JPS6339853B2 - - Google Patents

Info

Publication number
JPS6339853B2
JPS6339853B2 JP55123989A JP12398980A JPS6339853B2 JP S6339853 B2 JPS6339853 B2 JP S6339853B2 JP 55123989 A JP55123989 A JP 55123989A JP 12398980 A JP12398980 A JP 12398980A JP S6339853 B2 JPS6339853 B2 JP S6339853B2
Authority
JP
Japan
Prior art keywords
acid
concentration
hydrofluoric acid
dialysis
strong
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55123989A
Other languages
Japanese (ja)
Other versions
JPS5748653A (en
Inventor
Tomoo Takahari
Hiroshi Arigane
Kyoshi Matsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55123989A priority Critical patent/JPS5748653A/en
Publication of JPS5748653A publication Critical patent/JPS5748653A/en
Publication of JPS6339853B2 publication Critical patent/JPS6339853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、金属材料の酸洗または溶解等の工程
に使用されるふつ化水素酸と硝酸、硫酸、塩酸等
の強酸との混酸(以下単に混酸と記す)中の各遊
離酸の分析方法に関するもので、特に金属―ふつ
素錯イオンが共存する場合に陰イオン交換膜を通
して拡散する遊離酸の透析率を金属イオン濃度に
よつて補正することにより、より正確な遊離酸の
分析値を得ることを目的とし、ふつ素イオンと錯
イオンをつくりやすい鉄やウラニウム等の金属イ
オンが共存する系の遊離ふつ化水素酸および上記
に示した各種強酸濃度を測定するのに適した方法
である。 金属材料を酸洗又は溶解させる場合、例えば硝
酸―ふつ化水素酸の混合水溶液でステンレス鋼等
を酸洗する場合、酸洗浴内には次式の反応で生ず
るイオンあるいは分子子が存在する。 HNO3H++NO3 - (1) HFH++F- (2) 2Fe+6H+2Fe3++3H2↑ (3) Fe3++HFFeF2++H+ (4) FeF2++HFFeF2 ++H+ (5) FeF2 ++HFFeF3↓+H+ (6) これらのイオン種のうち酸洗に有効なのはふつ
化水素酸および硝酸であり、これらの濃度を適正
に管理することが酸洗作業を効率良く行なうため
には必要である。そのため遊離酸濃度を正確に分
析する必要があるがFeF2+、FeF2 +等のふつ化鉄
錯イオンは不安定であるため、この酸洗液を直接
滴定したり、分光光度法で測定するためにPH調整
したり試薬を加えて発色操作を行なつたりすると
F-イオンを解離したりFeF2+イオンが共存する
HFを消費してFeF2 +となる等正確な分析値を求
めることは困難である。このため本出願人等は特
開昭55―40908号および特願昭54―6575号(特開
昭55―99062号)でのべたように陰イオン交換膜
を用い、FeFx n+等を残し、遊離の硝酸、ふつ化
水素酸のみを拡散透析させて分析する方法を発明
した。しかし、その後更に詳細に検討したところ
陰イオン交換膜を透析する硝酸、ふつ化水素酸の
酸量はふつ素と錯イオンをつくる金属が共存する
と大巾に減少することを見出した。 金属イオンを含む酸溶液をイオン交換膜で拡散
透析する場合、透析率が僅かに向上することは一
般に知られているがふつ化水素酸の場合に大巾に
透析率が減少することは予測できなかつた新らし
い知見である。このためふつ素と錯イオンをつく
る金属イオンを含む溶液のふつ化水素酸の濃度を
正確に求めるために、ふつ化水素酸濃度を透析率
で補正する方法を検討し、確立した。 本発明の方法は、 1 特願昭54―6575(特開昭55―99062号)にのべ
たように陰イオン交換膜により酸洗液中のF-
イオン、強酸の陰イオンおよび水素イオンを拡
散透析させ、この溶液の一定量にクエン酸ナト
リウム溶液を加えイオン選択性電極で電位を測
定する、 2 容量分析法、吸光光度分析法、あるいは比重
測定等により金属イオン濃度を求め、この金属
イオン濃度とふつ化水素酸および強酸の透析率
の関係を求めておく。実際には種々の濃度の金
属イオンを含むふつ化水素酸と強酸の混合溶液
の原液の鉄イオン濃度、遊離酸濃度を求めてお
き、イオン交換膜により拡散透析して得た遊離
酸濃度と原液の酸濃度の比を補正係数として縦
軸にとり、金属イオン濃度を横軸にとつてプロ
ツトして上記関係線を求める(第2図、第3図
参照)。 3 1で求めた試料溶液の電極電位Exと、濃度
既知の溶液の電極電位Esとから、酸濃度Cxは
(7)式によつて求められる。 Ex−Es=alog10(Cs−Cx) (7) ここで、Csは濃度既知の溶液の酸濃度であ
る。しかし、この酸濃度Csは、みかけの濃度
であり、真の酸濃度Cは、 C=Cx×1/A (8) である。 ここで、Aは2で求めた補正係数で、金属イ
オンとつぎの関係がある。 logA=±α〔Mn+〕±logβ (9) 但し、Mn+;金属イオン濃度、α,β:係
数、透析時間およびイオン交換膜面積によつて
異なるので別に実験的に求める。 本発明はこのようにみかけの酸濃度をこれらの
透析率で補正し真のふつ化水素酸および強酸濃度
を求めることを特徴とする。 以下、本発明を第1図により詳細に説明する。 まず、(7)式のaを求めるため、既知濃度の硝酸
―ふつ化水素酸標準溶液Bを恒温槽2に導き、透
析槽3で一定時間拡散透析させる。拡散液を計量
装置4に導き、一定量の緩衝溶液Cを加えたのち
イオン選択性電極等を装備した酸濃度測定装置5
に入れ電極電位をよみとりコンピユーター、デイ
スプレイ7にインプツトする。濃度の異なつた別
の標準溶液を同様に操作し、そのときの電極電位
から(7)式のaを計算する。 つぎに試料溶液Aを過器1から恒温槽2に導
き、同様にして酸の電極電位をコンピユーター・
デイスプレイ7中に記憶させる。一方過器1を
とおした試料溶液を金属イオン濃度測定装置6に
導き、金属イオン濃度とコンピユーター・デイス
プレイ7に入れる。 あらかじめ記憶させてある第2図および第3図
に示した補正係数対金属イオン濃度曲線から補正
係数をよみとり(8)式により計算させて試料溶液の
酸濃度を求める。 酸濃度測定装置5および金属イオン濃度測定装
置6としては中和滴定法、酸化還元滴定法、電導
度滴定法、吸光光度法等の任意の分析装置が適用
でき、イオン電極法にこだわらない。 つぎに本発明の実施例を示す。 実施例 ステンレス鋼板の酸洗液を用い、金属イオンに
よる補正をしないで分析したところ次の結果が得
られた。
The present invention relates to a method for analyzing each free acid in a mixed acid (hereinafter simply referred to as mixed acid) of hydrofluoric acid and strong acids such as nitric acid, sulfuric acid, and hydrochloric acid used in processes such as pickling or dissolving metal materials. In particular, when metal-fluorine complex ions coexist, the dialysis rate of the free acid that diffuses through the anion exchange membrane is corrected by the metal ion concentration to obtain more accurate free acid analysis values. This method is suitable for measuring the concentrations of free hydrofluoric acid and the various strong acids listed above in systems where metal ions such as iron and uranium, which tend to form complex ions with fluorine ions, coexist. When pickling or dissolving a metal material, for example when pickling stainless steel or the like with a mixed aqueous solution of nitric acid and hydrofluoric acid, ions or molecules generated by the following reaction are present in the pickling bath. HNO 3 H + +NO 3 - (1) HFH + +F - (2) 2Fe+6H + 2Fe 3+ +3H 2 ↑ (3) Fe 3+ +HFFeF 2+ +H + (4) FeF 2+ +HFFeF 2 + +H + (5) FeF 2 + +HFFeF 3 ↓+H + (6) Among these ionic species, hydrofluoric acid and nitric acid are effective for pickling, and proper control of their concentrations is essential for efficient pickling work. is necessary. Therefore, it is necessary to accurately analyze the free acid concentration, but since iron fluoride complex ions such as FeF 2+ and FeF 2 + are unstable, it is necessary to directly titrate this pickling solution or measure it using spectrophotometry. If you adjust the pH or add reagents for color development,
Dissociates F - ions and coexists with FeF 2+ ions
