JPS6340804A - Camber measuring method and apparatus - Google Patents

Camber measuring method and apparatus

Info

Publication number
JPS6340804A
JPS6340804A JP18473786A JP18473786A JPS6340804A JP S6340804 A JPS6340804 A JP S6340804A JP 18473786 A JP18473786 A JP 18473786A JP 18473786 A JP18473786 A JP 18473786A JP S6340804 A JPS6340804 A JP S6340804A
Authority
JP
Japan
Prior art keywords
measured
distance
width direction
position coordinates
distance measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18473786A
Other languages
Japanese (ja)
Inventor
Utaro Taira
卯太郎 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18473786A priority Critical patent/JPS6340804A/en
Publication of JPS6340804A publication Critical patent/JPS6340804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To determine width-wise movement and oscillation at each conveyance timing, by obtaining a linear equation with the width-wise movement and oscillation as unknown quantities from the measurement of a distance of an object to be measured during the conveying through a plurality of distance sensors arranged as opposed sandwiching the object being measured to solve it. CONSTITUTION:A material 1 to be conveyed is conveyed with the rotation of a table roll 6. Width-wise position coordinates of the material 1 being conveyed at a conveyance timing are measured through 2r distance sensors S1-Sr and S1'-Sr' arranged as opposed on rails 5 and 5' to obtain a linear equation with the width-wise movement and the oscillation as unknown quantities. The measurement of a distance is performed (n) times at (n) conveyance timings from the head to the tail of the material 1 being conveyed to obtain (n) sets of linear equations. These equations are solved to obtain the width-wise movement and the oscillation at each conveyance timing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋼板等の搬送工程の片側にr (r≧3)個の
距離センサ、もう一方の側にも1個の距離センサを相互
に対向させて固定配置し、搬送材(鋼板)等の被測定物
が任意の長さ移動する都度の距離測定値を各距離センサ
にて得、そのIII定僅に基づき′II1.測定物のキ
ャンバ形状を計測する方法及びその方法を実施するため
の装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method of mutually connecting r (r≧3) distance sensors on one side and one distance sensor on the other side during the conveyance process of steel plates, etc. Fixedly arranged to face each other, the distance measurement value is obtained by each distance sensor each time the object to be measured, such as a conveyed material (steel plate), moves an arbitrary length, and based on the distance measured by 'II1. The present invention relates to a method for measuring the camber shape of an object to be measured and an apparatus for implementing the method.

〔従来技術〕[Prior art]

従来、鋼板等の成形製品の幅方向中央点のキャンバ形状
の計測方法としては、第5図に示すように、搬送材11
の長手(搬送)方向に3個の距離センサ12.13.1
4及び搬送材11を挟んで該3個の距離センサ12,1
3.14の内の11[1i1に対向させた1個の距離セ
ンサ10を配設し、1般送材11が適当な距離搬送され
る都度、各距離セン+10.12.13.14の距離測
定値を検出して、その検出値に基づき搬送材11の幅方
向中央点のキャンバを計測する方法が知られている。
Conventionally, as a method for measuring the camber shape at the center point in the width direction of a formed product such as a steel plate, as shown in FIG.
12.13.1 Three distance sensors in the longitudinal (transport) direction of the
4 and the conveyed material 11 between the three distance sensors 12 and 1.
3. One distance sensor 10 facing 1i1 of 14 is arranged, and each distance sensor + 10, 12, 13, and 14 distances are set each time one general material 11 is conveyed an appropriate distance. A method is known in which a measured value is detected and the camber at the center point in the width direction of the conveyed material 11 is measured based on the detected value.

以下この方法につき説明する。搬送材11は、1対のレ
ール15.15に固持されているテーノ゛/lロール1
6.16・・・の図示しない駆動系の作用による回転に
伴って図中白抜矢符方向に搬送されることになっており
、また1本のレール15上にはレール15の延設方向に
、距離センサ12.13間距離L1.距離センサ12.
14間距離L2だけ隔てて、3個の距離センサ12,1
3.14が並設固定してあり、また他方のレール15上
には前記距離センサ14に搬送材11を挟んで正対する
位置に距離センサ10が固定しである。
This method will be explained below. The material to be conveyed 11 is carried on a tenor roll 1 which is firmly supported on a pair of rails 15 and 15.
6.16... It is to be transported in the direction of the white arrow in the figure as it rotates due to the action of a drive system (not shown), and on one rail 15 there is a direction in which the rail 15 extends. , the distance between the distance sensors 12 and 13 L1. Distance sensor 12.
14, three distance sensors 12,1 separated by a distance L2
3 and 14 are fixed in parallel, and a distance sensor 10 is fixed on the other rail 15 at a position directly facing the distance sensor 14 with the conveyed material 11 in between.

そして距離センサ10.12.13.14は搬送材11
の側面〜各距離センサto、 12.13.14間の離
隔距離を測定するようになっている。
And distance sensor 10.12.13.14 is conveyed material 11
The separation distance between the side surface and each distance sensor to, 12, 13, and 14 is measured.

まず各距離センサの距離測定値に基づいて、各搬送タイ
ミングにおける搬送材11方向の距離センサ12.13
.14配置位置での夫々の搬送材11の幅方向中央点を
求める。
First, based on the distance measurement value of each distance sensor, the distance sensors 12 and 13 in the direction of the conveyed material 11 at each conveyance timing are
.. The center point in the width direction of each conveyed material 11 at the 14 arrangement position is determined.

