JPS6339829B2 - - Google Patents

Info

Publication number
JPS6339829B2
JPS6339829B2 JP16052780A JP16052780A JPS6339829B2 JP S6339829 B2 JPS6339829 B2 JP S6339829B2 JP 16052780 A JP16052780 A JP 16052780A JP 16052780 A JP16052780 A JP 16052780A JP S6339829 B2 JPS6339829 B2 JP S6339829B2
Authority
JP
Japan
Prior art keywords
hydrogen
metal hydride
chambers
porous body
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16052780A
Other languages
Japanese (ja)
Other versions
JPS5795563A (en
Inventor
Michoshi Nishizaki
Minoru Myamoto
Kazuaki Myamoto
Takeshi Yoshida
Katsuhiko Yamaji
Yasushi Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Sekisui Chemical Co Ltd
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Shingijutsu Kaihatsu Jigyodan filed Critical Sekisui Chemical Co Ltd
Priority to JP16052780A priority Critical patent/JPS5795563A/en
Priority to DE8181109607T priority patent/DE3175832D1/en
Priority to EP81109607A priority patent/EP0053737B1/en
Priority to US06/320,741 priority patent/US4409799A/en
Publication of JPS5795563A publication Critical patent/JPS5795563A/en
Publication of JPS6339829B2 publication Critical patent/JPS6339829B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明はヒートポンプ装置の運転方法に関し、
詳しくは金属水素化物を利用したヒートポンプ装
置の運転方法に関する。
[Detailed Description of the Invention] The present invention relates to a method of operating a heat pump device,
More specifically, the present invention relates to a method of operating a heat pump device using metal hydrides.

ある種の金属や合金が発熱的に水素を吸蔵して
金属水酸化物を形成し、また、この金属水素化物
が可逆的に吸熱的に水素を放出することが知られ
ている。このような金属水素化物としては既にラ
ンタン−ニツケル水素化物(LaNi5Hx)、カルシ
ウム−ニツケル水素化物(CaNi5Hx)、ミツシユ
メタル−ニツケル水素化物(Mmi5Hx)、鉄−チ
タン水素化物(FeTiHx)、マグネシウム−ニツ
ケル水素化物(Mg2NiHx)等、種々のものが知
られており、近年、これら金属水素化物の特性を
利用したヒートポンプ装置が提案されている。
It is known that certain metals and alloys exothermically absorb hydrogen to form metal hydroxides, and that these metal hydrides reversibly and endothermically release hydrogen. Examples of such metal hydrides include lanthanum-nickel hydride (LaNi 5 Hx), calcium-nickel hydride (CaNi 5 Hx), Mitsushi metal nickel hydride (Mmi 5 Hx), and iron-titanium hydride (FeTiHx). , magnesium-nickel hydride (Mg 2 NiHx), etc., and in recent years, heat pump devices utilizing the properties of these metal hydrides have been proposed.

従来のヒートポンプ装置においては、多くの場
合、金属水素化物を熱交換器としての密閉容器に
充填し、水素の吸蔵、放出を行なわせているが、
一般に金属水素化物は水素を吸蔵する際にその体
積が膨張する。従つて、従来の熱交換器は作動条
件下での金属水素化物の平衡分解圧に加え、上記
のような金属水素化物の体積膨張に伴う機械的応
力を考慮して、変形や破損が起こらないように設
計されている。この結果、熱交換器は、金属水素
化物の単位充填量当りの重量、即ち熱容量が大き
くなり、例えば駆動熱エネルギーを多く要し、又
は出力が小さくなつて、装置の成績係数が小さ
い。また、一般に金属水素化物は水素の吸蔵、放
出を繰返す過程で微粉化し、水素の流通と困難に
する傾向がある。
In conventional heat pump devices, metal hydride is often filled in a sealed container as a heat exchanger to absorb and release hydrogen.
Generally, when a metal hydride absorbs hydrogen, its volume expands. Therefore, conventional heat exchangers take into account the equilibrium decomposition pressure of the metal hydride under operating conditions, as well as the mechanical stress associated with the volume expansion of the metal hydride as described above, so that deformation and damage do not occur. It is designed to. As a result, the heat exchanger has a large weight per unit charge of metal hydride, that is, a large heat capacity, and requires, for example, a large amount of driving thermal energy, or has a small output, resulting in a small coefficient of performance of the device. Additionally, metal hydrides generally tend to become finely powdered during the process of repeatedly absorbing and desorbing hydrogen, making it difficult for hydrogen to circulate.

