JPS6338938B2 - - Google Patents

Info

Publication number
JPS6338938B2
JPS6338938B2 JP55163774A JP16377480A JPS6338938B2 JP S6338938 B2 JPS6338938 B2 JP S6338938B2 JP 55163774 A JP55163774 A JP 55163774A JP 16377480 A JP16377480 A JP 16377480A JP S6338938 B2 JPS6338938 B2 JP S6338938B2
Authority
JP
Japan
Prior art keywords
contact
breaker
relay device
main contact
lower system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55163774A
Other languages
Japanese (ja)
Other versions
JPS5788826A (en
Inventor
Terushige Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16377480A priority Critical patent/JPS5788826A/en
Publication of JPS5788826A publication Critical patent/JPS5788826A/en
Publication of JPS6338938B2 publication Critical patent/JPS6338938B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 この発明は上位、下位系統を有する電力系統に
おいて、下位系統において事故が発生した場合に
は下位系統に設置されたしや断器をしや断させ、
事故が上位系統にまで波及するのを防止したしや
断器の保護連動装置に関するものである。
[Detailed Description of the Invention] In a power system having an upper system and a lower system, when an accident occurs in the lower system, the disconnector installed in the lower system is immediately disconnected.
This invention relates to a protective interlocking device for a breaker that prevents an accident from spreading to the upper system.

第1図は従来の電力系統を示す電力系統図であ
る。第1図において、一次系統1は例えば発電所
から直接電力が供給されるものであり、この一次
系統1から二次系統1A〜1C、三次系統1Aa
〜1Ac、四次系統1Aa1〜1Aa2がそれぞれ分岐
されている。しや断器2,2A〜2C,2Aa〜
2Ac,2Aa1〜2Aa2はそれぞれ一次系統1〜四
次系統1Aa2に設置されたものである。計器用変
流器3,3A〜3C,3Aa〜3Ac,3Aa1〜3
Aa2はそれぞれ一次系統1〜四次系統1Aa2に設
置され、それぞれ一次系統1〜四次系統1Aa2
流れる電流を検出するものである。過電流継電装
置4,4A〜4C,4Aa〜4Ac,4Aa1〜4
Aa2はそれぞれ計器用変流器3,3A〜3C,3
Aa〜3Ac,3Aa1〜3Aa2の出力が所定値以上
になると付勢され、しや断器1,1A〜1C,1
Aa〜1Ac,1Aa1〜1Aa2をしや断させるもの
である。
FIG. 1 is a power system diagram showing a conventional power system. In Fig. 1, a primary system 1 is one to which power is directly supplied from a power plant, for example, and from this primary system 1 there are secondary systems 1A to 1C and a tertiary system 1Aa.
~1Ac, and quaternary lineages 1Aa 1 to 1Aa 2 are branched, respectively. Shiya disconnector 2, 2A~2C, 2Aa~
2Ac, 2Aa 1 to 2Aa 2 are installed in primary system 1 to quaternary system 1Aa 2 , respectively. Instrument current transformer 3, 3A ~ 3C, 3Aa ~ 3Ac, 3Aa 1 ~ 3
Aa 2 is installed in the primary system 1 to the quaternary system 1Aa 2 , respectively, and detects the current flowing in the primary system 1 to the quaternary system 1Aa 2 , respectively. Overcurrent relay device 4, 4A ~ 4C, 4Aa ~ 4Ac, 4Aa 1 ~ 4
Aa 2 are instrument current transformers 3, 3A to 3C, 3 respectively
When the output of Aa ~ 3Ac, 3Aa 1 ~ 3Aa 2 exceeds a predetermined value, it is energized, and the circuit breakers 1, 1A ~ 1C, 1
Aa to 1Ac, 1Aa 1 to 1Aa 2 are suppressed.

第2図は第1図に示す過電流継電装置4,4A
〜4C,4Aa〜4Ac,4Aa1〜4Aa2の整定動
作特性曲線図で、横軸に事故電流を縦軸に動作時
間を取つている。第2図において、特性曲線Pは
例えば発電所の送出用しや断器に用いられる過電
流継電装置(図示せず)の整定動作特性曲線であ
り、特性曲線4,4A,4Aa,4Aa1はそれぞ
れ過電流継電装置4,4A,4Aa,4Aa1の整
定動作特性曲線である。
Figure 2 shows the overcurrent relay device 4, 4A shown in Figure 1.
〜4C, 4Aa〜4Ac, 4Aa 1 〜4Aa 2 Setting operating characteristic curve diagram, with fault current plotted on the horizontal axis and operating time plotted on the vertical axis. In FIG. 2, a characteristic curve P is a settling operation characteristic curve of an overcurrent relay device (not shown) used, for example, as a transmitter or disconnector in a power plant, and characteristic curves 4, 4A, 4Aa, 4Aa 1 are the settling operation characteristic curves of overcurrent relay devices 4, 4A, 4Aa, and 4Aa 1 , respectively.