第6図は従来のキャンバ計測の測定原理を説明するため
の幅方向中央点2幅方向中央点座標、キャンバ形状曲線
の関係を表す模式図であり、図中A、B、Cが夫々距離
センサ12,13.14に対向する搬送材11上の幅方
向中央点である0図中曲PAY=F(×)は1般送材1
1の幅方向中央点のキャンバ形状として仮定する曲線で
あり、下記(11式に示すn次多項式で表現する。
FIG. 6 is a schematic diagram showing the relationship between the widthwise center point, the widthwise center point coordinates, and the camber shape curve to explain the measurement principle of conventional camber measurement. In the figure, A, B, and C are distance sensors, respectively. 12, 13. The center point in the width direction on the conveyed material 11 facing 14 is the curve PAY=F(x) in the 0 figure, which is the general conveyed material 1.
This is a curve assumed as a camber shape at the center point in the width direction of 1, and is expressed by the n-th degree polynomial shown in the following (Equation 11).

曲線F(×)上の2点の幅方向中央点A、Bを通る直線
Y = G (xiと曲線Y = F (XllとのX
 −X Cjにおける距離M(j)を求める。(但し、
各幅方向中央点A。
Straight line Y = G (Xi and curve Y = F (Xll and X
- Find the distance M(j) at Cj. (however,
Center point A in each width direction.

B、Cのlit送方向位置座標を夫々Xaj +  X
bj + X OJとする。) 直線Y −G (X)の式は Y = G (Xl よって −1−F(Xυ) MU)−G (XCJ)  F (XCJ)−F(Xc
j)           ・・・(2)ここで3点A
、B、Cの幅方向位置座標が’aj。
The lit feed direction position coordinates of B and C are Xaj + X, respectively.
Let bj + X OJ. ) The equation of the straight line Y -G (X) is Y = G (Xl Therefore -1-F(Xυ) MU)-G (XCJ) F (XCJ)-F(Xc
j) ...(2) 3 points A here
, B, C's width direction position coordinates are 'aj.

’ bJ +  It CJであるとするとF (Xl
lLJ) =Ra、=−F(Xbj) −1b=、  
F (XcJ) = l c=であるから上記(2)式
は となる。
'bJ + It CJ, then F (Xl
lLJ) =Ra, =-F(Xbj)-1b=,
Since F (XcJ) = l c =, the above equation (2) becomes.

よって上記!21. (31式より り、          L。Therefore, the above! 21. (From type 31 ri, L.

つまり、 +KIXe12+Ka )   (KN Xct+KN
−+ XCJ+・ +KI XCj+KO) そして搬送材11の各搬送タイミングにて上記(4)式
の如き方程式を多数個溝て、これら多数の連立方程式を
解くことにより、Y = F (X)の各係数(KN。
In other words, +KIXe12+Ka ) (KN Xct+KN
-+XCJ+・+KI (KN.

KN−1・=に1.Ko )を求めて、搬送材11の幅
方向中央点のキャンバ形状を計測していた。
KN-1.=1. Ko ), and the camber shape at the center point in the width direction of the conveyed material 11 was measured.

(発明が解決しようとする問題点〕 上述した方法ではキャンバ形状の関数形Y −F (X
)は求まるが、各搬送タイミングにおける搬送材の幅方
向移動量と首1辰量とが求まらないという問題点があっ
た。
(Problem to be solved by the invention) In the method described above, the functional form Y −F (X
) can be determined, but there is a problem in that the amount of movement in the width direction and the amount per neck of the conveyed material at each conveyance timing cannot be determined.

そこで本発明者は上記問題点を解決すべく、搬送材が任
意の長さ搬送される都度、距離センサにて計測した距離
測定値に基づき求められる被測定物幅方向中央点の幅方
向位置座標夫々について、被測定物の幅方向移動量1首
振量及びキャンバ形状として仮定された関数の各係数を
未知数とする多数の連立一次方程式を得、これを一括し
て解くことによりキャンバ形状の関数形を求める方法を
特願昭61−145388号で提案した。
Therefore, in order to solve the above-mentioned problems, the present inventors have proposed the widthwise positional coordinates of the widthwise center point of the workpiece, which is determined based on the distance measurement value measured by the distance sensor each time the conveyed material is conveyed for an arbitrary length. For each, a large number of simultaneous linear equations are obtained in which the unknowns are the amount of movement in the width direction of the object to be measured, the amount of oscillation, and each coefficient of the function assumed as the camber shape, and by solving these equations all at once, the function of the camber shape A method for determining the shape was proposed in Japanese Patent Application No. 145388/1983.

特願昭61−145388号に提案されている方法の要
旨は、被測定物の搬送工程長手方向にr (r≧3)個
の距離センサを並設し、被測定物を挟んでr個の内の任
意の1個の距離センサに対向させて1個の距離センサを
設け、搬送される被測定物が任意の長さ移動する都度、
そのときの各距離センサの被測定物側面までの距離測定
値を得、これらの距離測定値に基づき距離測定点の被測
定物幅方向中央点の幅方向位置座標を求め、これら幅方
向位置座標、未知数としての被測定物の幅方向移動量。
The gist of the method proposed in Japanese Patent Application No. 61-145388 is that r (r≧3) distance sensors are arranged in parallel in the longitudinal direction of the conveyance process of the object to be measured, and One distance sensor is provided opposite to any one of the distance sensors, and each time the conveyed object to be measured moves an arbitrary length,
Obtain the distance measurements from each distance sensor to the side surface of the object at that time, determine the width direction position coordinates of the center point in the width direction of the object to be measured at the distance measurement point based on these distance measurement values, and calculate these width direction position coordinates. , the amount of movement in the width direction of the object to be measured as an unknown quantity.