本発明は上記に鑑みてなされたものであつて、
金属水素化物の水素の吸蔵に伴う体積膨張を考慮
する必要が実質的になく、従つて使用条件で実質
的に金属水素化物の平衡分解圧のみに耐えればよ
い熱交換器を用いて成績係数を高めると共に、熱
交換器内に水素の流通路を確保し、かくして金属
水素化物の水素の吸蔵、放出を円滑、迅速に行な
わせるようにしたヒートポンプ装置の運転方法を
提供することを目的とする。
The present invention has been made in view of the above, and includes:
There is virtually no need to consider the volumetric expansion of metal hydrides due to hydrogen absorption, and therefore the coefficient of performance can be calculated using a heat exchanger that only needs to withstand the equilibrium decomposition pressure of metal hydrides under the operating conditions. It is an object of the present invention to provide a method for operating a heat pump device, which allows hydrogen to be absorbed and released from a metal hydride smoothly and quickly by ensuring a hydrogen flow path in a heat exchanger.

本発明のヒートポンプ装置の運転方法は、二つ
の部屋に区画された密閉容器と、水素を透過する
と共に弾性を有する多孔体からなり、上記二つの
部屋に延びてこれら部屋間で水素を通過させる
が、金属水素化物を流通させない水素通路と、上
記二つの部屋にそれぞれ充填された第一及び第二
の金属水素化物とを有し、第一の金属水素化物を
加熱して水素を放出させ、この水素を上記水素通
路に導いて、第二の金属水素化物に発熱的に吸蔵
させ、次に、第一の金属水素化物を冷却し、第二
の金属水素化物に水素を吸熱的に放出させ、この
水素を上記水素通路に導いて、第一の金属水素化
物に発熱的に吸蔵させることを特徴とするもので
ある。
The method of operating a heat pump device of the present invention includes a closed container divided into two chambers, and a porous body that is permeable to hydrogen and has elasticity, and extends between the two chambers to allow hydrogen to pass between these chambers. , has a hydrogen passage through which metal hydride does not flow, and first and second metal hydrides filled in the two chambers, respectively, and heats the first metal hydride to release hydrogen; introducing hydrogen into the hydrogen passage to exothermically occlude hydrogen in the second metal hydride, then cooling the first metal hydride and causing the second metal hydride to endothermically release hydrogen; This hydrogen is introduced into the hydrogen passage and is exothermically occluded by the first metal hydride.

水素を透過すると共に弾性を有する多孔体とし
ては、水素と反応しないプラスチツク、木材、ガ
ラス繊維マツト、天然ゴム等が好ましく用いら
れ、具体的には例えばポリテトラフルオロエチレ
ン焼結体、コルク等が用いられる。多孔体の形状
は特に制限されないが、通常、容器の軸方向に挿
入されて、金属水素化物の体積膨張を受けて一様
に収縮するように、円柱状、円筒状、角柱状、角
筒状等の棒状に形成される。
As the porous body that is permeable to hydrogen and has elasticity, plastics, wood, glass fiber mat, natural rubber, etc. that do not react with hydrogen are preferably used, and specifically, for example, polytetrafluoroethylene sintered bodies, cork, etc. are used. It will be done. The shape of the porous body is not particularly limited, but it is usually cylindrical, cylindrical, prismatic, or prismatic so that it is inserted in the axial direction of the container and contracts uniformly in response to the volume expansion of the metal hydride. It is formed into a rod shape such as.

