JPS6339319B2 - - Google Patents

Info

Publication number
JPS6339319B2
JPS6339319B2 JP55124407A JP12440780A JPS6339319B2 JP S6339319 B2 JPS6339319 B2 JP S6339319B2 JP 55124407 A JP55124407 A JP 55124407A JP 12440780 A JP12440780 A JP 12440780A JP S6339319 B2 JPS6339319 B2 JP S6339319B2
Authority
JP
Japan
Prior art keywords
sludge
denitrification
water
treatment
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55124407A
Other languages
Japanese (ja)
Other versions
JPS5748393A (en
Inventor
Katsuyuki Kataoka
Keigo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP55124407A priority Critical patent/JPS5748393A/en
Publication of JPS5748393A publication Critical patent/JPS5748393A/en
Publication of JPS6339319B2 publication Critical patent/JPS6339319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、し尿、浄化槽汚泥、ゴミ滲出汚水な
ど、各種有機性廃水の処理方法に関するものであ
る。 〔従来技術と発明が解決しようとする問題点〕 従来、し尿処理プロセスではまず生物処理され
るが、し尿中に含有される窒素をも除去しなけれ
ばならない場合は生物学的硝化脱窒素法によつて
処理するのが通例であつた。 しかるに、従来のし尿処理プロセスには、下記
のような多くの問題点が残されていた。すなわ
ち、 (1) 生物処理工程では、色度成分、難生物分解性
COD成分、リン酸が殆ど除去できないので、
生物処理水に無機凝集剤を多量に添加して凝集
沈殿処理したのち、さらに、オゾン処理、活性
炭処理を行う必要があり、プロセスが複雑とな
るばかりでなく、ランニングコストも高い。 例えば、10倍希釈し尿の活性汚泥処理水に対
する硫酸ばん土の所要注入率は500〜1500ppm
(無希釈換算では5000〜15000ppm)もの高率に
なり、極めて多量の凝集剤が必要となる。この
ため、難脱水性の無機性スラツジが多量に発生
し、その処理、処分が容易でない。 (2) 凝集沈殿処理のCOD除去効果は低く、この
ため、さらにオゾン処理、活性炭処理を行う必
要があるが、これらの処理工程への流入COD
負荷高く、これらの処理コストが非常に高額と
なつている。 (3) 活性汚泥法などの生物処理工程から発生する
余剰汚泥、凝集沈殿工程から発生する凝集汚泥
の脱水ケーキの含水率が通常85%程度と極めて
高く、脱水ケーキの埋立て投棄、乾燥、焼却処
理に少なからぬ障害を与えている。 本発明は、このような、従来プロセスにおける
問題点を効果的に解決できる方法を提供するこ
と、特に、生物処理工程流出水の高度処理工程を
著しく合理化でき、かつ、脱水ケーキの含水率を
確実に60%以下にできる処理プロセスを提供する
ことを目的としている。 〔問題点を解決するための手段〕 本発明は、有機性廃水を生物学的硝化脱窒素工
程にて処理したのち、該工程から流出する生物処
理水と該工程で発生した余剰汚泥との混合スラリ
ーを形成し、該混合スラリーに過酸化水素ならび
に第一鉄含有物質および第二鉄含有物質を添加反
応せしめ、該反応スラリーをそのまま又はアルカ
リ剤を添加して機械脱水することを特徴とする有
機性廃水の処理方法である。 〔作用〕 次に、本発明の作用を一実施態様を示す図面を
参照しつつ説明すると、生し尿1は無希釈のまま
硝化液循環式生物学的硝化脱窒素装置2で充分処
理される。この硝化脱窒素装置2は、第1脱窒素
槽3、硝化槽4、第2脱窒素槽5、硝化液循環ポ
ンプ6、空気23による曝気装置7などにより構
成される。 生物学的硝化脱窒素装置2内のMLSSを高濃度
(通常10000ppm以上)に維持するために、第2脱
窒素槽5内スラリーの一部が遠心濃縮機などの濃
縮装置8に流入され濃縮汚泥9と分離水10に分
離され、濃縮汚泥9は第1脱窒素槽3に返送され
る。一方、第2脱窒素槽5からは生物処理水と該