It is difficult to obtain accurate analysis values, such as HF being consumed to become FeF 2 + . For this reason, the present applicants used an anion exchange membrane as described in Japanese Patent Application Laid-open No. 55-40908 and Japanese Patent Application No. 54-6575 (Japanese Patent Application No. 55-99062), leaving FeF x n+ etc. We invented a method to analyze only free nitric acid and hydrofluoric acid by diffusion dialysis. However, after a more detailed study, it was discovered that the amount of nitric acid and hydrofluoric acid used to dialyze the anion exchange membrane is greatly reduced when fluorine and metals that form complex ions coexist. It is generally known that when an acid solution containing metal ions is subjected to diffusion dialysis using an ion-exchange membrane, the dialysis rate slightly improves, but in the case of hydrofluoric acid, it cannot be predicted that the dialysis rate will decrease drastically. This is new knowledge. Therefore, in order to accurately determine the concentration of hydrofluoric acid in a solution containing metal ions that form complex ions with fluorine, we investigated and established a method to correct the hydrofluoric acid concentration by the dialysis rate. The method of the present invention includes the following steps: 1. As stated in Japanese Patent Application No. 54-6575 (Japanese Unexamined Patent Publication No. 55-99062), F - in the pickling solution is removed using an anion exchange membrane.
ions, anions of strong acids, and hydrogen ions are subjected to diffusion dialysis, and a sodium citrate solution is added to a certain amount of this solution, and the potential is measured using an ion-selective electrode. 2. Capacity spectrometry, spectrophotometry, or specific gravity measurement, etc. The metal ion concentration is determined by , and the relationship between this metal ion concentration and the dialysis rate of hydrofluoric acid and strong acid is determined. In reality, the iron ion concentration and free acid concentration of the stock solution of a mixed solution of hydrofluoric acid and strong acid containing various concentrations of metal ions are determined, and the free acid concentration and stock solution obtained by diffusion dialysis using an ion exchange membrane are calculated. The above relationship line is obtained by plotting the acid concentration ratio as a correction coefficient on the vertical axis and the metal ion concentration on the horizontal axis (see FIGS. 2 and 3). 3 From the electrode potential Ex of the sample solution obtained in 1 and the electrode potential Es of the solution whose concentration is known, the acid concentration Cx is
It is determined by equation (7). Ex−Es=alog 10 (Cs−Cx) (7) Here, Cs is the acid concentration of a solution of known concentration. However, this acid concentration Cs is an apparent concentration, and the true acid concentration C is as follows: C=Cx×1/A (8). Here, A is the correction coefficient determined by 2, and has the following relationship with the metal ion. logA=±α[M n+ ]±logβ (9) However, M n+ is metal ion concentration, α, β are coefficients, and vary depending on the dialysis time and ion exchange membrane area, so they are determined separately experimentally. The present invention is characterized in that the apparent acid concentration is thus corrected by these dialysis rates to determine the true hydrofluoric acid and strong acid concentrations. Hereinafter, the present invention will be explained in detail with reference to FIG. First, in order to obtain a in equation (7), a nitric acid-hydrofluoric acid standard solution B of a known concentration is introduced into a constant temperature bath 2 and subjected to diffusion dialysis in a dialysis bath 3 for a certain period of time. The diffusion liquid is led to a measuring device 4, and after adding a certain amount of buffer solution C, an acid concentration measuring device 5 equipped with an ion-selective electrode etc.
read the electrode potential and input it to the computer and display 7. Treat other standard solutions with different concentrations in the same way, and calculate a in equation (7) from the electrode potential at that time. Next, the sample solution A is led from the thermostat 1 to the constant temperature bath 2, and the electrode potential of the acid is determined by computer in the same way.
Store it on display 7. On the other hand, the sample solution passed through the filter 1 is introduced into a metal ion concentration measuring device 6, and the metal ion concentration is displayed on a computer display 7. The acid concentration of the sample solution is determined by reading the correction coefficient from the previously stored correction coefficient versus metal ion concentration curve shown in FIGS. 2 and 3 and calculating it using equation (8). As the acid concentration measuring device 5 and the metal ion concentration measuring device 6, any analytical device such as neutralization titration method, redox titration method, conductivity titration method, spectrophotometry method, etc. can be applied, and the ion electrode method is not limited. Next, examples of the present invention will be shown. Example When a stainless steel plate pickling solution was analyzed without correction using metal ions, the following results were obtained.