多孔体はポリテトラフルオロエチレン焼結体の
ように、水素を透過するが、金属水素化物を透過
しないのが望ましい。この場合、多孔板は隔壁を
貫通して二つの部屋を直接に連ねる水素通路を形
成する。一方、水素を透過すると共に、金属水素
化物をも透過するガラス繊維マツトのような多孔
体を用いる場合には、隔壁の貫通孔に金属焼結体
のように金属水素化物を透過しない金属水素化物
遮断材を装着し、この遮断材の両側に多孔体を接
続する。遮断材は弾力性を有さなくともよい。
The porous body, like a polytetrafluoroethylene sintered body, is preferably permeable to hydrogen but not permeable to metal hydrides. In this case, the perforated plate forms a hydrogen passage that penetrates the partition wall and directly connects the two chambers. On the other hand, when using a porous material such as glass fiber mat that permeates hydrogen as well as metal hydride, metal hydride that does not permeate metal hydride, such as a metal sintered body, is used in the through-holes of the partition wall. A blocking material is installed, and porous bodies are connected to both sides of this blocking material. The blocking material does not need to have elasticity.

本発明において用いるヒートポンプ装置におい
ては、金属水素化物は容器内壁と多孔体の間の空
隙に充填され、従つて、金属水素化物が水素の吸
蔵時に膨張しても、これに応じて多孔体が収縮し
て、金属水素化物の膨張による機械的応力は多孔
体に吸収される。この結果、容器には上記応力が
加わらず、又は軽減されて加わるので、容器の変
形や破損のおそれがない。
In the heat pump device used in the present invention, the metal hydride is filled in the void between the inner wall of the container and the porous body, so even if the metal hydride expands when absorbing hydrogen, the porous body contracts accordingly. Therefore, the mechanical stress due to the expansion of the metal hydride is absorbed by the porous body. As a result, the stress is not applied to the container or is applied in a reduced manner, so there is no risk of deformation or damage to the container.

尚、本発明において二つの部屋に区画された密
閉容器とは、水素通路を形成する管体にて接続さ
れた二つの容器の連結体をも含むものとする。
In the present invention, the closed container divided into two chambers also includes a connected body of two containers connected by a pipe forming a hydrogen passage.

以下に図面に基づいて本発明を説明する。 The present invention will be explained below based on the drawings.

第1図は本発明において用いるヒートポンプ装
置の一実施例を示す。第1の密閉容器5は隔壁6
にて第1の部屋1及び第2の部屋2に区画され、
この隔壁を貫通して、水素を透過するが、金属水
素化物を透過しない弾性を有する棒状の多孔体7
が二つの部屋に跨がつて延びており、第1の部屋
には第1の金属水素化物M1Hが、また、第2の
部屋には第2の金属水素化物M2Hが充填されて
いる。第2の密封容器8も同様に隔壁9にて第3
の部屋3及び第4の部屋4に区画され、多孔体1
0が隔壁を貫通して二つの部屋に延びており、第
3及び第4の部屋にはそれぞれM1H及びM2Hが
充填されている。好ましくは、金属水素化物が水
素を吸蔵するときの多孔体の体積収縮を補償し、
部屋間を金属水素化物が移動しないように、多孔
体が貫通する隔壁の孔壁と多孔体との間に耐熱性
のゴムパツキング等(図示せず)を介在させる。
FIG. 1 shows an embodiment of a heat pump device used in the present invention. The first sealed container 5 has a partition wall 6
It is divided into a first room 1 and a second room 2,
A rod-shaped porous body 7 that penetrates this partition wall and has elasticity that allows hydrogen to pass through but does not allow metal hydride to pass through.
extends across two chambers, the first chamber is filled with a first metal hydride M 1 H, and the second chamber is filled with a second metal hydride M 2 H. There is. Similarly, the second sealed container 8 also has a third
The porous body 1 is divided into a chamber 3 and a fourth chamber 4.
0 extends through the bulkhead into two chambers, the third and fourth chambers being filled with M 1 H and M 2 H, respectively. Preferably, the volumetric contraction of the porous body when the metal hydride absorbs hydrogen is compensated for,
In order to prevent the metal hydride from moving between rooms, a heat-resistant rubber packing or the like (not shown) is interposed between the porous body and the pore wall of the partition wall through which the porous body passes.

