JPS6340365Y2 - - Google Patents

Info

Publication number
JPS6340365Y2
JPS6340365Y2 JP1980099811U JP9981180U JPS6340365Y2 JP S6340365 Y2 JPS6340365 Y2 JP S6340365Y2 JP 1980099811 U JP1980099811 U JP 1980099811U JP 9981180 U JP9981180 U JP 9981180U JP S6340365 Y2 JPS6340365 Y2 JP S6340365Y2
Authority
JP
Japan
Prior art keywords
pump
flow rate
discharge
bypass passage
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980099811U
Other languages
Japanese (ja)
Other versions
JPS5722686U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980099811U priority Critical patent/JPS6340365Y2/ja
Publication of JPS5722686U publication Critical patent/JPS5722686U/ja
Application granted granted Critical
Publication of JPS6340365Y2 publication Critical patent/JPS6340365Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、動力舵取装置用ポンプ装置に係り、
特に、車両等の走行速度の上昇に伴ない舵取装置
への作動油の吐出流量を減少させるのに好適な動
力舵取装置用ポンプ装置に関する。
[Detailed description of the invention] [Field of industrial application] The present invention relates to a pump device for a power steering device.
In particular, the present invention relates to a pump device for a power steering device suitable for reducing the discharge flow rate of hydraulic oil to a steering device as the traveling speed of a vehicle increases.

〔従来の技術〕[Conventional technology]

周知のように、動力舵取装置の操作力の軽減度
は、一般にポンプ装置からの作動油の供給量に比
例する。通常のポンプ装置の主軸はエンジン等の
駆動部に連結されているため、何らかの制御手段
を設けないと、高速走行時はポンプ回転数が高く
なり、作動油の吐出流量も多くなつて舵取装置が
異常に軽くなり、ハンドルの操作が不安定となる
危険がある。
As is well known, the degree of reduction in the operating force of the power steering device is generally proportional to the amount of hydraulic fluid supplied from the pump device. The main shaft of a normal pump device is connected to a driving part such as an engine, so unless some kind of control means is provided, the pump rotation speed will be high when driving at high speeds, and the discharge flow rate of hydraulic fluid will also increase, causing damage to the steering system. There is a risk that the handle will become abnormally light and the steering wheel will become unstable.

そこで従来は、基本的なポンプ装置として、舵
取装置に作動油を供給するポンプの吐出側と吸込
側とをバイパス通路を介して互に連通するととも
に、余剰吐出油を前記ポンプの吐出側から吸込側
に戻す流量調整弁をこのバイパス通路に設けたも
のが考えられた。これによると、設定吐出流量を
超える余剰油が流量調整弁によりポンプの吸込側
に戻されるので、第1図に流量特性曲線X1で示
すように、吐出流量はポンプ回転数の上昇に伴つ
て漸増後、ある一定値に留まる。つまり、高速走
行となつても、ハンドルの軽さは均一化する。
Therefore, conventionally, as a basic pump device, the discharge side and suction side of a pump that supplies hydraulic oil to the steering device are communicated with each other via a bypass passage, and the excess discharge oil is drained from the discharge side of the pump. It has been considered that a flow rate regulating valve that returns to the suction side is provided in this bypass passage. According to this, surplus oil exceeding the set discharge flow rate is returned to the suction side of the pump by the flow rate adjustment valve, so the discharge flow rate increases as the pump rotation speed increases, as shown by the flow rate characteristic curve X1 in Figure 1. After a gradual increase, it remains at a certain value. In other words, even when driving at high speeds, the steering wheel remains evenly light.

しかし、高速走行時には低速走行時よりもハン
ドル操作を重くするのが車両等の走行安全上望ま
しい。最近では、前記基本的なポンプ装置に補助
的な流量制御手段を加え、ポンプの高速回転時
は、逆に吐出流量を減少させることが考えられて
いる。例えば、流量制御弁の一部を利用してポン
プの吐出流量制御用絞り径を変化させる可変絞り
形のもの、または流量制御弁に付属するオリフイ
スよりもポンプ側の通路に設けたベンチユリによ
るベンチユリ効果を利用して流量制御弁を移動さ
せバイパス流路の開口面積を拡大するベンチユリ
形のものなどである。
However, when driving at high speeds, it is desirable to operate the steering wheel more heavily than when driving at low speeds in terms of driving safety. Recently, it has been considered to add an auxiliary flow rate control means to the basic pump device to reduce the discharge flow rate when the pump rotates at high speed. For example, a variable throttle type that uses a part of the flow control valve to change the orifice diameter for controlling the pump's discharge flow rate, or a vent lily effect created by a vent lily installed in the passage on the pump side of the orifice attached to the flow control valve. These include bench lily-shaped valves that use the flow rate control valve to expand the opening area of the bypass flow path.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

