JPS6339860B2 - - Google Patents

Info

Publication number
JPS6339860B2
JPS6339860B2 JP55121532A JP12153280A JPS6339860B2 JP S6339860 B2 JPS6339860 B2 JP S6339860B2 JP 55121532 A JP55121532 A JP 55121532A JP 12153280 A JP12153280 A JP 12153280A JP S6339860 B2 JPS6339860 B2 JP S6339860B2
Authority
JP
Japan
Prior art keywords
ultrasonic
oscillator
piezoelectric element
leaf springs
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55121532A
Other languages
Japanese (ja)
Other versions
JPS5745450A (en
Inventor
Teruo Kishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP55121532A priority Critical patent/JPS5745450A/en
Publication of JPS5745450A publication Critical patent/JPS5745450A/en
Publication of JPS6339860B2 publication Critical patent/JPS6339860B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/221Arrangements for directing or focusing the acoustical waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、試験片に繰返し荷重を加えることに
よりその内部に生じてゆく亀裂の長さやその状態
を計測できるようにした亀裂計測装置に用いて好
適な焦点位置の調整可能な超音波探触子装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for adjusting the focus position suitable for use in a crack measuring device that is capable of measuring the length and condition of cracks that occur inside a test piece by repeatedly applying a load to the test piece. Regarding a possible ultrasonic probe device.

従来の亀裂計測手段として、試験片に、超音波
発振子と超音波受振子とを所定の角度を有するよ
うに配置し、上記超音波発振子から所定の角度で
発振された超音波が、試験片内を通りながら、そ
の内部に形成される亀裂先端で反射し、その後超
音波受振子で受振されるまでの時間を計測して、
この計測時間と予じめ設定された超音波の伝搬速
度および超音波の発振受振角度等から、上記試験
片内の亀裂先端位置を計測できるようにしたもの
がある。
As a conventional crack measurement method, an ultrasonic oscillator and an ultrasonic receiver are placed on a test piece at a predetermined angle, and the ultrasonic waves emitted from the ultrasonic oscillator at a predetermined angle are used for testing. The time it takes for the vibration to pass through the piece, reflect at the tip of a crack formed inside it, and then be received by an ultrasonic receiver, is measured.
There is a method in which the position of the crack tip within the test piece can be measured from this measurement time, a preset ultrasonic propagation velocity, an ultrasonic oscillation/reception angle, etc.

しかしながら、このような従来の亀裂計測手段
では、超音波発振子と超音波受振子との配置角度
が固定されているので、試験片内部において亀裂
が進行してゆくと、この亀裂先端へ向けて有効に
超音波を発振させることができず、また受振感度
も悪くなるという問題点がある。
However, in such conventional crack measurement means, the arrangement angle of the ultrasonic oscillator and ultrasonic receiver is fixed, so as the crack progresses inside the test piece, the direction toward the tip of the crack increases. There are problems in that it is not possible to effectively oscillate ultrasonic waves, and the reception sensitivity is also poor.

このような問題点を解決するには、超音波発振
子と超音波受振子それぞれの発振方向と受振方向
とを亀裂の進行に合わせて移動させて反射位置に
追従される必要がある。
To solve these problems, it is necessary to move the oscillation direction and reception direction of the ultrasonic oscillator and the ultrasonic receiver to follow the reflection position as the crack progresses.

ところで、被検査部の移動する反射位置に検知
手段を追従させる技術としては、特開昭54−
61959号公報に記載のものがあり、これは、鋳造
機の湯面を一定範囲に保持すべく、照射器からの
光を湯面で反射させ、それを受光器で検出するよ
うにし、湯面の変化に応じて照射器または受光器
をサーボモータで変位させ、その変位量によつて
湯面の高さを演算するようにしたものであるが、
湯面レベルを検出する装置である関係上、湯面に
対する照射器または受光器のサーボモーターによ
る変位は、一方を固定し他方を移動する方式とさ
れているため、面の移動(レベル変動)検出には
適しているものの、亀裂計測におけるような点の
移動(亀裂先端の進行)検出に有効に用いること
はできない。
By the way, as a technique for making the detection means follow the moving reflection position of the part to be inspected, there is
There is a method described in Publication No. 61959, in which the light from the irradiator is reflected on the hot water surface and detected by a light receiver in order to maintain the hot water level in the casting machine within a certain range. The irradiator or receiver is displaced by a servo motor according to the change in the temperature, and the height of the hot water level is calculated based on the amount of displacement.
Since this is a device that detects the hot water level, the displacement of the irradiator or the receiver by the servo motor with respect to the hot water level is determined by fixing one and moving the other, so it is difficult to detect surface movement (level fluctuation). However, it cannot be used effectively for detecting point movement (progression of the crack tip) as in crack measurement.