【表】 基準値はふつ化水素酸はホウ素滴定法を、硝酸
は電導度滴定法を用いて決定した。 これから硝酸分析値は稍々高目の値をふつ化水
素酸分析値は低い値となつていることがわかる。
そこでこれらの試料溶液の鉄イオン濃度を求め第
2図および第3図の補正曲線を用いて補正したと
ころ、いずれも基準値とよい一致を示した。
[Table] Standard values were determined using the boron titration method for hydrofluoric acid and the conductivity titration method for nitric acid. From this, it can be seen that the nitric acid analysis value is a slightly high value, and the hydrofluoric acid analysis value is a low value.
Therefore, when the iron ion concentrations of these sample solutions were determined and corrected using the correction curves shown in FIGS. 2 and 3, both values showed good agreement with the reference values.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための分析装置の構
成を示す説明図、第2図は鉄イオン濃度に対応す
るHFの補正係数を示す補正曲線図、第3図は鉄
イオン濃度に対応するHNO3の補正係数を示す補
正曲線図である。
Figure 1 is an explanatory diagram showing the configuration of an analyzer for carrying out the present invention, Figure 2 is a correction curve diagram showing the correction coefficient of HF corresponding to iron ion concentration, and Figure 3 is a diagram corresponding to iron ion concentration. FIG. 3 is a correction curve diagram showing correction coefficients of HNO 3 .