工程で発生した余剰汚泥との混合スラリー11が
形成されて流出し、分離水(生物処理水)10は
混合スラリー11に混合され貯留槽12に流入す
る。なお、この混合スラリー11は、通常の生物
処理法のように最終沈殿池において活性汚泥を分
離された上澄水を意味するのではなく、生物学的
硝化脱窒素装置2で発生した余剰(生物)汚泥を
混合した生物処理水を意味している点が重要であ
る。 貯留槽12では、混合スラリー11中の汚泥の
腐敗防止及び残留BOD除去のために空気23に
よつてエアレーシヨンが行われる。 しかして、貯留槽12内のスラリーは撹拌槽1
3にて過酸化水素14と硫酸第1鉄(FeSO4)溶
液などの第1鉄含有物質15を添加して数分間撹
拌され、さらに撹拌槽16にて塩化第2鉄
(FeCl3)溶液などの第2鉄含有物質17を添加
して数分間撹拌されたのち、中和槽18で水酸化
マグネシウム、消石灰、苛性ソーダなどのアルカ
リ剤19を添加され、中性領域(PH6〜8)に中
和されたのち、フイルタープレス20などの機械
脱水機で脱水分離水21と脱水ケーキ22に分離
される。アルカリ剤19としては、水酸化マグネ
シウムなどのマグネシウム系アルカリ剤、炭酸カ
ルシウムが脱水過速度を向上させるのに有効で
ある。 脱水分離水21は、このまま放流可能であるほ
どに良好な水質を有するが、所望により、脱水分
離水21に対して凝集沈殿、砂過、活性炭処理
などの処理を行うことができる。 なお、撹拌槽16からのスラリーを直接機械脱
水したのち、脱水分離水21に対してアルカリ剤
19を添加し、生成するFe(OH)3、FePO4など
を主体とする沈殿物を固液分離してもよい。 本発明においては、前記第1鉄含有物質15と
しては、第1鉄(Fe2+)の、塩、酸化物、水酸
化物、単体金属から少なくとも一種類を選んで、
また前記第2鉄含有物質17としては、第2鉄
(Fe3+)の、塩、酸化物、水酸化物、単体金属か
ら少なくとも一種類を選んで使用することができ
る。 なお、前記生物学的硝化脱窒素プロセスを採用
するとH2O2添加を受ける余剰汚泥が混合された
混合スラリー11中にNO2−Nの存在をなくす
ことができるので非常に好ましい。この場合、硝
化反応の際、し尿中のアルカリ度を消費するの
で、生物処理工程流出水のPH緩衝性が弱まり、
H2O2、第1鉄及び第2鉄の併用による薬剤処理
において適切なPH3〜4の領域に設定するのが容
易になり、第1鉄及び第2鉄含有物質の添加量が
少なくてすむという効果もある。 前述したように、本発明では余剰汚泥の処理を
別系統で行うことなく、水処理工程中に組込んで
構成したプロセスを採用しており、従来方法が余
剰汚泥を水処理工程と別系統で処理するプロセス
に基づいているのと比べ対照的である。このよう
な処理により、前記生物処理工程からの処理水中
のコロイド状色度成分、SS、BOD、COD等が余
剰汚泥に取り込まれて凝集して脱水ケーキ22と
して排出され、脱水分離水21の汚染物成分の量
が著しく低減されることになる。 また本発明において、過酸化水素、第1鉄、第
2鉄の3者を併用する理由は、本発明者らの見い
だした次のような実験結果に基づいている。すな
わち、生物学的硝化脱窒素工程からの混合スラリ
ーに過酸化水素と第1鉄のみを添加する方法でも
汚泥の脱水処理は問題なく行えるがその反面、汚
泥からCOD、BODがその分だけ増加するという
現象が見出された。この問題点を解決するため検
討を進めた結果、過酸化水素、第1鉄のほかに第
2鉄を併用するとCOD、BODの溶出を減少でき
ることが判明した。過酸化水素と第1鉄の2者の
みを添加する方法に比べて本発明の第2鉄併用法
では、過酸化水素と第1鉄の添加量を減少させる
ことがポイントである。 すなわち、過酸化水素と第1鉄の添加量を減少
すると、COD、BODの溶出が減少する反面、汚
泥の脱水性が悪化してしまうが、この逆結果を
COD、BOD溶出作用のない第2鉄を併用するこ
とによつて解決したのである。ただし、過酸化水
素と第1鉄を使用せずに塩化第2鉄などの第2鉄
単独添加では、汚泥の脱水性(過速度、ケーキ
含水率)が相当悪化してしまうので好ましくな
い。 上記本発明の構成における重要な要点を説明す
れば、 過酸化水素などの薬品添加工程の前段に生物
処理工程を設けるが、この生物処理工程として
は、BOD成分のみならず窒素成分をも同時に
除去できる生物学的硝化脱窒素工程を採用して
いる。このように、し尿を直接、化学的に酸化
処理する従来法を改め、予め生物学的硝化脱窒
素工程で処理してから化学的処理を施すことは
本発明の一つの特徴である。生物学的硝化脱窒
素工程としては、脱窒素菌への有機炭素源とし
て、し尿、原液中のBOD成分を利用する硝化
液循環法又はステツプ式原液流入法を採用する
のが好ましい。 本発明においては、まず、生物学的硝化脱窒