本発明は、このような問題点を解決しようとす
るもので、超音波発振子と超音波受振子との配置
角度を自動的に調整して、進行してくる亀裂先端
へ向けて有効に超音波を発振させたり、亀裂先端
から反射してくる超音波を感度良く受振させたり
することができるようにした焦点位置の調整可能
な超音波探触子装置を提供することを目的とす
る。
The present invention aims to solve these problems by automatically adjusting the arrangement angle of the ultrasonic oscillator and the ultrasonic receiver to effectively direct the ultrasonic beam toward the tip of the advancing crack. It is an object of the present invention to provide an ultrasonic probe device capable of emitting sound waves and receiving ultrasonic waves reflected from the tip of a crack with high sensitivity and capable of adjusting the focal position.

このため、本発明の焦点位置の調整可能な超音
波探触子装置は、試験片に対向して、超音波を発
振しうる超音波発振子と、同超音波発振子から発
振された超音波のうち上記試験片内で反射してく
る超音波を受振しうる超音波受振子とをそなえ、
上記の超音波発振子および超音波受振子が、それ
ぞれ相互に所定の角度を有して配置された板ばね
に取付けられて、上記の各板ばねに圧電素子(バ
イモルフ等)が装着され、上記圧電素子に機械的
歪みを起こさせて上記板ばね相互の配置角度を変
化させることにより焦点位置を調整すべく、上記
圧電素子に相互に極性の異なる第1および第2の
交流信号のうちいずれか一方を選択的に供給しう
る発振器が設けられたことを特徴としている。
For this reason, the ultrasonic probe device of the present invention with an adjustable focal position includes an ultrasonic oscillator that can oscillate ultrasonic waves facing a test piece, and an ultrasonic wave oscillated from the ultrasonic oscillator. It is equipped with an ultrasonic transducer that can receive the ultrasonic waves reflected within the above test piece,
The above-mentioned ultrasonic oscillator and ultrasonic receiver are each attached to leaf springs arranged at a predetermined angle to each other, and a piezoelectric element (bimorph etc.) is attached to each of the above-mentioned leaf springs. In order to adjust the focus position by causing mechanical strain in the piezoelectric element and changing the mutual arrangement angle of the leaf springs, one of first and second alternating current signals having mutually different polarities is applied to the piezoelectric element. It is characterized by being provided with an oscillator that can selectively supply one of the two.

また、本発明の焦点位置の調整可能な超音波探
触子装置は、上記超音波受振子からの信号が最大
となるように上記発振器から上記圧電素子へ上記
の第1または第2の交流信号を供給させるべく、
制御回路が上記の超音波受振子と発振器との間に
介設されたことを特徴としている。
Further, in the ultrasonic probe device of the present invention, the focus position of which can be adjusted is such that the first or second alternating current signal is transmitted from the oscillator to the piezoelectric element so that the signal from the ultrasonic transducer is maximized. In order to supply
It is characterized in that a control circuit is interposed between the ultrasonic transducer and the oscillator.

以下、図面により本発明の一実施例としての焦
点位置の調整可能な超音波探触子装置について説
明すると、第1図はその電気回路図、第2,3図
はいずれもその作用を説明するための模式図であ
る。
Hereinafter, an ultrasonic probe device with an adjustable focal position as an embodiment of the present invention will be explained with reference to the drawings. Fig. 1 is an electric circuit diagram thereof, and Figs. 2 and 3 both explain its operation. FIG.

第1図に示すごとく、試験片Sには、超音波探
触子装置Aが取付けられており、この装置Aの本
体Hには、一対の板ばね1,2が、相互に所定の
角度を有して、即ち具体的には試験片Sに向かつ
て末広がりとなるハ字形となるように固定的に取
付けられている。
As shown in FIG. 1, an ultrasonic probe device A is attached to the test piece S, and a pair of leaf springs 1 and 2 are attached to the main body H of the device A at a predetermined angle to each other. Specifically, it is fixedly attached so as to form a V-shape that widens toward the test piece S.