ところが、これらの手段はいずれもポンプの吐
出側(高圧側)すなわち負荷側の不安定な流量に
基づいて吐出流量を制御するため、精度と信頼性
に問題がある。例えば、高速走行中ハンドルを切
つた時に流量が上昇して一瞬ハンドルが軽くなつ
たりすることがある。また、流量制御弁の一部を
利用したり、別にベンチユリを設けたりすること
は、限られたスペースに種々の機構を詰め込むこ
とになり、結局、構成が非常に複雑となる。
However, since all of these means control the discharge flow rate based on the unstable flow rate on the discharge side (high pressure side), that is, the load side of the pump, they have problems in accuracy and reliability. For example, when you turn the steering wheel while driving at high speed, the flow rate may increase and the steering wheel may become light for a moment. Furthermore, using a part of the flow control valve or providing a separate bench lily means cramming various mechanisms into a limited space, resulting in a very complicated configuration.

本考案の目的は、単純な構造で、高速走行時の
舵取装置への作動油の吐出流量を減少させること
が可能な動力舵取装置用ポンプ装置を提供するこ
とである。
An object of the present invention is to provide a pump device for a power steering device that has a simple structure and is capable of reducing the flow rate of hydraulic fluid discharged to the steering device during high-speed travel.

〔課題を解決するための手段〕[Means to solve the problem]

本考案は、上記目的を達成するために、舵取装
置に作動油を供給するポンプの吐出側と吸込側と
をバイパス通路を介して互いに連通するととも
に、余剰吐出油を前記ポンプの吐出側から吸込側
に戻す流量調整弁をこのバイパス通路に設けたも
のにおいて、前記ポンプの吐出側の流量調整弁よ
りも下流側部位と前記ポンプの吸込室部位とを補
助バイパス通路を介して互いに連通し、この補助
バイパス通路の途中に前記ポンプの吸込側を流れ
る作動油の油圧の大きさに応じて開閉し前記ポン
プの高速回転時のさらに余剰な吐出油を前記ポン
プの吐出側から吸込室に戻す補助流量調整弁を前
記流量調整弁とは別体設けた動力舵取装置用ポン
プ装置を提案するものである。
In order to achieve the above object, the present invention communicates the discharge side and suction side of a pump that supplies hydraulic oil to the steering device with each other via a bypass passage, and drains excess discharge oil from the discharge side of the pump. A flow regulating valve for returning the flow to the suction side is provided in the bypass passage, and a region downstream of the flow regulating valve on the discharge side of the pump and a suction chamber region of the pump are communicated with each other via an auxiliary bypass passage, This auxiliary bypass passage opens and closes in response to the hydraulic pressure of the hydraulic oil flowing on the suction side of the pump, and serves as an auxiliary bypass passage that returns excess discharge oil from the discharge side of the pump to the suction chamber when the pump rotates at high speed. The present invention proposes a pump device for a power steering device in which a flow rate adjustment valve is provided separately from the flow rate adjustment valve.

すなわち、ポンプの吸込側の圧力が負荷に直接
影響されないことを利用して、より安定した高速
回転時の吐出流量減少作用が行えるようにすると
ともに、比較的簡単な弁構成を実現した。また、
舵取装置への吐出流量の減少により配管抵抗が減
少するから、燃費の向上も図ることができる。
That is, by taking advantage of the fact that the pressure on the suction side of the pump is not directly affected by the load, a more stable discharge flow rate reduction effect during high-speed rotation can be performed, and a relatively simple valve configuration has been realized. Also,
Since piping resistance is reduced by reducing the discharge flow rate to the steering device, fuel efficiency can also be improved.