各部屋は断熱材11を貼着したジヤケツト12
にて被覆され、ジヤケツト内には後に説明するサ
イクルに同期して、冷水、温水、スチーム等の適
宜の熱媒体がポンプ等により切換可能に循環さ
れ、金属水素化物を加熱し、又は冷却する。
Each room has a jacket 12 with insulation material 11 attached.
An appropriate heat medium such as cold water, hot water, steam, etc. is circulated in the jacket in a switchable manner by a pump or the like in synchronization with a cycle to be described later to heat or cool the metal hydride.

上記装置を冷房に用いる場合の作動を第2図に
基づいて説明する。第1の容器のM1H(以下
(M1H)1と略称する。)は、図示したように温度
THの高温熱源13に加熱されて水素を放出し
(点A)、この水素は多孔体7を経て第2の部屋に
送られ、ここで温度TM(例えば外気温)の冷却器
14に冷却されつつ(M2H)2が発熱的に水素を
吸蔵する(点B)。この間、(M2H)4は水素を吸
熱的に放出し、温度TLの冷却負荷15から熱を
奪う(点D)。この過程で放出された水素は多孔
体10を経て第3の部屋に送られ、(M1H)3が温
度TMの冷却器16に冷却されつつ吸蔵する(点
C)。第2図に示す各部屋と種々の温度の熱媒と
の接続は上記過程を行なわせるためであり、以下
に説明する過程においては、電磁弁その他の適宜
の手段により、過程に応じて各部屋は必要な熱媒
に切換え接続される。
The operation of the above device when used for cooling will be explained based on FIG. 2. M 1 H (hereinafter abbreviated as (M 1 H) 1 ) in the first container is the temperature as shown in the figure.
It is heated by the high temperature heat source 13 of T H to release hydrogen (point A), and this hydrogen is sent to the second chamber via the porous body 7, where it is transferred to the cooler 14 at a temperature T M (e.g. outside air temperature). While being cooled, (M 2 H) 2 absorbs hydrogen exothermically (point B). During this time, (M 2 H) 4 emits hydrogen endothermically and takes heat from the cooling load 15 at temperature T L (point D). Hydrogen released in this process is sent to the third chamber via the porous body 10, and (M 1 H) 3 is occluded while being cooled by the cooler 16 at a temperature T M (point C). The connections between each room and heating medium at various temperatures shown in Figure 2 are for the purpose of carrying out the above process, and in the process described below, each room is is switched and connected to the required heating medium.

次に、(M2H)4は温度TMの熱源16により温度
TMに加熱され(点B)、一方、(M1H)3は高温熱
源13により温度THに加熱され(点A)、かくし
て(M1H)3は水素を放出し、この水素は多孔体
10を経て第4の部屋に送られ、(M2H)4が発熱
的にこの水素を吸蔵する。この間に、(M1H)1
温度TMに戻され(点C)、(M2H)2が吸熱的に水
素を放出して、冷却風荷15から熱を奪うと共に
(点D)、(M1H)1がこの水素を吸蔵する。このよ
うにして1サイクルが完了する。
Next, (M 2 H) 4 is heated by the heat source 16 at temperature T M
(M 1 H) 3 is heated to temperature T H (point B), while (M 1 H) 3 is heated by high temperature heat source 13 to temperature T H (point A), thus (M 1 H) 3 releases hydrogen, and this hydrogen The hydrogen is sent to the fourth chamber through the porous body 10, and (M 2 H) 4 exothermically absorbs this hydrogen. During this time, (M 1 H) 1 is returned to the temperature T M (point C), and (M 2 H) 2 endothermically releases hydrogen and removes heat from the cooling air load 15 (point D). , (M 1 H) 1 absorbs this hydrogen. In this way, one cycle is completed.