首振量、キャンバ形状として仮定された各係数未定の関
数形及び各距離測定点の搬送方向位置座標の関係を表す
多数の連立一次方程式を得、これを解くことにより、被
測定物の幅方向中央点のキャンバ形状の関数形だけでな
く、各搬送タイミングにおける幅方向移動量2首振量も
求めるにある。
By obtaining a number of simultaneous linear equations expressing the relationship between the amount of head vibration, the undetermined function form of each coefficient assumed as the camber shape, and the position coordinates in the transport direction of each distance measurement point, and solving these, Not only the functional form of the camber shape at the center point, but also the amount of movement in the width direction and the amount of swing at each conveyance timing are determined.

本発明者はキャンバ形状測定値中の測定誤差を更に減少
させ、その測定精度を向上させるための研究を推し進め
た。
The present inventor has conducted research to further reduce measurement errors in camber shape measurement values and improve measurement accuracy.

本発明は斯かる事情に鑑みてなされたものであり、被測
定物の搬送工程長手方向にr(r≧3)個の距離センサ
を並設し、また被測定物を挟んで該r個の各距離センサ
に正対配置させてr個の距離センサを並設し、搬送され
る被測定物が任意の長さ移動する都度、そのときの各距
離センサの被測定物側面までの距ii!を測定値を得、
これらの距離測定値に基づき距離測定点の被測定物幅方
向中央点の幅方向位置座標を求め、これら幅方向位置座
標、未知数としての被測定物の幅方向移動量2首振量、
キャンバ形状として仮定された各係数未定の関数形及び
各距離測定点の搬送方向位置座標の関係を表す多数の連
立一次方程式を得、これを解くことにより、被測定物の
幅方向中央点の幅方向位置座標の測定誤差を低減して、
上述した特願昭61−145388号に比べて精度の高
い被測定物の幅方向中央点のキャンバ形状の関数形だけ
でムく、各搬送タイミングにおける幅方向移動量2首振
量も求まるキャンバ計測方法を提案することを目的とす
る。
The present invention has been made in view of such circumstances, and includes r (r≧3) distance sensors arranged in parallel in the longitudinal direction of the conveyance process of the object to be measured, and the r distance sensors sandwiching the object to be measured. R distance sensors are arranged in parallel, facing directly to each distance sensor, and each time the object being conveyed moves by an arbitrary length, the distance ii of each distance sensor to the side of the object at that time! Get the measurements,
Based on these distance measurement values, find the width direction position coordinates of the center point in the width direction of the object to be measured at the distance measurement point, and calculate these width direction position coordinates, the amount of movement in the width direction of the object to be measured as unknown quantities, the amount of oscillation,
By obtaining a large number of simultaneous linear equations expressing the relationship between the undetermined function form of each coefficient assumed as the camber shape and the position coordinates in the transport direction of each distance measurement point, and solving these, the width of the center point in the width direction of the object to be measured can be calculated. By reducing the measurement error of direction position coordinates,
Compared to the above-mentioned Japanese Patent Application No. 61-145388, the camber measurement is more accurate than the functional form of the camber shape at the center point in the width direction of the object to be measured, and can also determine the amount of movement in the width direction and the amount of swing at each conveyance timing. The purpose is to propose a method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るキャンバ計測方法は、被測定物が搬送され
、その搬送方向に配置したr(r≧3)個の距離センサ
と、被測定物を挟んで該rlllの距離センサに正対配
置したr個の距離センサとを用いて、被測定物が任意の
長さ搬送される都度の被測定物側面までの距離測定値を
得、これに基づき被測定物の幅方向中央点のキャンバ形
状を計測する方法において、対向する2個の距離センサ
の距離測定値に基づき距離測定点1点の被測定物幅方向
中央点の幅方向位置座標を求め、前記被測定物の距離測
定点1点の前記距離センサに接近、離反する方向への幅
方向移動量、前記被測定物の距離測定点1点の内の任息
の1点に対する(11のr−1点の距離測定点夫々の前
記方向への首振量及びキャンバ形状として仮定された関
数の各係数を未知数とし、これらの未知数、前記幅方向
位置座標及びr点の距離測定点の被測定物搬送方向位置
座標の関係を表す多数の連立一次方程式を得、次いで該
連立一次方程式を解くことにより、未知数である幅方向
移動量1首振量及び各係数を決定して被へ11定物の幅
方向中央点のキャンバ形状を計測することを特徴とする
In the camber measurement method according to the present invention, an object to be measured is transported, and r (r≧3) distance sensors are arranged in the transport direction, and the distance sensors are arranged directly facing the rllll distance sensors with the object to be measured in between. Using r distance sensors, the distance measurement value to the side surface of the measured object is obtained each time the measured object is conveyed for an arbitrary length, and based on this, the camber shape at the center point in the width direction of the measured object is determined. In the measurement method, the width direction position coordinates of the center point in the width direction of the object to be measured at one distance measurement point are determined based on the distance measurement values of two opposing distance sensors, and the The amount of movement in the width direction in the direction approaching and moving away from the distance sensor, with respect to any one of the distance measurement points of the object to be measured (the direction of each of the 11 r-1 distance measurement points) The coefficients of the functions assumed as the amount of head oscillation and the camber shape are assumed to be unknowns, and a large number of variables representing the relationship between these unknowns, the position coordinates in the width direction, and the position coordinates in the transport direction of the object of the distance measurement point of point r are calculated. By obtaining simultaneous linear equations and then solving the simultaneous linear equations, the unknown quantities of width direction movement, head swing amount, and each coefficient are determined, and the camber shape at the width direction center point of the fixed object is measured. It is characterized by