〔作用〕[Effect]

ポンプ装置内の作動油の状態を観察すると、第
2図に示すように、ポンプ吐出部1から吐出され
た作動油は高速走行時には、舵取装置のギヤボツ
クスヘの主流Aと、流量調整弁2からバイパス通
路3を介してポンプ吸込室4へ分流Bとして戻る
余剰吐出油とに分かれる。この余剰吐出油は、タ
ンクからの吸込通路5を介する吸込油とバイパス
通路3内で合流し、吸込室4に流入する。この場
合、バイパス通路3の流量調整弁2側の部位(i)と
吸込室4側の部位(ii)とで圧力傾向を調べると、第
3図に示すように、(i)では負荷Pが、また(ii)で
は正圧Pが作用する(スーパーチヤージ効果と
いう)。吸込室部位(iii)ではさらに高い正圧Pが
作用する。つまり、ポンプの吸込側を流れる作動
油の油圧は各部で大きさが異なる。しかし、この
圧力差は吐出側と異なり、負荷の影響による変動
を生じることがなく、常時安定している。
Observing the state of the hydraulic oil in the pump device, as shown in Fig. 2, the hydraulic oil discharged from the pump discharge part 1 flows into the main stream A to the gearbox of the steering device and from the flow rate adjustment valve 2 when traveling at high speed. The excess discharged oil is separated into a branch flow B which returns to the pump suction chamber 4 via the bypass passage 3. This surplus discharged oil joins the suction oil from the tank via the suction passage 5 in the bypass passage 3 and flows into the suction chamber 4. In this case, when examining the pressure trends at the part (i) on the flow rate regulating valve 2 side of the bypass passage 3 and the part (ii) on the suction chamber 4 side, as shown in Fig. 3, in (i) the load P is , and in (ii), positive pressure P acts (referred to as supercharge effect). An even higher positive pressure P acts in the suction chamber portion (iii). In other words, the hydraulic pressure of the hydraulic oil flowing on the suction side of the pump differs in magnitude at each part. However, unlike on the discharge side, this pressure difference does not fluctuate due to the influence of load and is always stable.

本考案はこのような事情に着目してなされたも
ので、作動油の圧力状態が安定しているポンプ吸
込側の油圧の大きさに応じた弁操作を行うことに
より、ポンプが高速回転した場合に吐出流量を安
定状態で確実に減少させ、併せて燃費向上を向上
させることができる。
This invention was developed with a focus on this situation, and by operating the valve according to the amount of oil pressure on the pump suction side, where the pressure state of the hydraulic oil is stable, it is possible to prevent the pump from rotating at high speed. It is possible to reliably reduce the discharge flow rate in a stable state, and at the same time, improve fuel efficiency.

〔実施例〕〔Example〕

以下、本考案の一実施例を図面を参照して説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

まず、第4図によりポンプ構成を説明する。ポ
ンプはベーン式のもので、ケーシング6の略中央
に設けたロータ7を、駆動軸8及びプーリ9を介
して、エンジンにより回転駆動する。ロータ7に
摺嵌したベーン10の外周側の吸込室11には、
タンク12から吸込通路13とバイパス通路14
とを介して、作動油を供給する。また、ベーン1
0の側部には、吐出ポート15を介して高圧室1
6が連通している。この高圧室16からは吐出通
路17を介して作動油を舵取装置のギヤボツクス
(図示せず)に供給する。
First, the pump configuration will be explained with reference to FIG. The pump is of a vane type, and a rotor 7 provided approximately in the center of a casing 6 is rotationally driven by an engine via a drive shaft 8 and a pulley 9. In the suction chamber 11 on the outer peripheral side of the vane 10 that is slidably fitted on the rotor 7,
From the tank 12 to the suction passage 13 and bypass passage 14
Hydraulic oil is supplied through. Also, vane 1
The high pressure chamber 1 is connected to the side of 0 through the discharge port 15.
6 are connected. Hydraulic oil is supplied from this high pressure chamber 16 via a discharge passage 17 to a gearbox (not shown) of the steering device.