素工程(生物学的脱リン工程を含む場合もあ
る)を、最も好ましくは無希釈で行う。(やむ
を得ず消泡用として水を散水する場合は可及的
に少量にとどめる)。この方法によつて、該工
程からの混合スラリーを少量にし機械脱水工程
にかかる負荷水量を軽減する。なお、機械脱水
機としては、フイルタープレス(全自動タイ
プ)が最も適切である。 また、生物学的硝化脱窒素工程から発生する
余剰(生物)汚泥を従来法のように脱水工程で
処理せず、余剰汚泥と生物処理水との混合スラ
リーに過酸化水素、硫酸第1鉄などの第1鉄含
有物質及び硫酸第2鉄などの第2鉄含有物質を
併用添加して化学反応処理したのち、該反応後
のスラリーををのまま、又は予め水酸化マグネ
シウムなどのアルカリ剤を添加して中和処理し
てから機械脱水する。 点である。 〔実施例〕 次に、本発明の実施例を示す。 第1表の水質を有する除渣生し尿を公知の硝化
液循環式生物学的硝化脱窒素プロセスで無希釈処
理した。その運転条件は第2表のように設定し
た。
[Industrial Field of Application] The present invention relates to a method for treating various organic wastewaters such as human waste, septic tank sludge, and garbage-leaching sewage. [Prior art and problems to be solved by the invention] Conventionally, in the human waste treatment process, biological treatment is first performed, but when the nitrogen contained in human waste must also be removed, biological nitrification and denitrification methods are used. It was customary to twist and dispose of it. However, the conventional human waste treatment process still has many problems as described below. In other words, (1) In the biological treatment process, chromaticity components, non-biodegradable
Since COD components and phosphoric acid can hardly be removed,
After a large amount of inorganic flocculant is added to biologically treated water to perform coagulation and sedimentation treatment, it is necessary to further perform ozone treatment and activated carbon treatment, which not only complicates the process but also increases running costs. For example, the required injection rate of sulfuric acid soil into activated sludge treated water of 10 times diluted human waste is 500 to 1500 ppm.
The rate is as high as 5,000 to 15,000 ppm in undiluted terms, and an extremely large amount of flocculant is required. For this reason, a large amount of inorganic sludge that is difficult to dewater is generated, and it is difficult to treat and dispose of it. (2) The COD removal effect of coagulation and precipitation treatment is low, and therefore it is necessary to further perform ozone treatment and activated carbon treatment.