〔作用〕[Effect]

本発明方法においては、搬送タイミングにおける被測定
物の幅方向移動量1首振量を未知数とした連立一次方程
式を得るので、これを解くことにより前記幅方向移動量
及び首振量がキャンバ形状を表す関数の係数と共に求め
られる。
In the method of the present invention, simultaneous linear equations are obtained in which the amount of widthwise movement of the object to be measured and the amount of oscillation at the conveyance timing are unknown. It is determined along with the coefficients of the function it represents.

〔原理〕〔principle〕

以下本発明方法の原理をその実施状態を示す第1図に基
づき説明する。被測定物たる搬送材1は1対のレール5
,5′に固着されているテーブルロール6.6・・・の
回転に伴って図中白抜矢符方向に搬送され、1本のレー
ル5上には、レール5の延設方向にr (r≧3)個の
距離センサS、、S2・・・Srがk(1≦にSr)番
目の距離センサSkからの距離が夫々L、、L2・・・
Lrだけ離隔して番号順に固定配置されている。
The principle of the method of the present invention will be explained below based on FIG. 1 showing its implementation state. The conveyed material 1, which is the object to be measured, is connected to a pair of rails 5.
, 5' are conveyed in the direction of the white arrow in the figure as the table rolls 6, 6, . The distances of r≧3) distance sensors S, , S2...Sr from the k (1≦Sr)th distance sensor Sk are L, , L2...
They are fixedly arranged in numerical order and spaced apart by Lr.

また他方のレール5′上には、前記1個の距離センサS
I+S2・・・Sk・・・S、−に夫々対向する位置に
1個の距離センサSI’+32′・・・Sk′・・・s
 l−1が固定配置しである。距離センサS、とs 、
 l・・・距離センサSkとSk′・・・距離センサS
ヒとS6′が夫々搬送材1を挟んで対向する位置にあり
、門塑センサS 1’+  32””Sr’はk(1≦
に≦「)番目の距離センサSk′から夫々1.、.1.
、、・・・Lr−たけ離隔することになる。
Further, the one distance sensor S is mounted on the other rail 5'.
One distance sensor SI'+32'...Sk'...s at a position opposite to I+S2...Sk...S, -, respectively
l-1 is a fixed arrangement. Distance sensors S, and s,
l... Distance sensor Sk and Sk'... Distance sensor S
H and S6' are located at opposite positions with the conveyed material 1 in between, and the gate plastic sensor S1'+32""Sr' is k (1≦
1., .1, respectively from the )-th distance sensor Sk'.
, . . . will be separated by Lr-thickness.

まずこの2r個の距離センサの各搬送タイミングにおけ
る距離測定値に基づき、搬送(距離測定)タイミングに
おける搬送方向rfllの距離センサ配置位置での搬送
材の幅方向中央点の幅方向位置座標を下記に示す手順に
て求める。
First, based on the distance measurement values of these 2r distance sensors at each conveyance timing, the width direction position coordinates of the widthwise center point of the conveyed material at the distance sensor arrangement position in the conveyance direction rflll at the conveyance (distance measurement) timing are determined as follows. Obtain it using the procedure shown.

第2図は1M送材の幅方向中央点の幅方向位置座標を求
める手順を説明するための模式図である。
FIG. 2 is a schematic diagram for explaining the procedure for determining the width direction position coordinates of the width direction center point of a 1M material to be transported.

第2図において直線lを幅方向位置座標の基準線とする
。そして対向する2個の距離センサSk。
In FIG. 2, a straight line 1 is used as a reference line for width direction position coordinates. And two distance sensors Sk facing each other.

S、′の幅方向配置位置座標をwk、wk’、また両距
離センサの距離測定値を夫々j!kr  1に′とする
The widthwise arrangement position coordinates of S,' are wk, wk', and the distance measurement values of both distance sensors are j! kr 1 to '.

すると距離センサS、、S、’に正対する距離測定点A
、 Bの幅方向位置座標は夫々Wk+lk。
Then, the distance measurement point A directly facing the distance sensor S,,S,'
, B's width direction position coordinates are Wk+lk, respectively.

Wk’−14に’となり、対向する両距離センサSk。Wk'-14' and both distance sensors Sk facing each other.

S、′に挾まれる搬送材lの幅方向中央点(つまり線分
ABの中点)Pの幅方向位置座標は(Wk+I!k) 
+ (Wk’−’l!、’)□  ・・・(5) となる。
The width direction position coordinates of the width direction center point (that is, the middle point of line segment AB) of the conveyed material l held by S and ' are (Wk+I!k)
+ (Wk'-'l!,')□...(5).

次に搬送材1の幅方向中央点のキャンバ形状として下記
(6)式を仮定する。
Next, the following equation (6) is assumed as the camber shape at the center point in the width direction of the conveyed material 1.