次に、第4図および第5図により流量制御部の
構成を説明する。ポンプの吐出側すなわち吐出通
路17と、吸込側すなわち吸込室11とを互いに
連通させるバイパス通路14に、流量調整弁18
を設けてある。流量調整弁18は調整スプリング
19により、吐出通路17側に規定圧力で付勢さ
れ、その吐出通路17とバイパス通路14とを通
じる弁孔20を通常は閉じている。また、吐出通
路17の流量調整弁18よりも下流側のオリフイ
ス21のさらに下流側に、吐出通路17と吸込室
11とを互いに連通する補助バイパス通路22を
設け、補助バイパス通路22の途中に、ポンプの
吸込側を流れる作動油の油圧に応じて通路22を
開く補助流量調整弁23を設けてある。補助バイ
パス通路22は互いに略直角に交叉する一対の管
路すなわち吐出流路側管路22Aと吸込室側管路
22Bとを有する。補助流量調整弁23はピスト
ン状であり、軸線を吸込側管路22Bの軸線と一
致させて各管路22A,22Bの交叉部に配置し
てある。つまり、補助流量調整弁23の周面で吐
出流路側管路22Aを、また一端面で吸込室側管
路22Bを塞ぐようになつている。さらに、補助
流量制御弁23の他端面は連絡管路24を介して
バイパス通路14の流量調整弁側の部位に臨ま
せ、この他端面部にはスーパーチヤージ効果によ
り負圧を作用させる一方、補助調整スプリング2
5により所定圧で一端側方向に押圧してある。
Next, the configuration of the flow rate control section will be explained with reference to FIGS. 4 and 5. A flow rate regulating valve 18 is provided in the bypass passage 14 that communicates the discharge side of the pump, that is, the discharge passage 17, and the suction side, that is, the suction chamber 11.
is provided. The flow rate adjustment valve 18 is biased toward the discharge passage 17 at a specified pressure by an adjustment spring 19, and normally closes a valve hole 20 that communicates with the discharge passage 17 and the bypass passage 14. Furthermore, an auxiliary bypass passage 22 that communicates the discharge passage 17 and the suction chamber 11 with each other is provided further downstream of the orifice 21 on the downstream side of the flow rate adjustment valve 18 of the discharge passage 17, and in the middle of the auxiliary bypass passage 22, An auxiliary flow regulating valve 23 is provided which opens the passage 22 in accordance with the hydraulic pressure of the hydraulic oil flowing on the suction side of the pump. The auxiliary bypass passage 22 has a pair of pipelines that intersect with each other at substantially right angles, that is, a discharge flow path side pipeline 22A and a suction chamber side pipeline 22B. The auxiliary flow rate regulating valve 23 has a piston shape and is arranged at the intersection of the respective pipes 22A and 22B with its axis aligned with the axis of the suction side pipe 22B. In other words, the circumferential surface of the auxiliary flow rate regulating valve 23 closes the discharge flow path side conduit 22A, and the one end surface closes the suction chamber side conduit 22B. Further, the other end surface of the auxiliary flow control valve 23 is made to face the portion of the bypass passage 14 on the flow rate adjustment valve side via the communication pipe 24, and negative pressure is applied to this other end surface due to the supercharge effect, while Auxiliary adjustment spring 2
5, it is pressed toward one end side with a predetermined pressure.