The load is high and the processing costs are extremely high. (3) Surplus sludge generated from biological treatment processes such as the activated sludge method, and dehydrated cakes of flocculated sludge generated from coagulation and sedimentation processes, usually have an extremely high moisture content of around 85%, making it difficult to dump, dry, or incinerate dehydrated cakes in landfills. This poses considerable obstacles to processing. The purpose of the present invention is to provide a method that can effectively solve the problems in conventional processes, and in particular, can significantly streamline the advanced treatment process of biological treatment effluent and ensure the moisture content of the dehydrated cake. The aim is to provide a treatment process that can reduce the amount of waste by 60% or less. [Means for Solving the Problems] The present invention involves treating organic wastewater in a biological nitrification and denitrification process, and then mixing the biologically treated water flowing out from the process with excess sludge generated in the process. A slurry is formed, hydrogen peroxide, a ferrous iron-containing substance, and a ferric iron-containing substance are added to the mixed slurry for reaction, and the reaction slurry is mechanically dehydrated as it is or by adding an alkali agent. This is a method for treating wastewater. [Function] Next, the function of the present invention will be explained with reference to the drawings showing one embodiment. The human waste 1 is sufficiently treated without being diluted in the nitrification liquid circulation type biological nitrification-denitrification device 2. The nitrification and denitrification device 2 is comprised of a first denitrification tank 3, a nitrification tank 4, a second denitrification tank 5, a nitrified liquid circulation pump 6, an aeration device 7 using air 23, and the like. In order to maintain the MLSS in the biological nitrification and denitrification device 2 at a high concentration (usually 10,000 ppm or more), a portion of the slurry in the second denitrification tank 5 is flowed into a concentration device 8 such as a centrifugal concentrator to form thickened sludge. The concentrated sludge 9 is separated into denitrification tank 9 and separated water 10, and the concentrated sludge 9 is returned to the first denitrification tank 3. On the other hand, a mixed slurry 11 of biologically treated water and excess sludge generated in the process is formed and flows out from the second denitrification tank 5, and the separated water (biologically treated water) 10 is mixed with the mixed slurry 11 and is mixed into the storage tank. 12. Note that this mixed slurry 11 does not mean the supernatant water from which activated sludge has been separated in the final settling tank as in the normal biological treatment method, but rather the surplus (organisms) generated in the biological nitrification and denitrification equipment 2. It is important to note that this refers to biologically treated water mixed with sludge. In the storage tank 12, aeration is performed with air 23 to prevent the sludge in the mixed slurry 11 from rotting and to remove residual BOD. Therefore, the slurry in the storage tank 12 is transferred to the stirring tank 1.
In Step 3, hydrogen peroxide 14 and a ferrous substance 15 such as a ferrous sulfate (FeSO 4 ) solution are added and stirred for several minutes, and then in a stirring tank 16 a ferric chloride (FeCl 3 ) solution or the like is added. After adding the ferric-containing substance 17 and stirring for several minutes, an alkaline agent 19 such as magnesium hydroxide, slaked lime, or caustic soda is added in the neutralization tank 18 to neutralize it to a neutral range (PH 6 to 8). After that, it is separated into dehydrated separated water 21 and dehydrated cake 22 using a mechanical dehydrator such as a filter press 20. As the alkaline agent 19, magnesium-based alkaline agents such as magnesium hydroxide and calcium carbonate are effective in improving the dehydration overrate. The dehydrated separated water 21 has such good water quality that it can be discharged as is, but if desired, the dehydrated separated water 21 can be subjected to treatments such as coagulation sedimentation, sand filtration, and activated carbon treatment. In addition, after directly mechanically dewatering the slurry from the stirring tank 16, an alkali agent 19 is added to the dehydrated separated water 21, and the resulting precipitate mainly consisting of Fe(OH) 3 , FePO 4 , etc. is separated into solid and liquid. You may. In the present invention, as the ferrous iron-containing substance 15, at least one type of ferrous (Fe 2+ ) is selected from salts, oxides, hydroxides, and simple metals,
Further, as the ferric iron-containing substance 17, at least one type of ferric iron (Fe 3+ ) can be selected from salts, oxides, hydroxides, and simple metals. In addition, it is very preferable to employ the biological nitrification and denitrification process because it is possible to eliminate the presence of NO 2 -N in the mixed slurry 11 mixed with surplus sludge that has undergone H 2 O 2 addition. In this case, the alkalinity in the human waste is consumed during the nitrification reaction, which weakens the PH buffering properties of the biological treatment process effluent.
In chemical treatment using a combination of H 2 O 2 , ferrous iron, and ferric iron, it is easier to set the pH to an appropriate range of 3 to 4, and the amount of ferrous and ferric iron-containing substances added can be reduced. There is also this effect. As mentioned above, the present invention adopts a process in which surplus sludge is not treated in a separate system, but is incorporated into the water treatment process, whereas conventional methods treat surplus sludge in a separate system from the water treatment process. In contrast, it is based on the process of processing. Through such treatment, colloidal chromaticity components, SS, BOD, COD, etc. in the treated water from the biological treatment process are incorporated into the excess sludge, coagulate, and are discharged as a dehydrated cake 22, thereby preventing contamination of the dehydrated separated water 21. The amount of chemical components will be significantly reduced. Further, in the present invention, the reason for using hydrogen peroxide, ferrous iron, and ferric iron in combination is based on the following experimental results discovered by the present inventors. In other words, the method of adding only hydrogen peroxide and ferrous iron to the mixed slurry from the biological nitrification and denitrification process can dehydrate sludge without any problems, but on the other hand, COD and BOD from the sludge increase accordingly. This phenomenon was discovered. As a result of conducting studies to solve this problem, it was found that the elution of COD and BOD can be reduced by using ferric iron in combination with hydrogen peroxide and ferrous iron. Compared to the method of adding only hydrogen peroxide and ferrous iron, the key point in the combined use of ferric iron of the present invention is to reduce the amounts of hydrogen peroxide and ferrous iron added. In other words, reducing the amount of hydrogen peroxide and ferrous iron added reduces the elution of COD and BOD, but at the same time worsens the dewaterability of sludge.