また、各板ばね1,2には、それぞれこれを挾
持するように一対の圧電素子(バイモルフ等)
3,3′,4,4′が装着されている。
In addition, each leaf spring 1, 2 is provided with a pair of piezoelectric elements (bimorph, etc.) to sandwich the leaf springs 1 and 2, respectively.
3, 3', 4, 4' are installed.

これらの圧電素子3,3′,4,4′は、電力増
幅器5を介して発振器6から第1の交流信号とし
ての正の極性をもつたパルス列信号(以下「正パ
ルス列信号」という。)を受けると、所定の方向
に機械的歪みを起こし、同様に電力増幅器5を介
して発振器6から第2の交流信号としての負の極
性をもつたパルス列信号(以下「負パルス列信
号」という。)を受けると、上記所定の方向とは
全く逆の方向へ機械的歪みを起こす素子である。
These piezoelectric elements 3, 3', 4, 4' receive a pulse train signal with positive polarity (hereinafter referred to as "positive pulse train signal") as a first AC signal from an oscillator 6 via a power amplifier 5. When received, mechanical distortion occurs in a predetermined direction, and a pulse train signal with a negative polarity (hereinafter referred to as "negative pulse train signal") as a second AC signal is generated from the oscillator 6 via the power amplifier 5. When subjected to stress, this element causes mechanical strain in a direction completely opposite to the above-mentioned predetermined direction.

上述の点に鑑みて、本例では、正パルス列信号
又は負パルス列信号を受けると同じ方向に歪むよ
うに一対の圧電素子3,3′および4,4′が板ば
ね1および2に装着されており、これにより圧電
素子3,3′,4,4′に正パルス列信号又は負パ
ルス列信号が印加された場合に、板ばね1,2相
互の配置角度を、第2,3図に示すごとく、拡げ
たり、狭めたりすることができるようになつてい
る。
In view of the above points, in this example, a pair of piezoelectric elements 3, 3' and 4, 4' are attached to leaf springs 1 and 2 so that they are distorted in the same direction when receiving a positive pulse train signal or a negative pulse train signal. As a result, when a positive pulse train signal or a negative pulse train signal is applied to the piezoelectric elements 3, 3', 4, 4', the mutual arrangement angle of the leaf springs 1 and 2 is expanded as shown in Figs. It is now possible to narrow or narrow the area.

さらに、板ばね1の先端部には、超音波を試験
片Sへ向けて発振しうるように電力増幅器7を介
して発振器8に接続された超音波発振子9が取付
けられており、板ばね2の先端部には、超音波発
振子9から発振された超音波のうち試験片S内で
反射してくる超音波を受振しうる超音波受振子1
0が取付けられている。
Furthermore, an ultrasonic oscillator 9 connected to an oscillator 8 via a power amplifier 7 is attached to the tip of the leaf spring 1 so as to oscillate ultrasonic waves toward the test piece S. At the tip of the ultrasonic transducer 2, there is an ultrasonic transducer 1 capable of receiving ultrasonic waves reflected within the test piece S among the ultrasonic waves emitted from the ultrasonic transducer 9.
0 is attached.

なお、超音波発振子9から試験片Sへ向けて発
振された超音波が、試験片Sの表面で反射しない
ように本体Hには水や油等のマツチング物質が充
填されている。
The main body H is filled with a matching substance such as water or oil so that the ultrasonic waves emitted from the ultrasonic oscillator 9 toward the test piece S are not reflected on the surface of the test piece S.

そして、超音波受振子10は、高速応答型前置
増幅器11を介して制御回路12の入力側に接続
されており、この制御回路12の出力側は発振器
6に接続されていて、これにより超音波受振子1
0と発振器6との間に、制御回路12が介設され
ていることになる。
The ultrasonic transducer 10 is connected to the input side of a control circuit 12 via a high-speed response preamplifier 11, and the output side of this control circuit 12 is connected to an oscillator 6. Sound wave receiver 1
A control circuit 12 is interposed between the oscillator 6 and the oscillator 6.