7 = f (Xl−ΣKl −x’  −(61i=
2 ここで上記(6)式においてt=Q、t=lに対応する
項が含まれていないのは、Xの0次の項(つまり定数項
)は平行移動、Xの1次の項は回転を表すのみであり、
搬送材1のキャンバ形状の認識には関与しないことによ
る。
7 = f (Xl−ΣKl −x′ −(61i=
2 Here, the reason why the terms corresponding to t=Q and t=l are not included in the above equation (6) is that the 0th order term of X (that is, the constant term) is translated, and the 1st order term of X is It only represents rotation,
This is because it is not involved in recognizing the camber shape of the conveyed material 1.

そしてj  (J=1.2・・・n)回目の搬送タイミ
ングにて、r点の幅方向中央点の幅方向位置座標を用い
て下記(7)式に示す1本の方程式を得る。
Then, at the j (J=1.2...n)th conveyance timing, one equation shown in the following equation (7) is obtained using the width direction position coordinates of the width direction center point of the r point.

幅方向位置座標、dJは幅方向移動量、kJは首1mW
kである。)また前記距離センサS5に正対する距離測
定点(搬送方向の座標位置XJ)を首振りの支点と想定
している。
Width direction position coordinates, dJ is width direction movement amount, kJ is neck 1mW
It is k. ) Also, it is assumed that the distance measurement point (coordinate position XJ in the transport direction) directly facing the distance sensor S5 is the fulcrum of the swing.

そして搬送材1の先端から尾端まで、合計n回の搬送タ
イミングにて距離測定を行ったとすると、上記(7)式
に示す如き1本1組の方程式がバ組得られる。つまり合
計r’n本の一次方程式が得られるが、これらを行列表
現すると下記(8)式の如くなる。
If the distance is measured from the tip to the tail end of the conveyed material 1 at a total of n conveyance timings, a set of equations for each piece as shown in the above equation (7) will be obtained. In other words, a total of r'n linear equations are obtained, and when these are expressed in a matrix, the following equation (8) is obtained.

(以下余白) 従って、上記(8)式に示す係数行列へが暖長行列であ
れば、下記(9)式に示す如く最小2乗法を用いて、ま
た正方行列であれば、下記01式にてXが算出される。
(Left below) Therefore, if the coefficient matrix shown in equation (8) above is a warm matrix, use the least squares method as shown in equation (9) below, and if it is a square matrix, use equation 01 below. X is calculated.

Aが縦長行列の場合 X”−(A” −A)−1・八T、y  ・・・(9)
(但し、ATはへの転置行列) Aが正方行列の場合 X−八−1−Y          ・・・頭よって、
キャンバ形状を表す関数の係数に2゜K3・・・KN、
幅方向移動1d+、d2・・・d08首振1に+、に2
・・・knが求められる。
If A is a vertical matrix, then X"-(A"-A)-1.8T, y...(9)
(However, AT is the transposed matrix to) If A is a square matrix, then X-8-1-Y ...Thus,
The coefficient of the function representing the camber shape is 2°K3...KN,
Width direction movement 1d+, d2...d08 Head swing 1 +, 2
... kn is calculated.

次に距離センサの偶発測定誤差の影響として、キャンバ
形状を表す関数の各係数がどれだけ変化し、その結果と
してキャンバ形状がどの程度ゆがむかについて説明する
。尚、ここでは搬送材の長さを4、距離センサを距離1
ずつ等間隔に3(I及び対向側にも間しく距離1ずつ等
間隔に3個配した構成とし、キャンバ関数形を F −f (XI−Σに論・X― s*2 と設定する。
Next, we will explain how much each coefficient of the function representing the camber shape changes as a result of an accidental measurement error of the distance sensor, and how much the camber shape is distorted as a result. In addition, here, the length of the conveyed material is 4, and the distance sensor is 1.
The configuration is such that three elements are equally spaced apart from each other (I and the opposite side are also arranged at equal distances of 1), and the camber function form is set as F - f (XI - Σ = X - s *2).

偶発91定誤差が全くないとした場合の軌跡からの、各
測定点における関数形のtlL@y−rtx+のゆがみ
量が各測定点で偶発的誤差の何倍であるかの期待値を、
距離値を採取するタイミング間の搬送方向の搬送材移動
の長さを1/2.1/4.1/8とした場合夫々につい
て、算出した結果を下記第1表に示す。
The expected value of the amount of distortion of the functional form tlL@y-rtx+ at each measurement point from the trajectory assuming that there is no random error at all is how many times larger than the random error at each measurement point,
The calculated results are shown in Table 1 below for each case where the length of the conveyed material movement in the conveying direction between the timings for collecting distance values is 1/2, 1/4, and 1/8.

(以下余白) 第  1  表 尚、上記m1表に示される数値は具体的には以下の如き
計算法にて算出される。
(Margin below) Table 1 The numerical values shown in the m1 table above are specifically calculated using the following calculation method.