The problem was solved by using ferric iron, which does not have a COD or BOD elution effect. However, if ferric iron such as ferric chloride is added alone without using hydrogen peroxide and ferrous iron, the dewatering performance (overrate, cake moisture content) of the sludge will deteriorate considerably, which is not preferable. To explain the important points in the configuration of the present invention, a biological treatment process is provided before the process of adding chemicals such as hydrogen peroxide, and this biological treatment process removes not only BOD components but also nitrogen components at the same time. A biological nitrification and denitrification process is adopted. As described above, one of the features of the present invention is that the conventional method of directly chemically oxidizing human waste is changed, and the human waste is first treated with a biological nitrification and denitrification process before being chemically treated. As the biological nitrification and denitrification process, it is preferable to employ a nitrifying solution circulation method or a step-type stock solution inflow method that uses human waste and BOD components in the stock solution as an organic carbon source for the denitrifying bacteria. In the present invention, first, a biological nitrification and denitrification step (which may include a biological dephosphorization step) is most preferably performed without dilution. (If it is unavoidable to spray water for defoaming, keep it to a small amount as much as possible). This method reduces the amount of mixed slurry from the process and reduces the water load on the mechanical dewatering process. Note that a filter press (fully automatic type) is the most suitable mechanical dehydrator. In addition, the surplus (biological) sludge generated from the biological nitrification and denitrification process is not treated in the dehydration process as in conventional methods, but the mixed slurry of surplus sludge and biologically treated water is mixed with hydrogen peroxide, ferrous sulfate, etc. After a chemical reaction treatment is performed by adding a ferrous-containing substance and a ferric-containing substance such as ferric sulfate, the slurry after the reaction is either left as is or an alkali agent such as magnesium hydroxide is added in advance. It is then neutralized and then mechanically dehydrated. It is a point. [Example] Next, an example of the present invention will be shown. The desalted human waste having the water quality shown in Table 1 was treated without dilution by a known biological nitrification and denitrification process using a nitrification solution circulation method. The operating conditions were set as shown in Table 2.

【表】【table】

【表】 この生物学的硝化脱窒素工程からの混合スラリ
ー(処理水と余剰汚泥との混合液)に
H2O2500ppmと、FeSO41000ppmを添加し3分間
急速撹拌したのち、FeCl3を1000ppmを添加し2
分間急速撹拌し(この時点で撹拌液のPHは3程度
になる)、さらに10分間緩速撹拌し、次いで水酸
化マグネシウムの10%スラリーを添加してPH6〜
7に中和し、最後に全自動圧搾機構付フイルター
プレス(過圧4Kgf/cm2、圧搾圧力15Kgf/
cm2)で脱水した。 この結果、含水率60%の脱水ケーキと、第3表
に示す水質を有する処理水(脱水分離水)が得ら
れた。また、この脱水ケーキの乾燥固形分換算の
発熱量は3000〜3300kcal/DSSと高く、問題なく
自然可能であることがわかつた。
[Table] The mixed slurry (mixture of treated water and excess sludge) from this biological nitrification and denitrification process
After adding 500ppm of H 2 O 2 and 1000ppm of FeSO 4 and stirring rapidly for 3 minutes, 1000ppm of FeCl 3 was added.