この制御回路12は、高速応答型前置増幅器1
1で増幅された超音波受振子10からの信号につ
いて、そのピーク値を検出するピーク値検出回路
13をそなえており、このピーク値検出回路13
からのピーク値信号はRAM(Random Access
Memory)14を介して最大判別回路15へ送ら
れ、この最大判別回路15で上記ピーク値信号の
うち最大のものが判別されるようになつている。
This control circuit 12 includes a high-speed response preamplifier 1
A peak value detection circuit 13 is provided for detecting the peak value of the signal from the ultrasonic transducer 10 amplified in step 1.
The peak value signal from RAM (Random Access
The peak value signal is sent to the maximum discrimination circuit 15 via the memory 14, and the maximum discrimination circuit 15 discriminates the maximum value among the peak value signals.

すなわち、超音波受振子10以下の装置は発振
器8と周期的に同期しており、ピーク値検出回路
13が、各サイクルごとに受振信号のピーク値を
検出するようになつている。
That is, the ultrasonic transducer 10 and other devices are periodically synchronized with the oscillator 8, and the peak value detection circuit 13 detects the peak value of the received signal every cycle.

RAM14はその都度検出された上記ピーク値
を記憶すると同時に、これまでに記憶している最
大信号と上記ピーク値とを最大判別回路15へ出
力する。
The RAM 14 stores the peak value detected each time, and at the same time outputs the maximum signal stored so far and the peak value to the maximum discrimination circuit 15.

なお、第2図に示す状態から第3図に示す状態
へ亀裂が進展するにつれて、発振から受振までの
時間は短くなり、受振信号のピーク値はしだいに
高くなる。
Note that as the crack progresses from the state shown in FIG. 2 to the state shown in FIG. 3, the time from oscillation to reception becomes shorter, and the peak value of the reception signal gradually increases.

そして、最大判別回路15で、RAMからの最
大信号とその都度検出されたピーク値とを比較し
て、上記ピーク値信号の方が低ければ、この最大
判別回路15はトリガ信号を出力して、超音波受
振子10からの信号が最大となるよう焦点位置を
調整すべく、スタート/リセツト信号回路16を
作動させ、発振器6から正パルス列信号又は負パ
ルス列信号を出力させることができるようになつ
ている。
Then, the maximum discrimination circuit 15 compares the maximum signal from the RAM with the peak value detected each time, and if the peak value signal is lower, the maximum discrimination circuit 15 outputs a trigger signal. In order to adjust the focus position so that the signal from the ultrasonic transducer 10 is maximized, the start/reset signal circuit 16 can be operated to output a positive pulse train signal or a negative pulse train signal from the oscillator 6. There is.

したがつて、この制御回路12によつて、超音
波受振子10からの信号が最大となるように、即
ち試験片S内の亀裂先端位置に焦点位置を調整し
て最大受振感度となるように、発振器6から圧電
素子3,3′,4,4′へ正パルス列信号又は負パ
ルス列信号を供給させることができるのである。
Therefore, this control circuit 12 adjusts the focus position to the crack tip position in the specimen S so that the signal from the ultrasonic transducer 10 is maximized, so that the maximum vibration receiving sensitivity is achieved. , a positive pulse train signal or a negative pulse train signal can be supplied from the oscillator 6 to the piezoelectric elements 3, 3', 4, 4'.

なお、第1図中、符号17はピーク値検出回路
13、RAM14および最大判別回路15のタイ
ミングをとるために各回路13〜15へクロツク
信号を供給するクロツク信号発生器を示してい
る。
In FIG. 1, reference numeral 17 indicates a clock signal generator that supplies clock signals to each of the circuits 13 to 15 in order to set the timing of the peak value detection circuit 13, RAM 14, and maximum discrimination circuit 15.

本発明の焦点位置の調整可能な超音波探触子装
置は、上述のごとく構成されているので、試験片
Sに繰返し荷重を加えることにより、試験片Sの
内部へ進行してゆく亀裂18の先端部18aに対
し自動的に焦点位置を調整するには、まず亀裂1
8を生じさせるべき位置(予じめ試験片Sに切欠
きが形成されている。)に対して超音波発振子9
と超音波受振子10とが軸対称位置に配設される
ように装置本体Hを試験片Sに取付ける。
Since the ultrasonic probe device of the present invention having an adjustable focal position is configured as described above, by repeatedly applying a load to the test piece S, the crack 18 progressing into the inside of the test piece S can be prevented. To automatically adjust the focal point position with respect to the tip 18a, first
Ultrasonic oscillator 9 is placed at the position where 8 is to be generated (a notch is formed in the test piece S in advance).
The apparatus main body H is attached to the test piece S so that the ultrasonic transducer 10 and the ultrasonic transducer 10 are arranged in an axially symmetrical position.