このような構成では、車両等の低速走行時、す
なわちポンプの低速回転時は吐出油が吐出通路1
7からオリフイス21を介して駆動装置方向にの
み流れるが、速度が上がるにつれて、まず流量調
整弁18が調整スプリング19に抗して押圧さ
れ、弁孔20を開くので、規定流量以上の余剰吐
出油は分流Cとなつてバイパス通路14に流れ込
む。さらに高速になると、スーパーチヤージ効果
が大きくなり、補助流量調整弁23の一端に作用
する吸込室11側の正圧及び他端に作用するバイ
パス通路14側の負圧がより大きくなり、補助流
量調整弁23が補助調整スプリング25に抗して
他端側方向(矢印イ)に吸引され、補助バイパス
通路すなわち管路22A,22Bが連通状態にな
り、さらに余剰な吐出油がオリフイス21の下流
側から補助バイパス通路22を介して吸込室11
側に流れ込む。第1図に流量特性曲線X2で示す
ように、ポンプが高速回転するにつれて吐出流量
が減少する。したがつて、車両等は高速走行時に
ハンドルが重くなり、走行安定性が増大する。な
お、補助調整スプリング25による補助流量調整
弁25のセツト圧力等を調整すると、例えば第1
図に流量特性曲線X3で示すように吐出流量の減
少するタイミングや設定流量等を種々変更でき
る。
In such a configuration, when the vehicle is running at low speed, that is, when the pump is rotating at low speed, the discharge oil flows through the discharge passage 1.
7 through the orifice 21, but as the speed increases, the flow rate adjustment valve 18 is first pressed against the adjustment spring 19 and opens the valve hole 20, so that excess discharged oil exceeding the specified flow rate becomes a branch flow C and flows into the bypass passage 14. As the speed increases further, the supercharge effect becomes larger, and the positive pressure on the suction chamber 11 side acting on one end of the auxiliary flow rate regulating valve 23 and the negative pressure on the bypass passage 14 side acting on the other end become larger, and the auxiliary flow rate increases. The regulating valve 23 is sucked in the direction of the other end (arrow A) against the auxiliary regulating spring 25, the auxiliary bypass passage, that is, the pipe lines 22A and 22B are brought into communication, and excess discharged oil is discharged to the downstream side of the orifice 21. from the suction chamber 11 via the auxiliary bypass passage 22
flows into the side. As shown by the flow rate characteristic curve X2 in FIG. 1, the discharge flow rate decreases as the pump rotates at high speed. Therefore, when a vehicle or the like is running at high speed, the steering wheel becomes heavy, and running stability is increased. Note that when the set pressure of the auxiliary flow rate adjustment valve 25 is adjusted by the auxiliary adjustment spring 25, for example, the first
As shown by the flow rate characteristic curve X3 in the figure, the timing at which the discharge flow rate decreases, the set flow rate, etc. can be changed in various ways.

〔考案の効果〕[Effect of idea]

本考案によれば、ポンプの吐出側と吸込室とを
連通する補助バイパス通路に、吸込側例えばバイ
パス通路を流れる作動油の油圧の大きさに応じて
開閉する補助流量調整弁を設けたので、高速回転
時の吐出流量がその補助バイパス通路を介する吸
込室へ流入により減ることは勿論であるが、補助
流量調整弁をポンプの吸込側の常に安定な圧力に
応じて動作させるから、負荷変動の影響のない安
定した流量制御作用が確実に得られる。したがつ
て、従来の吐出側のみで圧力を検出するものと異
なり、信頼性が大幅に向上する。また、この補助
流量調整弁は基本的な流量調整弁と別体に設けて
あるため、従来の一体的なもの等に比較して構成
が単純になる。さらに舵取装置へのポンプの流量
を減少させることにより、配管抵抗が減少し、消
費馬力が少なくなり、車両等の燃費向上にもな
る。
According to the present invention, the auxiliary bypass passage that communicates the discharge side of the pump with the suction chamber is provided with an auxiliary flow rate regulating valve that opens and closes depending on the magnitude of the hydraulic pressure of the hydraulic oil flowing through the suction side, for example, the bypass passage. Of course, the discharge flow rate during high-speed rotation is reduced by flowing into the suction chamber via the auxiliary bypass passage, but since the auxiliary flow rate adjustment valve is operated according to the always stable pressure on the suction side of the pump, load fluctuations are reduced. A stable flow rate control action without any influence can be reliably obtained. Therefore, unlike the conventional method in which pressure is detected only on the discharge side, reliability is significantly improved. Further, since this auxiliary flow rate adjustment valve is provided separately from the basic flow rate adjustment valve, the configuration is simpler than a conventional integrated valve. Furthermore, by reducing the flow rate of the pump to the steering device, piping resistance is reduced, horsepower consumption is reduced, and fuel efficiency of vehicles, etc. is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はポンプの流量特性を示す図、第2図は
ポンプ装置の一般的構成を示す図、第3図は第2
図ポンプの圧力特性を示す図、第4図は本考案に
よるポンプ装置の構成の一例を示す断面図、第5
図は第4図の−線で切つた流量制御部の構成
を示す断面図である。 11……吸込室、14……バイパス通路、17
……吐出側(吐出通路)、18……流量調整弁、
22……補助バイパス通路、23……補助流量調
整弁。
Figure 1 is a diagram showing the flow rate characteristics of the pump, Figure 2 is a diagram showing the general configuration of the pump device, and Figure 3 is a diagram showing the flow rate characteristics of the pump.
Figure 4 is a cross-sectional view showing an example of the configuration of the pump device according to the present invention; Figure 5 is a diagram showing the pressure characteristics of the pump;
This figure is a sectional view showing the configuration of the flow rate control section taken along the - line in FIG. 4. 11...Suction chamber, 14...Bypass passage, 17
...Discharge side (discharge passage), 18...Flow rate adjustment valve,
22...Auxiliary bypass passage, 23...Auxiliary flow rate adjustment valve.