Stir rapidly for a minute (at this point the pH of the stirred liquid will be around 3), stir slowly for another 10 minutes, then add a 10% slurry of magnesium hydroxide to pH 6~
7, and finally a filter press with a fully automatic squeezing mechanism (overpressure 4Kgf/cm 2 , squeezing pressure 15Kgf/
cm 2 ). As a result, a dehydrated cake with a water content of 60% and treated water (dehydrated separated water) having the water quality shown in Table 3 were obtained. In addition, the calorific value of this dehydrated cake in terms of dry solid content was as high as 3000 to 3300 kcal/DSS, and it was found that it could be produced naturally without any problems.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、有機性廃水処
理プロセスにおいて次のような工業上重要な利益
を得ることができる。 (i) 生物処理水中の色度成分、COD成分など生
物によつて分解除去されなかつた物質が、前記
薬剤による強力な酸化作用と凝集作用を受け、
脱色及びCODの除去が行われる。したがつて、
従来は汚泥の脱水にしか使われなかつた前記薬
剤の作用を、生物処理工程による処理水の高度
処理にも同時に利用できるという顕著な効果が
ある。 (ii) このように生物処理水の高度処理工程と余剰
汚泥処理工程を統合し同一の水処理系統で同時
に行うようにしたことによつて、COD、色度
を極めて効果的に除去できると共に、汚泥から
COD、BODが溶出する現象を防止できるよう
にしたので、活性炭、オゾン処理、凝集沈殿処
理工程を不要にすることもでき、ランニングコ
スト、イニシヤルコストの低減が可能になる。 (iii) 従来法では、リン酸を除去するために、硫酸
ばん土、塩化第2鉄、消石灰などの凝集剤を汚
泥脱水工程に使用される薬剤とは別個に必要と
し、しかも、凝集沈殿装置を必要としている
が、本発明では、汚泥脱水工程内でリン酸がほ
ぼ完全に(除去率99%以上)除去されるので、
これらの薬剤と凝集沈殿装置が不要になる。 (iv) 脱水ケーキの含水率は確実に60%以下になる
ので自然が可能となり、乾燥・焼却に必要な重
油などの補助燃料が大幅に節約できる。またコ
ンポスト化にも極めて好都合である。 (v) し尿などの高濃度有機性汚水を希釈水で希釈
することなく良質な処理水を得ることができる
ので、放流水の汚濁総量負荷が、従来の10〜20
倍希釈して処理するプロセスに比べ激減する。
As described above, according to the present invention, the following industrially important benefits can be obtained in the organic wastewater treatment process. (i) Substances that have not been decomposed and removed by living organisms, such as chromaticity components and COD components in biologically treated water, are subject to the strong oxidation and coagulation effects of the above-mentioned chemicals,
Decolorization and removal of COD is performed. Therefore,
This has the remarkable effect that the effects of the above-mentioned chemicals, which have conventionally been used only for dewatering sludge, can be simultaneously utilized for advanced treatment of treated water through biological treatment processes. (ii) By integrating the advanced treatment process for biologically treated water and the surplus sludge treatment process and performing them simultaneously in the same water treatment system, COD and chromaticity can be removed extremely effectively. from sludge
Since the phenomenon of elution of COD and BOD can be prevented, it is also possible to eliminate the need for activated carbon, ozone treatment, and coagulation and precipitation treatment processes, making it possible to reduce running costs and initial costs. (iii) In the conventional method, in order to remove phosphoric acid, flocculants such as sulfuric acid, ferric chloride, and slaked lime are required separately from the agents used in the sludge dewatering process, and furthermore, a flocculant-sedimentation device is required. However, in the present invention, phosphoric acid is almost completely removed (removal rate of 99% or more) during the sludge dewatering process.
These chemicals and coagulation-sedimentation equipment become unnecessary. (iv) Since the moisture content of the dehydrated cake is guaranteed to be below 60%, it is possible to make it natural, and the auxiliary fuel such as heavy oil required for drying and incineration can be greatly saved. It is also extremely convenient for composting. (v) Since high-quality treated water can be obtained without diluting high-concentration organic wastewater such as human waste with dilution water, the total pollution load of effluent water is reduced to 10 to 20% compared to conventional methods.
This is a drastic reduction compared to the process that involves dilution.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施態様を示す系統説明図で
ある。 1……生し尿、2……生物学的硝化脱窒素装
置、3……第1脱窒素槽、4……硝化槽、5……
第2脱窒素槽、6……循環ポンプ、7……曝気装
置、8……濃縮装置、9……濃縮汚泥、10……
分離水、11……混合スラリー、12……貯留
槽、13……撹拌槽、14……過酸化水素、15
……第1鉄含有物質、16……撹拌槽、17……
第2鉄含有物質、18……中和槽、19……アル
カリ剤、20……フイルタープレス、21……脱
水分離水、22……脱水ケーキ、23……空気。
The drawing is a system explanatory diagram showing one embodiment of the present invention. 1... Fresh urine, 2... Biological nitrification and denitrification equipment, 3... First denitrification tank, 4... Nitrification tank, 5...