幅方向中央点の幅方向位Wl庄標711J  (i =
 1・・・n、j−1・・・、「−3)に偶発測定#I
玄る距離センサの偶発的測定誤差)が含まれたために、
)’IIJに含まれることとなるY −r l)+3の
軌跡の各測定点搬送方向座標Xj (xj−o・・・4
)における変化量 〔但し、B (k、r(i4) +j)はB−(A” 
−A)−’・八〇の各要素) を求め、xl−0及びxl−4の搬送方向座標位置で、
偶発測定誤差がないとした場合の軌跡と、”I+Jが存
在する場合の軌跡が一致するように重ねた際の両軌跡間
の隔り量を求めると、2   k=1 4  k=1 ε目J+XD 及び ε i+J+Xj 各組の両者(′がないものと′があるもの)についても
別個のものであるから、誤差倍率の期待値はすべての(
t、j)の組における′がないものと′があるもの各々
の2乗和の平方根の各搬送方向座標Xfiでの値となり
、下記の如くなる。
Width direction position of width direction center point Wl sho mark 711J (i =
Accidental measurement #I on 1...n, j-1..., "-3)
Due to the inclusion of (accidental measurement error of the distance sensor)
)'IIJ will be included in Y -r l)+3 transport direction coordinates of each measuring point of the trajectory Xj (xj-o...4
) [However, B (k, r(i4) +j) is B−(A”
-A)-'・Each element of 80) is calculated, and at the transport direction coordinate position of xl-0 and xl-4,
If we calculate the distance between the two trajectories when the trajectory assuming there is no accidental measurement error and the trajectory when "I+J exists" are overlapped so that they match, we get 2 k = 1 4 k = 1 ε. J + XD and ε i+J +
The value at each transport direction coordinate Xfi of the square root of the sum of the squares of the set without ' and the one with ' in the set of t, j) is as follows.

i=1 j−12i=13;1  2 i=13=1 また第2表に前述した特願昭61−145388号で提
案した方法を用い、全く同様にして算出した結果を表す
i=1 j-12i=13; 1 2 i=13=1 Table 2 shows the results calculated in exactly the same manner using the method proposed in Japanese Patent Application No. 61-145388 mentioned above.

(以下余白) 第  2  表 第1表、第2表を比較すれば本発明方法が高精度である
ことは明白である。
(The following is a blank space) Table 2 When Tables 1 and 2 are compared, it is clear that the method of the present invention is highly accurate.

なお、このように測定誤差倍率の期待値に差があるのは
以下の如き理由による。本発明方法では、ei+ J+
Xj     e u j+Xjがすべての(i、j)
の組について、また各組の両者についてすべて別個であ
るが、特願昭61−145388号の方法では対向する
距離センサが1組しかないので、対向する1組の距離セ
ンサの距離測定値を何回も使用することになり、すべて
の e++ j+Xj     e ++ J、Xnのうち
の何項かは同一のものがある。
The reason why there is such a difference in the expected value of the measurement error magnification is as follows. In the method of the present invention, ei+ J+
Xj e u j+Xj is all (i, j)
The method of Japanese Patent Application No. 61-145388 has only one pair of distance sensors facing each other, so what is the distance measurement value of one pair of distance sensors facing each other? Therefore, some terms among all e++ j+Xj e++ J and Xn are the same.

従って特願昭61−145388号の方法では本発明方
法のように、各項毎でその2乗値を求め、求めた各2乗
値の和の平方根を算出することとはならず、同一の項に
ついては事前にそれらの和を求めてからその2乗値を求
め、求めた各2乗値の和の平方根を算出することとなる
。よって両方法の比較では、本発明方法が測定誤差倍率
の期待値は小さく、測定精度は優れている。
Therefore, unlike the method of the present invention, the method of Japanese Patent Application No. 145388 does not calculate the square value of each term and calculate the square root of the sum of the square values. As for the terms, the sum thereof is calculated in advance, the square value thereof is calculated, and the square root of the sum of the calculated square values is calculated. Therefore, when comparing both methods, the method of the present invention has a smaller expected value of measurement error magnification and is superior in measurement accuracy.

〔実施例〕〔Example〕

次に本発明を、第3図に示す如き模am送材lを用いて
キャンバ形状の関数形を計測した実施例に基づき具体的
に説明する。模am送材lはキャンバ形状が3次関数y
 −r (Xl −K 2 x 2+ K ] x ’
であってその長さは4である。また距離センサは長さl
の間隔ごとに3個(S+ +  S2 、Si )また
模擬搬送材1を挟んで各距離センサS、、S2゜Slに
対向する位置に夫々明方fi7114E柵で3だけ離し
て3個(S、’、S、’、S3’)配置されていて、模
am送材lが図中白抜矢符方向にAだけ搬送される都度
、6個の距離センサs、、s2.s、。
Next, the present invention will be specifically explained based on an example in which the functional form of the camber shape was measured using a simulated material feed l as shown in FIG. The camber shape of the model am feeding material l is a cubic function y
-r (Xl -K 2 x 2+ K ] x'
and its length is 4. Also, the distance sensor has a length l
Three distance sensors (S+ + S2, Si) were installed at each interval of 3 (S+ + S2, Si), and 3 distance sensors (S, ', S, ', S3'), and each time the sample material l is conveyed by the distance A in the direction of the white arrow in the figure, six distance sensors s,, s2 . s.

SIZ  s2’、  sx’ニテ$JIlill送1
tl!テノ[jllヲ測定する。各搬送タイミングで1
回につき3個で5回搬送するから全部で15本の連立一
次方程式を得る。
SIZ s2', sx'nite $JIlill sending 1
tl! Measure teno [jllwo. 1 at each transport timing
Since it is carried 5 times with 3 pieces per time, a total of 15 simultaneous linear equations are obtained.

すると前記(81式は具体的には下記(11)式に示す
如くなる。
Then, the above formula (81) becomes specifically as shown in the following formula (11).