ついで、試験片Sに繰返し荷重を加えると、亀
裂18の先端部18aは試験片Sの内部へ向けて
第2図に示す状態から順次第3図に示す状態へと
進行してゆくが、このとき超音波受振子10から
の信号は制御回路12へ入力されているので、亀
裂先端部18aの進行に伴つてこの制御回路12
でその感度が低下したことを検出され、その旨の
信号が発振器6へ入力される。
Next, when a repeated load is applied to the test piece S, the tip 18a of the crack 18 progresses toward the inside of the test piece S from the state shown in FIG. 2 to the state shown in FIG. 3. Since the signal from the ultrasonic transducer 10 is input to the control circuit 12, as the crack tip 18a advances, the control circuit 12
It is detected that the sensitivity has decreased, and a signal to that effect is input to the oscillator 6.

これにより、発振器6は例えば負パルス列信号
を圧電素子3,3′,4,4′へ供給するため、圧
電素子3,3′,4,4′が歪み、板ばね1,2相
互の配置角度が狭まつてゆき、超音波発振子9か
ら超音波がちようど亀裂18の先端部18aへ向
かうように発振され、超音波受振子10で亀裂先
端部18aからの超音波を受振できるようにな
る。
As a result, since the oscillator 6 supplies, for example, a negative pulse train signal to the piezoelectric elements 3, 3', 4, 4', the piezoelectric elements 3, 3', 4, 4' are distorted, and the arrangement angle between the leaf springs 1, 2 is becomes narrower, and the ultrasonic oscillator 9 oscillates an ultrasonic wave toward the tip 18a of the crack 18, and the ultrasonic receiver 10 becomes able to receive the ultrasonic wave from the tip 18a of the crack. .

ところで、圧電素子3,3′,4,4′が負パル
ス列信号を受けつづけることにより、板ばね1,
2相互の配置角度が狭まつてゆき、焦点調整が行
なわれるが、オーバーシユート等により、板ばね
1,2相互の配置角度が更に狭まると、感度が鈍
るため、制御回路12は発振器6へ他の制御信号
を供給し、これにより発振器6は正パルス列信号
を圧電素子3,3′,4,4′へ供給する。
By the way, as the piezoelectric elements 3, 3', 4, and 4' continue to receive negative pulse train signals, the leaf springs 1,
As the angle between the leaf springs 1 and 2 narrows, focus adjustment is performed. However, if the angle between the leaf springs 1 and 2 narrows further due to overshoot, etc., the sensitivity decreases, so the control circuit 12 Another control signal is supplied, whereby the oscillator 6 supplies a positive pulse train signal to the piezoelectric elements 3, 3', 4, 4'.

このようにして圧電素子3,3′,4,4′が正
パルス列信号を受けると、板ばね1,2相互の配
置角度が逆に拡がり、再び正焦点位置となるよう
に調整される。
When the piezoelectric elements 3, 3', 4, and 4' receive the positive pulse train signal in this manner, the angle at which the leaf springs 1 and 2 are arranged relative to each other widens, and is adjusted to the positive focal position again.

なお、制御回路12には、従来と同様に、発振
受振角度検出手段および時間差計測手段が設けら
れているので、予め設定された超音波の伝播速度
を用いて、亀裂先端位置が計測されるようになつ
ている。
Note that the control circuit 12 is provided with an oscillation/reception angle detection means and a time difference measurement means as in the conventional case, so that the crack tip position can be measured using a preset ultrasonic propagation velocity. It's getting old.

以後は、亀裂18の先端部18aが進行してゆ
くにつれて、前述の操作が自動的に行なわれ、超
音波の発振・受振方向が亀裂先端部18aへ絶え
ず向けられて、これにより最大感度で亀裂計測を
行なうことができる。
Thereafter, as the tip 18a of the crack 18 progresses, the above-mentioned operation is automatically performed, and the direction of ultrasonic oscillation and reception is constantly directed toward the tip 18a of the crack, thereby cracking the crack with maximum sensitivity. Measurements can be made.