Second denitrification tank, 6... Circulation pump, 7... Aeration device, 8... Thickening device, 9... Thickened sludge, 10...
Separated water, 11... Mixed slurry, 12... Storage tank, 13... Stirring tank, 14... Hydrogen peroxide, 15
...Substance containing ferrous iron, 16...Stirring tank, 17...
Ferric-containing substance, 18... Neutralization tank, 19... Alkali agent, 20... Filter press, 21... Dehydrated separated water, 22... Dehydrated cake, 23... Air.

Claims (1)

【特許請求の範囲】[Claims] 1 有機性廃水を生物学的硝化脱窒素工程にて処
理したのち、該工程から流出する生物処理水と該
工程で発生した余剰汚泥との混合スラリーを形成
し、該混合スラリーに過酸化水素ならびに第一鉄
含有物質および第二鉄含有物質を添加反応せし
め、該反応スラリーをそのまま又はアルカリ剤を
添加して機械脱水することを特徴とする有機性廃
水の処理方法。
1 After treating organic wastewater in a biological nitrification and denitrification process, a mixed slurry is formed of the biologically treated water flowing out from the process and excess sludge generated in the process, and hydrogen peroxide and 1. A method for treating organic wastewater, which comprises adding and reacting a ferrous iron-containing substance and a ferric iron-containing substance, and mechanically dewatering the reaction slurry as it is or by adding an alkali agent.
JP55124407A 1980-09-08 1980-09-08 Treatment of organic waste water Granted JPS5748393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55124407A JPS5748393A (en) 1980-09-08 1980-09-08 Treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55124407A JPS5748393A (en) 1980-09-08 1980-09-08 Treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPS5748393A JPS5748393A (en) 1982-03-19
JPS6339319B2 true JPS6339319B2 (en) 1988-08-04

Family

ID=14884691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55124407A Granted JPS5748393A (en) 1980-09-08 1980-09-08 Treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS5748393A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247891A (en) * 1986-04-18 1987-10-28 Nittetsu Mining Co Ltd Deodorizing method for waste liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255256A (en) * 1975-10-31 1977-05-06 Toa Gosei Chem Ind Waste water treating method
JPS52108654A (en) * 1976-03-09 1977-09-12 Toa Gosei Chem Ind Method of treating treated night soil water
JPS52124758A (en) * 1976-04-13 1977-10-20 Toa Gosei Chem Ind Method of treating waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255256A (en) * 1975-10-31 1977-05-06 Toa Gosei Chem Ind Waste water treating method
JPS52108654A (en) * 1976-03-09 1977-09-12 Toa Gosei Chem Ind Method of treating treated night soil water
JPS52124758A (en) * 1976-04-13 1977-10-20 Toa Gosei Chem Ind Method of treating waste water

Also Published As

Publication number Publication date
JPS5748393A (en) 1982-03-19

Similar Documents

Publication Publication Date Title
JPH04349997A (en) Treatment of organic waste water
JPS5845920B2 (en) Biochemical treatment method for organic waste liquid
JPS6210720B2 (en)
JP2796909B2 (en) Wastewater treatment method
JPH0124558B2 (en)
JPH0687942B2 (en) Biological deodorization method for odorous components
US4288328A (en) Use of specially prepared iron floc to oxidize and remove iron in water treatment processes
JPS58153594A (en) Treatment of organic waste
JP2621090B2 (en) Advanced wastewater treatment method
JPS6320600B2 (en)
JPS6339319B2 (en)
JPS6339309B2 (en)
JPH0483594A (en) Biological treatment of organic sewage
JPH0141110B2 (en)
JPS6254077B2 (en)
JP3326084B2 (en) How to reduce organic sludge
CN117285179B (en) Full-quantization combined treatment method for landfill leachate
JPS5938837B2 (en) How to treat organic waste liquid
JPH091162A (en) High degree treating method for waste water and catalyst for oxidation treatment of waste water
JPS643156B2 (en)
JPS6133639B2 (en)
JPH0314519B2 (en)
JPS6254078B2 (en)
JPH0585240B2 (en)
JPH03270789A (en) Biological treatment of organic sewage