会社日立製作所 Vacuum breaker

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080906A (en) * 1973-11-16 1975-07-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080906A (en) * 1973-11-16 1975-07-01

Also Published As

Publication number Publication date
JPS585928A (en) 1983-01-13

Similar Documents

Publication Publication Date Title
US4499009A (en) Electrode composition for vacuum switch
JP4759987B2 (en) Electrode and electrical contact and its manufacturing method
JP2653486B2 (en) Contact material for vacuum valve
EP0042152B1 (en) Vacuum circuit breaker
EP0155322B1 (en) Electrode of vacuum breaker
US3985512A (en) Telluride containing impregnated electric contact material
EP0090579B1 (en) Surge-absorberless vacuum circuit interrupter
EP0118844A2 (en) Vacuum switch and method of manufacturing the same
JPS6341175B2 (en)
JP2006228684A (en) Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof
JP4143308B2 (en) Contact material for vacuum valve, manufacturing method thereof, and vacuum valve
EP0178796B1 (en) Manufacture of vacuum interrupter contacts
JPS6359216B2 (en)
JPS6215716A (en) Contact for vacuum breaker electrode
JPH0510782B2 (en)
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JP4515695B2 (en) Contact materials for vacuum circuit breakers
JPH04132127A (en) Contact point for vacuum bulb
JPS6336091B2 (en)
JPH0547928B2 (en)
JPH0653907B2 (en) Contact material for vacuum valve
JPS603822A (en) Electrode material of vacuum interrupter and method of producing same
JP3068880B2 (en) Contact for vacuum valve
JPH04206122A (en) Vacuum value
JPH0521964B2 (en)