なお、本装置の使用の態様として、圧電素子
3,3′および4,4′へ別々の発振器から独立に
正パルス列信号や負パルス列信号を供給して、焦
点合わせを行なうこともでき、又圧電素子3,
3′および4,4′のいずれか一方へ正パルス列信
号や負パルス列信号を供給して、焦点合わせを行
なうこともできる。
In addition, as a mode of use of this device, it is also possible to perform focusing by supplying positive pulse train signals and negative pulse train signals to the piezoelectric elements 3, 3' and 4, 4' independently from separate oscillators. Element 3,
Focusing can also be performed by supplying a positive pulse train signal or a negative pulse train signal to either one of 3' and 4, 4'.

さらに、各板ばね1,2に一対の圧電素子3,
3′,4,4′を装着する代わりに、各板ばね1,
2にそれぞれ1個ずつ圧電素子を装着するように
しても同様に板ばね1,2相互の配置角度を変え
ることができる。
Furthermore, each leaf spring 1, 2 has a pair of piezoelectric elements 3,
3', 4, 4', each leaf spring 1,
Even if one piezoelectric element is attached to each of the leaf springs 1 and 2, the mutual arrangement angle of the leaf springs 1 and 2 can be similarly changed.

なお、発振器から圧電素子へ供給する電気信号
として、正パルス列信号や負パルス列信号を用い
る代わりに、相互に極性の異なる適宜2種の交流
信号(鋸歯状波信号や三角波信号あるいは正弦波
信号等)を用いることもできる。
Note that instead of using a positive pulse train signal or a negative pulse train signal as the electric signal supplied from the oscillator to the piezoelectric element, two types of alternating current signals (such as a sawtooth wave signal, a triangular wave signal, or a sine wave signal) having mutually different polarities may be used. You can also use

以上詳述したように、本発明の焦点位置の調整
可能な超音波探触子装置によれば、試験片に対向
して、超音波を発振しうる超音波発振子と、同超
音波発振子から発振された超音波のうち上記試験
片内で反射してくる超音波を受振しうる超音波受
振子とをそなえ、上記の超音波発振子および超音
波受振子が、それぞれ相互に所定の角度を有して
配置された板ばねに取付けられて、上記の各板ば
ねに圧電素子(バイモルフ等)が装着され、上記
圧電素子に相互に極性の異なる第1および第2の
交流信号のうちいずれか一方を選択的に供給しう
る発振器が設けられているので、上記圧電素子に
機械的に歪みを起こさせて上記板ばね相互の配置
角度を関連付けて変化させることができ、これに
より焦点位置を調整して正確な測定を行なえる利
点がある。
As described in detail above, according to the ultrasonic probe device of the present invention whose focal position can be adjusted, an ultrasonic oscillator that faces the test piece and is capable of oscillating ultrasonic waves; and an ultrasonic receiver capable of receiving the ultrasonic waves reflected within the test piece among the ultrasonic waves emitted from the test piece, and the ultrasonic transducer and the ultrasonic receiver are arranged at a predetermined angle with respect to each other. A piezoelectric element (such as a bimorph) is attached to each of the above-mentioned leaf springs, and one of the first and second AC signals having mutually different polarities is applied to the piezoelectric element. Since an oscillator is provided that can selectively supply one of the two, the piezoelectric element is mechanically strained to change the angle of arrangement of the leaf springs in relation to each other, thereby changing the focal position. It has the advantage of being able to be adjusted to make accurate measurements.