(但り距J電τシv521:Z刻°η距青1胴定患と首
徽りの支5色ビし、5r=7−ランク含とか(X全て0
てhる) X#  (AT  −A) −’・A”−Y下記第3表
に、濤られた距離測定値及び幅方向中央点の位置座al
FllJの値を示す、なお距離センサs、+  52−
  S3配置位置を基準線とする。
(However, distance J electric τshi v521: Z time °η distance blue 1 body fixed patient and neck swing support 5 color bi, 5r = 7 - rank included (X all 0
(T)
Distance sensor s, +52−, indicating the value of FllJ
The S3 arrangement position is used as a reference line.

第   3   表 従ってキャンバ形状を表す3次関数の係数(K2゜K3
)、各搬送タイミングにおける幅方向移動量J量(d+
〜d5)1首振量(k+〜ks)が求まる。
Table 3 Therefore, the coefficient of the cubic function (K2゜K3
), width direction movement amount J amount (d+
~d5) The amount of one head vibration (k+~ks) is determined.

そして模I12IM送材1の各測定点におけるキャンバ
形状y = r fxl−0,4x2−0.1x’は下
記第4表及び第4図となる。
The camber shape y = r fxl-0,4x2-0.1x' at each measurement point of the model I12IM material feed 1 is shown in Table 4 and Figure 4 below.

(以下余白) 第   4   表 □ 〔効果〕 以上詳述した如(本発明方法では、キャンバ形状の関数
形だけでなく、搬送タイミングにおける幅方向移動量及
び首振量も求めることができるので、搬送材に幅方向移
動または首振りが生じたとしてもそのキャンバ形状の正
確な計測が可能である。
(Margins below) Table 4 □ [Effects] As detailed above (with the method of the present invention, it is possible to determine not only the functional form of the camber shape but also the amount of width direction movement and the amount of oscillation at the conveyance timing, Even if the material moves in the width direction or swings, its camber shape can be accurately measured.

また、本発明方法では2(Il!1組ずつ複数組の距離
センサを配置してあり、対向する1組の距離センサの距
N1測定値のみで、該1組の距離センサ配置位置の搬送
物幅方向中央点の幅方向位置座標を求められるので、搬
送物の長手方向全体にわたってキャンバ形状の正確な計
測が可能である。
In addition, in the method of the present invention, a plurality of distance sensors are arranged, each set of 2 (Il! Since the width direction position coordinates of the width direction center point can be determined, it is possible to accurately measure the camber shape over the entire longitudinal direction of the conveyed object.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施状態を示す模式図、第2図は
幅方向中央点の位置座標を求める原理を説明するための
模式図、第3図は模t*I!I送材を用いた実施例を示
す模式図、第4図は模擬搬送材におけるキャンバ形状を
表すグラフ、第5図は従来方法の実施状態を示す模式図
、第6図は従来方法の測定点の位置関係を表す模式図で
ある。 1・・・搬送材 SL+  s2 ・・・SF、Sl″ s 21 、 
、 、 s 、I ・・・距離センサ
Fig. 1 is a schematic diagram showing the implementation state of the method of the present invention, Fig. 2 is a schematic diagram for explaining the principle of determining the position coordinates of the center point in the width direction, and Fig. 3 is a schematic diagram of the model t*I! A schematic diagram showing an example using the I-transfer material, FIG. 4 is a graph showing the camber shape of a simulated conveyed material, FIG. 5 is a schematic diagram showing the implementation state of the conventional method, and FIG. 6 is a measurement point of the conventional method. It is a schematic diagram showing the positional relationship of. 1... Conveyed material SL+ s2... SF, Sl''s 21,
, , s, I... Distance sensor

Claims (1)