本発明の方法を暖房に利用する場合には、第3
図のサイクル線図に示すように、(M2H)2を温度
TMに加熱して水素を放出させると共に(点B)、
この水素を(M1H)1に発熱的に吸蔵させ(点
A)、加熱負荷13に熱を与える。次に、
(M2H)2を温度TL(例えば外気温)に冷却し、
(M1H)1を温度TMに戻して、(M1H)1に水素を放
出させると共に、(M2H2)にこの水素を吸蔵さ
せる。(M1H)3及び(M2H)4には半サイクルの位
相差で上記動作を繰返させる。
When the method of the present invention is used for heating, the third
As shown in the cycle diagram of figure, ( M2H ) 2 is the temperature
While heating to T M to release hydrogen (point B),
This hydrogen is exothermically occluded in (M 1 H) 1 (point A), and heat is applied to the heating load 13. next,
(M 2 H) 2 is cooled to a temperature T L (e.g. outside air temperature),
(M 1 H) 1 is returned to the temperature T M to cause (M 1 H) 1 to release hydrogen and (M 2 H 2 ) to absorb this hydrogen. The above operation is repeated for (M 1 H) 3 and (M 2 H) 4 with a phase difference of half a cycle.

第4図は本発明において用いるヒートポンプ装
置の別の実施例の第1の容器のみを示し、熱媒と
の接続は省略されている。
FIG. 4 shows only the first container of another embodiment of the heat pump device used in the present invention, and the connection to the heat medium is omitted.

この実施例においては、多孔体7は水素と共に
金属水素化物をも透過するので、多孔体を支持す
る隔壁の貫通孔には金属焼結体のように水素を透
過するが、金属水素化物を透過しない遮断材17
が装着され、この遮断材の両側に多孔体が接続さ
れ、各部屋に延びている。
In this embodiment, the porous body 7 permeates metal hydride as well as hydrogen, so hydrogen permeates through the through holes of the partition wall supporting the porous body like a metal sintered body, but metal hydride permeates. No shielding material 17
is installed, and porous bodies are connected to both sides of this barrier material, extending into each room.

以上のように本発明によれば、金属水素化物の
水素の吸蔵時の体積膨張は多孔体によつて吸収さ
れるので、熱交換器をなす容器は金属水素化物の
体積膨張を伴う機械的応力をほとんど受けず、従
つて、容積は変形、破損することがなく、また、
容器の製造においても、動作時の金属水素化物の
平衡分解圧のみを考慮すればよいから、金属水素
化物の単位充填量当りの容器重量が小さくてす
み、この結果、装置の成績係数が著しく改善され
る。さらに、多孔体は水素の流通路を兼ねるか
ら、金属水素化物の水素の吸蔵、放出を円滑、迅
速に行なわせることができる。
As described above, according to the present invention, the volumetric expansion of the metal hydride when it absorbs hydrogen is absorbed by the porous body, so the container constituting the heat exchanger is exposed to mechanical stress accompanying the volumetric expansion of the metal hydride. Therefore, the volume will not be deformed or damaged, and
In manufacturing the container, only the equilibrium decomposition pressure of the metal hydride during operation needs to be considered, so the weight of the container per unit filling amount of metal hydride is small, and as a result, the coefficient of performance of the device is significantly improved. be done. Furthermore, since the porous body also serves as a hydrogen flow path, the metal hydride can absorb and release hydrogen smoothly and quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において用いるヒートポンプ装
置の一実施例を示す断面図、第2図及び第3図は
それぞれ冷房及び暖房に用いる場合の装置の動作
を示すサイクル線図、第4図は本発明において用
いる装置の別の実施例における容器を示す断面図
である。 1,2,3,4……部屋、5……容器、6……
隔壁、7……多孔体、8……容器、9……隔壁、
10……多孔体、17……遮断材、M1H,M2H
……金属水素化物。
FIG. 1 is a sectional view showing an embodiment of the heat pump device used in the present invention, FIGS. 2 and 3 are cycle diagrams showing the operation of the device when used for cooling and heating, respectively, and FIG. 4 is a cross-sectional view showing an embodiment of the heat pump device used in the present invention. FIG. 3 is a cross-sectional view showing a container in another embodiment of the device used in FIG. 1, 2, 3, 4...room, 5...container, 6...
Partition wall, 7... Porous body, 8... Container, 9... Partition wall,
10... Porous body, 17... Shielding material, M 1 H, M 2 H
...Metal hydride.