また、本発明の焦点位置の調整可能な超音波探
触子装置では、上記超音波受振子からの信号が最
大となるように上記発振器から上記圧電素子へ上
記の第1または第2の交流信号を供給させるべ
く、制御回路が上記の超音波受振子と発振器との
間に介設されているので、上記焦点位置の調整操
作を自動的に行なえる利点がある。
Further, in the ultrasonic probe device of the present invention whose focus position is adjustable, the first or second alternating current signal is transmitted from the oscillator to the piezoelectric element so that the signal from the ultrasonic transducer is maximized. Since a control circuit is interposed between the ultrasonic receiver and the oscillator in order to supply the above-mentioned ultrasonic transducer, there is an advantage that the adjustment operation of the focal position can be automatically performed.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例としての焦点位置の調整
可能な超音波探触子装置を示すもので、第1図は
その電気回路図、第2,3図はいずれもその作用
を説明するための模式図である。 1,2…板ばね、3,3′,4,4′…圧電素
子、5…電力増幅器、6…発振器、7…電力増幅
器、8…発振器、9…超音波発振子、10…超音
波受振子、11…高速応答型前置増幅器、12…
制御回路、13…ピーク値検出回路、14…
RAM、15…最大判別回路、16…スタート/
リセツト信号回路、17…クロツク信号発生器、
18…亀裂、18a…亀裂先端部、A…超音波探
触子装置、H…装置本体、S…試験片。
The figure shows an adjustable focal position ultrasonic probe device as an embodiment of the present invention. Figure 1 is its electric circuit diagram, and Figures 2 and 3 are for explaining its operation. FIG. 1, 2... Leaf spring, 3, 3', 4, 4'... Piezoelectric element, 5... Power amplifier, 6... Oscillator, 7... Power amplifier, 8... Oscillator, 9... Ultrasonic oscillator, 10... Ultrasonic receiver Pendulum, 11...Fast response preamplifier, 12...
Control circuit, 13...Peak value detection circuit, 14...
RAM, 15...Maximum discrimination circuit, 16...Start/
Reset signal circuit, 17...clock signal generator,
18...Crack, 18a...Crack tip, A...Ultrasonic probe device, H...Device body, S...Test piece.

Claims (1)

【特許請求の範囲】 1 試験片に対向して、超音波を発振しうる超音
波発振子と、同超音波発振子から発振された超音
波のうち上記試験片内で反射してくる超音波を受
振しうる超音波受振子とをそなえ、上記の超音波
発振子および超音波受振子が、それぞれ相互に所
定の角度を有して配置された板ばねに取付けられ
て、上記の各板ばねに圧電素子が装着され、上記
圧電素子に機械的歪みを起こさせて上記板ばね相
互の配置角度を変化させることにより焦点位置を
調整すべく、上記圧電素子に相互に極性の異なる
第1および第2の交流信号のうちいずれか一方を
選択的に供給しうる発振器が設けられたことを特
徴とする、焦点位置の調整可能な超音波探触子装
置。 2 試験片に対向して、超音波を発振しうる超音
波発振子と、同超音波発振子から発振された超音
波のうち上記試験片内で反射してくる超音波を受
振しうる超音波受振子とをそなえ、上記の超音波
発振子および超音波受振子が、それぞれ相互に所
定の角度を有して配置された板ばねに取付けられ
て、上記の各板ばねに圧電素子が装着され、上記
圧電素子に機械的歪みを起こさせて上記板ばね相
互の配置角度を変化させることにより焦点位置を
調整すべく、上記圧電素子に相互に極性の異なる
第1および第2の交流信号のうちいずれか一方を
選択的に供給しうる発振器が設けられ、且つ、上
記超音波受振子からの信号が最大となるように上
記発振器から上記圧電素子へ上記の第1または第
2の交流信号を供給させるべく、制御回路が上記
の超音波受振子と発振器との間に介設されたこと
を特徴とする、焦点位置の調整可能な超音波探触
子装置。
[Claims] 1. An ultrasonic oscillator facing the test piece and capable of emitting ultrasonic waves, and an ultrasonic wave reflected within the test piece among the ultrasonic waves emitted from the ultrasonic oscillator. The ultrasonic transducer and the ultrasonic transducer are each attached to leaf springs arranged at a predetermined angle to each other, and each of the leaf springs A piezoelectric element is attached to the piezoelectric element, and the piezoelectric element is provided with first and second electrodes having mutually different polarities in order to adjust the focal position by causing mechanical strain in the piezoelectric element and changing the mutual arrangement angle of the leaf springs. 1. An ultrasonic probe device with an adjustable focus position, characterized in that an oscillator is provided that can selectively supply either one of two alternating current signals. 2. An ultrasonic oscillator facing the test piece that can emit ultrasonic waves, and an ultrasonic wave that can receive the ultrasonic waves reflected within the test piece among the ultrasonic waves emitted from the ultrasonic oscillator. The ultrasonic oscillator and ultrasonic receiver are each attached to leaf springs arranged at a predetermined angle to each other, and a piezoelectric element is attached to each of the leaf springs. , in order to adjust the focus position by causing mechanical strain in the piezoelectric element and changing the mutual arrangement angle of the leaf springs, the piezoelectric element is supplied with first and second alternating current signals having mutually different polarities. An oscillator capable of selectively supplying either one is provided, and the oscillator supplies the first or second alternating current signal to the piezoelectric element such that the signal from the ultrasonic transducer is maximized. An ultrasonic probe device capable of adjusting a focal position, characterized in that a control circuit is interposed between the ultrasonic transducer and the oscillator.
JP55121532A 1980-09-02 1980-09-02 Ultrasonic probe apparatus capable of adjusting focal position Granted JPS5745450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55121532A JPS5745450A (en) 1980-09-02 1980-09-02 Ultrasonic probe apparatus capable of adjusting focal position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55121532A JPS5745450A (en) 1980-09-02 1980-09-02 Ultrasonic probe apparatus capable of adjusting focal position