Claims (1)

【実用新案登録請求の範囲】 舵取装置に作動油を供給するポンプの吐出側と
吸込側とをバイパス通路を介して互いに連通する
とともに、余剰吐出油を前記ポンプの吐出側から
吸込側に戻す流量調整弁を前記バイパス通路に設
けたものにおいて、 前記ポンプの吐出側の流量調整弁よりも下流側
部位と前記ポンプの吸込室部位とを補助バイパス
通路を介して互いに連通し、 当該補助バイパス通路の途中に前記ポンプの吸
込側を流れる作動油の油圧の大きさに応じて開閉
し前記ポンプの高速回転時のさらに余剰な吐出油
を前記ポンプの吐出側から吸込室に戻す補助流量
調整弁を前記流量調整弁とは別体に設けた ことを特徴とする動力舵取装置用ポンプ装置。
[Claims for Utility Model Registration] The discharge side and suction side of a pump that supplies hydraulic oil to the steering device are communicated with each other via a bypass passage, and excess discharged oil is returned from the discharge side to the suction side of the pump. A flow rate adjustment valve is provided in the bypass passage, wherein a portion downstream of the flow rate adjustment valve on the discharge side of the pump and a suction chamber portion of the pump are communicated with each other via an auxiliary bypass passage; An auxiliary flow rate adjustment valve is provided in the middle of the process, which opens and closes depending on the hydraulic pressure of the hydraulic oil flowing through the suction side of the pump, and returns excess discharge oil from the discharge side of the pump to the suction chamber when the pump rotates at high speed. A pump device for a power steering device, characterized in that the pump device is provided separately from the flow rate regulating valve.
JP1980099811U 1980-07-15 1980-07-15 Expired JPS6340365Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980099811U JPS6340365Y2 (en) 1980-07-15 1980-07-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980099811U JPS6340365Y2 (en) 1980-07-15 1980-07-15

Publications (2)

Publication Number Publication Date
JPS5722686U JPS5722686U (en) 1982-02-05
JPS6340365Y2 true JPS6340365Y2 (en) 1988-10-21

Family

ID=29461442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980099811U Expired JPS6340365Y2 (en) 1980-07-15 1980-07-15

Country Status (1)

Country Link
JP (1) JPS6340365Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598043Y2 (en) * 1978-12-29 1984-03-12 自動車機器株式会社 flow control valve

Also Published As

Publication number Publication date
JPS5722686U (en) 1982-02-05

Similar Documents

Publication Publication Date Title
US4412789A (en) Oil pump unit
EP0502263B2 (en) Continuously variable transmission with an adjustable pump
JPS6358270B2 (en)
JPH0123675B2 (en)
JPS6340365Y2 (en)
EP0004041B1 (en) Apparatus for limiting the fluid volume output in a rotary pump
JPH0626565A (en) Hydraulic controller of continuously variable transmission
JPS60129402A (en) Hydraulic circuit of construction machine
JPS5958186A (en) Variable-capacity type pump for power steering
JPH022700Y2 (en)
JP2569367Y2 (en) Flow control valve
JPS6339167Y2 (en)
JPS58214688A (en) Driving device of rotary pump for power-driven steering device
JPS6327556B2 (en)
JPH0526956B2 (en)
JPS6353064U (en)
JPS6014949Y2 (en) pump equipment
JPS591606B2 (en) Hydrostatic power transmission equipment for hydraulic vehicles, etc.
JPH023982Y2 (en)
JPH0316306B2 (en)
JPS6016793Y2 (en) pump equipment
JPS598043Y2 (en) flow control valve
JPS5810601B2 (en) Hydraulic circuit of hydraulic traveling system
JP3366119B2 (en) Engine supercharger
JPH0139661Y2 (en)