Claims (1)

【特許請求の範囲】[Claims] 1 陰イオン交換膜を用いて、金属イオンを含む
強酸とふつ化水素酸の混合水溶液中のふつ化水素
酸および強酸を透析させる各酸の濃度を分析する
方法において、あらかじめ金属イオン濃度とふつ
化水素酸および強酸の透析率の関係を求めてお
き、透析後のみかけのふつ化水素酸および強酸濃
度を共存する金属イオン濃度より求めた各々の酸
の透析率で補正することを特徴とするふつ化物錯
イオンを含む溶液中の強酸およびふつ化水素酸の
分析方法。
1 In a method of analyzing the concentration of each acid in which hydrofluoric acid and strong acid are dialyzed in a mixed aqueous solution of strong acid containing metal ions and hydrofluoric acid using an anion exchange membrane, the metal ion concentration and the hydrofluoric acid are analyzed in advance. The method is characterized in that the relationship between the dialysis rates of hydrogen acid and strong acids is determined, and the apparent concentrations of hydrofluoric acid and strong acid after dialysis are corrected by the dialysis rate of each acid determined from the coexisting metal ion concentration. Method for analyzing strong acids and hydrofluoric acid in solutions containing compound complex ions.
JP55123989A 1980-09-09 1980-09-09 Analytical method for strong acid and hydrofluoric acid in solution containing complex fluoride ion Granted JPS5748653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55123989A JPS5748653A (en) 1980-09-09 1980-09-09 Analytical method for strong acid and hydrofluoric acid in solution containing complex fluoride ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55123989A JPS5748653A (en) 1980-09-09 1980-09-09 Analytical method for strong acid and hydrofluoric acid in solution containing complex fluoride ion