Claims (1)

【特許請求の範囲】[Claims] 1 二つの部屋に区画された密閉容器と水素を透
過すると共に弾性を有する多孔体からなり、上記
二つの部屋に延びてこれら部屋間で水素を流通さ
せるが、金属水素化物を流通させない水素通路
と、上記二つの部屋にそれぞれ充填された第一及
び第二の金属水素化物とを有し、第一の金属水素
化物を加熱して水素を放出させ、この水素を上記
水素通路に導いて、第二の金属水素化物に発熱的
に吸蔵させ、次に、第一の金属水素化物を冷却
し、第二の金属水素化物に水素を吸熱的に放出さ
せ、この水素を上記水素通路に導いて、第一の金
属水素化物に発熱的に吸蔵させることを特徴とす
るヒートポンプ装置の運転方法。
1. It consists of a sealed container divided into two chambers and a porous body that is permeable to hydrogen and has elasticity, and a hydrogen passageway that extends to the two chambers and allows hydrogen to flow between these chambers, but does not allow metal hydride to flow. , a first metal hydride and a second metal hydride filled in the two chambers, respectively, the first metal hydride is heated to release hydrogen, and this hydrogen is guided to the hydrogen passage, causing the second metal hydride to exothermically occlude hydrogen, then cooling the first metal hydride, causing the second metal hydride to endothermically release hydrogen, and guiding this hydrogen to the hydrogen passageway, A method of operating a heat pump device, characterized in that a first metal hydride is exothermically occluded.
JP16052780A 1980-11-13 1980-11-13 Heat pump apparatus Granted JPS5795563A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16052780A JPS5795563A (en) 1980-11-13 1980-11-13 Heat pump apparatus
DE8181109607T DE3175832D1 (en) 1980-11-13 1981-11-10 Heat pump device
EP81109607A EP0053737B1 (en) 1980-11-13 1981-11-10 Heat pump device
US06/320,741 US4409799A (en) 1980-11-13 1981-11-12 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16052780A JPS5795563A (en) 1980-11-13 1980-11-13 Heat pump apparatus

Publications (2)

Publication Number Publication Date
JPS5795563A JPS5795563A (en) 1982-06-14
JPS6339829B2 true JPS6339829B2 (en) 1988-08-08

Family

ID=15716884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16052780A Granted JPS5795563A (en) 1980-11-13 1980-11-13 Heat pump apparatus

Country Status (1)

Country Link
JP (1) JPS5795563A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3639545C1 (en) * 1986-11-20 1988-06-01 Studiengesellschaft Kohle Mbh Process for heat storage and transformation as well as cold generation

Also Published As

Publication number Publication date
JPS5795563A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
Nasrallah et al. Heat and mass transfer models in metal-hydrogen reactor
US4422500A (en) Metal hydride heat pump
US5661986A (en) Chemical reactor, refrigerating machine and container provided therewith and reagent cartridge therefor
JP6647223B2 (en) Thermal storage container and thermal storage device provided with thermal storage container
US4409799A (en) Heat pump device
JPS6233269A (en) Heat exchanger utilizing hydrogen storage alloy
JPS6339829B2 (en)
JPH0121432B2 (en)
JPH01174897A (en) Heat pipe
JPS6037395B2 (en) Portable heating or cooling device
JPS6327625B2 (en)
JPS6231238B2 (en)
JPS6366761B2 (en)
JPS6231239B2 (en)
JP2642830B2 (en) Cooling device
JPS638394B2 (en)
JPS642869B2 (en)
JP2000055300A (en) Hydrogen storage container
JPS5857680B2 (en) heat conversion vessel
JPS6118003Y2 (en)
JPS6135477B2 (en)
JPH0579723A (en) Htdrogen storage alloy heat exchanger
JPH073250Y2 (en) Hydrogen storage / desorption heat exchanger
JPH056120B2 (en)
JPS608427B2 (en) heating cooling device