Publications (2)

Publication Number Publication Date
JPS5745450A JPS5745450A (en) 1982-03-15
JPS6339860B2 true JPS6339860B2 (en) 1988-08-08

Family

ID=14813560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55121532A Granted JPS5745450A (en) 1980-09-02 1980-09-02 Ultrasonic probe apparatus capable of adjusting focal position

Country Status (1)

Country Link
JP (1) JPS5745450A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381155A (en) * 1976-12-25 1978-07-18 Mitsubishi Heavy Ind Ltd Measuring method of crackin depth by ultrasonec waves
JPS5461959A (en) * 1977-10-26 1979-05-18 Ishikawajima Harima Heavy Ind Level detector for molten metal in mold of continuous casting machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381155A (en) * 1976-12-25 1978-07-18 Mitsubishi Heavy Ind Ltd Measuring method of crackin depth by ultrasonec waves
JPS5461959A (en) * 1977-10-26 1979-05-18 Ishikawajima Harima Heavy Ind Level detector for molten metal in mold of continuous casting machine

Also Published As

Publication number Publication date
JPS5745450A (en) 1982-03-15

Similar Documents

Publication Publication Date Title
US4046477A (en) Interferometric method and apparatus for sensing surface deformation of a workpiece subjected to acoustic energy
US5675075A (en) Acoustic microscope
US5025665A (en) Non-contacting on-line paper strength measuring system
US7667851B2 (en) Method and apparatus for using a two-wave mixing ultrasonic detection in rapid scanning applications
US8626468B2 (en) MEMS device comprising oscillations measurements means
CN103471998A (en) Ultrasonic material reflection and transmission coefficient laser measurement system
JPH0518942A (en) Ultrasonic sound speed measuring device according to v(z) characteristic and ultrasonic microscope using the same
US3651687A (en) Ultrasonic micrometer
US6286359B1 (en) Method for testing frequency response characteristics of laser displacement/vibration meters
US5952554A (en) Method for testing frequency response characteristics of laser displacement/vibration meters
JPS6339860B2 (en)
US6269700B1 (en) Contactless ultrasonic device for dimensional inspection
Noui et al. Two quantitative optical detection techniques for photoacoustic Lamb waves
JPS62255802A (en) Method of monitoring moving body and laser monitor system thereof
RU116632U1 (en) DIAGNOSTIC SYSTEM FOR MEASURING FREE VIBRATIONS OF A MONITORED OBJECT
JP2010223653A (en) Device and method for measuring internal state of structure
CN111537444A (en) Laser ultrasonic nondestructive testing method and system with repetition frequency virtually regulated
US3004425A (en) Signal-transmitting and receiving system
JP2001208730A (en) Non-contact ultrasonic apparatus
JP2003121423A (en) Laser ultrasonic inspection device and laser ultrasonic inspection method
US4160388A (en) Power measuring apparatus for ultrasonic transducers
CN111044185B (en) Method and device for measuring internal change by laser
JPH08248006A (en) Method and system for inspecting defect of structure
JPH0611385A (en) Measuring instrument for acoustic velocity of transverse wave and young's modulus and/or poisson ratio measuring instrument using the device
SU603896A1 (en) Method of testing acoustic contact