Publications (2)

Publication Number Publication Date
JPS5748653A JPS5748653A (en) 1982-03-20
JPS6339853B2 true JPS6339853B2 (en) 1988-08-08

Family

ID=14874280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55123989A Granted JPS5748653A (en) 1980-09-09 1980-09-09 Analytical method for strong acid and hydrofluoric acid in solution containing complex fluoride ion

Country Status (1)

Country Link
JP (1) JPS5748653A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100922564B1 (en) 2002-12-24 2009-10-21 재단법인 포항산업과학연구원 Analysis method of copper ion concentration in copper chloride solution for pickling process
KR100983102B1 (en) 2010-03-30 2010-09-20 전주대학교 산학협력단 Apparatus and method for measurement of hydrofluoric acid in cleaning solutions

Also Published As

Publication number Publication date
JPS5748653A (en) 1982-03-20

Similar Documents

Publication Publication Date Title
Eaton et al. Thermodynamic aspects of the potassium hexacyano-ferrate (III)-(II) system. I. Ion association
Rossotti Design and publication of work on stability constants
US6537822B1 (en) Method for analyzing free fluorine in solutions containing hydrofluoric acid solution, and apparatus for practicing the method
Fleet et al. Analytical evaluation of a cyanide-ion selective membrane electrode under flow-stream conditions
Cundiff et al. Titration of Acids in Nonaqueous Solutions. Improved Quaternary Ammonium Hydroxide Titrant for Strong Acids
Bazzelle Applications of ion-selective electrodes
Overman Potentiometric titration of mercury using the iodide-selective electrode as indicator
JPS6339853B2 (en)
JP2530711B2 (en) Method and apparatus for simultaneous quantitative analysis of free acid and ferric ion in solution
Bush et al. Volumetric determination of silver using thioacetamide
O'donnell et al. Null-point potentiometric determination of fluoride
US5286358A (en) Method of analyzing the complexing power of a pickling liquor
Kormalı et al. N, N′-disalicylidene-1, 3-diaminopropane as a selective chelating titrant for copper (II)
Katsumata et al. Potentiometric flow titration of iron (II) and chromium (VI) based on flow rate ratio of a titrant to a sample
Naumann et al. Direct determination of trace elements in high purity materials by stripping voltammetry
Eriksson Determination of hydrofluoric acid in strong acid solutions such as stainless steel pickling baths with a lanthanum fluoride electrode and a permaplex membrane electrode
Ponikvar et al. Potentiometric determination of antimony in metal (II) hexafluoroantimonates (V)
US3923608A (en) Method of detecting low levels of cyanide
JP2522536B2 (en) Method and apparatus for simultaneous quantitative analysis of free acid and iron ion in solution
Pentari et al. Kinetic determination of EDTA and citrate by the displacement of fluoride from Al3+ F− complexes and use of a fluoride ion-selective electrode
Pungor et al. Precipitate-based selective ion-sensitive electrodes. Recent developments in theory and applications
Ye et al. Kinetic potentiometry simultaneous determination of iron (III) and zirconium (IV) by using the Kalman filter
Barreto et al. Indirect Potentiometric Titration of Fe (III) with Ce (IV) by Gran's Method
Tuthill et al. Precise Method for Assay of Potassium Iodate by Comparison with (Primary Standard) Arsenic Trioxide.
JPH04121657A (en) Method for simultaneously measuring concentrations of two or more iron salts contained