【特許請求の範囲】 1、被測定物が搬送され、その搬送方向に配置したr(
r≧3)個の距離センサと、被測定物を挟んで該r個の
距離センサに正対配置したr個の距離センサとを用いて
、被測定物が任意の長さ搬送される都度の被測定物側面
までの距離測定値を得、これに基づき被測定物の幅方向
中央点のキャンバ形状を計測する方法において、 対向する2個の距離センサの距離測定値に 基づき距離測定点r点の被測定物幅方向中央点の幅方向
位置座標を求め、前記被測定物の距離測定点r点の前記
距離センサに接近、離反する方向への幅方向移動量、前
記被測定物の距離測定点r点の内の任意の1点に対する
他のr−1点の距離測定点夫々の前記方向への首振量及
びキャンバ形状として仮定された関数の各係数を未知数
とし、これらの未知数前記幅方向位置座標及びr点の距
離測定点の被測定物搬送方向位置座標の関係を表す多数
の連立一次方程式を得、次いで該連立一次方程式を解く
ことにより、未知数である幅方向移動量、首振量及び各
係数を決定して被測定物の幅方向中央点のキャンバ形状
を計測することを特徴とするキャンバ計測方法。 2、搬送される被測定物の表面に沿う方向に配置したr
(r≧3)個の距離センサと、 該r個の距離センサに被測定物を挟んで正 対させて配置したr個の距離センサと、 前記被測定物が任意の長さ搬送される都度 の距離測定値を読込み蓄積する手段と、 これらの蓄積データに基づき距離測定点r 点の被測定物幅方向中央点の幅方向位置座標を求める手
段と、 前記被測定物の距離測定点r点のr個の距 離センサに接近、離反する方向への幅方向移動量、被測
定物の距離測定点r点の内の任意の1点に対する他のr
−1点の距離測定点夫々の前記方向への首振量及びキャ
ンバ形状として仮定された関数の各係数を未知数とし、
これらの未知数、前記幅方向位置座標及びr点の距離測
定点の被測定物搬送方向位置座標の関係を表す多数の連
立一次方程式を得る手段と、 この連立一次方程式を解く手段とを具備す ることを特徴とするキャンバ計測装置。
[Claims] 1. The object to be measured is transported, and the r(
Using r≧3) distance sensors and r distance sensors placed directly opposite the r distance sensors with the object in between, the In this method, a distance measurement value is obtained to the side surface of the object to be measured, and based on this, the camber shape of the center point in the width direction of the object to be measured is measured. The width direction position coordinates of the center point in the width direction of the object to be measured are determined, and the amount of movement in the width direction of the distance measurement point r of the object to be measured in the directions approaching and away from the distance sensor, and the distance of the object to be measured are determined. The amount of oscillation in the direction of each of the distance measurement points of other r-1 points with respect to any one of the points r and each coefficient of the function assumed as the camber shape are unknown, and these unknowns and the width By obtaining a large number of simultaneous linear equations expressing the relationship between the direction position coordinates and the position coordinates of the distance measurement point of the r point in the object transport direction, and then solving the simultaneous linear equations, the unknown quantities of width direction movement and head vibration can be calculated. A camber measurement method characterized by determining the amount and each coefficient and measuring the camber shape at the center point in the width direction of an object to be measured. 2. r placed in the direction along the surface of the object to be measured
(r≧3) distance sensors; r distance sensors arranged to face the object across the r distance sensors; and each time the object to be measured is conveyed an arbitrary length. means for reading and accumulating distance measurement values; means for determining the width direction position coordinates of the center point in the width direction of the object to be measured at the distance measurement point r based on these accumulated data; The amount of movement in the width direction in the direction of approaching and moving away from r distance sensors, and the other r for any one of the r distance measurement points of the object to be measured.
− each coefficient of the function assumed as the amount of swing in the direction of each distance measurement point and the camber shape is an unknown quantity;
Means for obtaining a large number of simultaneous linear equations representing the relationship between these unknowns, the width direction position coordinates, and the object conveying direction position coordinates of the distance measurement point of point r, and means for solving the simultaneous linear equations. A camber measuring device featuring:
JP18473786A 1986-08-05 1986-08-05 Camber measuring method and apparatus Pending JPS6340804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18473786A JPS6340804A (en) 1986-08-05 1986-08-05 Camber measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18473786A JPS6340804A (en) 1986-08-05 1986-08-05 Camber measuring method and apparatus

Publications (1)

Publication Number Publication Date
JPS6340804A true JPS6340804A (en) 1988-02-22

Family

ID=16158479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18473786A Pending JPS6340804A (en) 1986-08-05 1986-08-05 Camber measuring method and apparatus

Country Status (1)

Country Link
JP (1) JPS6340804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854164A (en) * 1995-10-16 1998-12-29 Sumitomo Chemical Company, Limited Method for preparing catalyst component for olefin polymerization, catalyst for olefin polymerization and process for producing olefin polymer with the catalyst
JP2018523829A (en) * 2015-09-10 2018-08-23 ポスコPosco Dimension measuring apparatus and method
CN110057315A (en) * 2019-04-22 2019-07-26 苏州通富超威半导体有限公司 IC pallet curvature method for automatic measurement and equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854164A (en) * 1995-10-16 1998-12-29 Sumitomo Chemical Company, Limited Method for preparing catalyst component for olefin polymerization, catalyst for olefin polymerization and process for producing olefin polymer with the catalyst
JP2018523829A (en) * 2015-09-10 2018-08-23 ポスコPosco Dimension measuring apparatus and method
CN110057315A (en) * 2019-04-22 2019-07-26 苏州通富超威半导体有限公司 IC pallet curvature method for automatic measurement and equipment
CN110057315B (en) * 2019-04-22 2021-05-11 苏州通富超威半导体有限公司 Automatic measuring method and equipment for IC tray bending

Similar Documents

Publication Publication Date Title
DE10260816B4 (en) Measuring device for measuring the roundness of a railway wheel
CN108801772A (en) Strain gauge positioning method for high-speed tensile load test
CN109916486A (en) Anti- cheating dynamic vehicle weighing method and device
US11981362B2 (en) Method and measuring vehicle for determining an actual position of a track
JPS6340804A (en) Camber measuring method and apparatus
JPH08261742A (en) Measuring method for the shape of rail for railway
RU187948U1 (en) Device for determining the parameters of a moving vehicle
JP3264210B2 (en) Roller table pass line measuring device and pass line measuring method
JPS631913A (en) Method and apparatus for measuring camber
CN110440826B (en) Odometer data processing method for position and attitude measurement system
JPH0557523B2 (en)
JPS62217109A (en) Camber measuring method
AU2010292720B2 (en) Movable measuring apparatus for external contour precision of vehicle body
JPH01180411A (en) Surface profile measuring method
JPH0556806B2 (en)
CN210603147U (en) Parallelism detection tool for double-track lifter sliding block
JP3028686B2 (en) Method and apparatus for measuring bending of top surface of railroad rail
JPH0979838A (en) Straightness measuring device
JPH01150807A (en) Camber shape measuring method
JPH0776687B2 (en) Automatic plate thickness measuring device
JP2560940B2 (en) Web tracking controller
TW200848298A (en) Traveling vehicle system
JPH0776688B2 (en) Automatic plate thickness measuring device
JPS6188911A (en) Automatic plate thickness control method in tandem rolling
JPS62180208A (en) Method and instrument for measuring surface shape