次に第1図に示す電力系統の動作を第2図を用
いて説明する。今、第1図に示す点F1において
例えば短絡事故が発生すると、四次〜一次系統1
Aa1〜1に第2図に示す事故電流I1が流れる。こ
の事故電流I1は通常の負荷電流に対してはるかに
大きいため、過電流継電装置4〜4Aa1の誘導円
板はそれぞれ第2図に示す特性曲線4〜4Aa1
応じて動作する。この場合において過電流継電装
置4Aa1の誘導円板が最初に所定回転角度回転し
て誘導円板に取付けられた接点が最初に閉成す
る。続いて過電流継電装置4Aa,4A,4の接
点が順次閉成するようにそれぞれの整定動作特性
曲線が継電器のタツプ値およびダイヤル値によつ
て設定されている。このためまず過電流継電装置
4Aa1の接点が閉成してしや断器2Aa1をしや断
させ、四次系統1Aa1を他の系統から切離す。四
次系統1Aa1が切離されると事故電流I1がなくな
り、他の過電流継電装置4,4A,4Aaの誘導
円板は逆方向に回転して元の位置に戻る。
Next, the operation of the power system shown in FIG. 1 will be explained using FIG. 2. Now, if a short circuit accident occurs at point F1 shown in Figure 1 , for example, the quaternary to primary system 1
A fault current I 1 shown in FIG. 2 flows through Aa 1 to Aa 1 . Since this fault current I 1 is much larger than the normal load current, the induction disks of the overcurrent relay devices 4 to 4Aa 1 operate according to the characteristic curves 4 to 4Aa 1 shown in FIG. 2, respectively. In this case, the induction disk of the overcurrent relay device 4Aa 1 is first rotated by a predetermined rotation angle, and the contacts attached to the induction disk are closed first. Subsequently, the respective settling operation characteristic curves are set by the tap values and dial values of the relays so that the contacts of the overcurrent relay devices 4Aa, 4A, 4 are sequentially closed. For this reason, first, the contacts of the overcurrent relay device 4Aa 1 are closed to cause the shingle breaker 2Aa 1 to be disconnected, thereby disconnecting the quaternary system 1Aa 1 from other systems. When the quaternary system 1Aa 1 is disconnected, the fault current I 1 disappears, and the induction disks of the other overcurrent relay devices 4, 4A, 4Aa rotate in the opposite direction and return to their original positions.

一般に過電流継電装置4〜4Aa2はそれぞれの
誘導円板オーバローテーシヨン、即ち入力がなく
なつても誘導円板が慣性によつて回転し続ける性
質、並びにしや断器2〜2Aa2のしや断時間を考
慮して、第2図に示す時間t1〜t4のように各過電
流継電装置4〜4Aa2のそれぞれの接点が閉成す
るまでの時間に0.3秒程度以上の時間差を持たせ
て、上位系統のしや断器2〜2Aaが不要にしや
断されるのを防止している。
In general, overcurrent relay devices 4 to 4Aa 2 are designed to control the overrotation of each induction disk, that is, the property that the induction disk continues to rotate due to inertia even if there is no input, as well as the overrotation of each inductor disk breaker 2 to 2Aa 2 . Taking into account the breakage time, the time required for each contact of each overcurrent relay device 4 to 4Aa2 to close is approximately 0.3 seconds or more, as shown in time t1 to t4 shown in Figure 2. By providing a time difference, it is possible to prevent unnecessary disconnection of the upper system disconnectors 2 to 2Aa.

しかしながら例えば発電所の送出用しや断器に
用いられる過電流継電装置(図示せず)の整定動
作特性曲線は第2図に示す特性曲線Pのように決
まつているため、二次系統以下にそれぞれ0.3秒
の時間差を持たせて継電器設置の協調を取つてい
たのでは、二次系統以下として二段〜三段しか取
れず、それ以上の場合には上位系統と下位系統と
のしや断器が共にしや断されてしまう可能性があ
つた。この発明は上記のような従来のものの欠点
を除去するためになされたもので、下位系統のし
や断器がしや断された場合には、上位系統のしや
断器の引外し装置を施錠(ロツク)するようにし
たものである。以下図面によつてこの発明の一実
施例を説明する。
However, for example, since the setting operating characteristic curve of an overcurrent relay device (not shown) used for sending out or disconnecting at a power plant is determined as the characteristic curve P shown in Fig. 2, the secondary system If we were to coordinate the installation of relays by giving a time difference of 0.3 seconds to each of the following, we would only be able to install two or three stages below the secondary system, and if there were more than that, the upper system and lower system would There was a possibility that both the shield and the disconnector would be disconnected. This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and when the lower system's shield or disconnector is suddenly disconnected, the upper system's shield or disconnector's tripping device is activated. It is designed to be locked. An embodiment of the present invention will be described below with reference to the drawings.

第3図はこの発明に係るしや断器の保護連動装
置の一実施例を示す電気結線図であり、特に第1
図における四次系統(下位系統)のしや断器2
Aa1と三次系統(上位系統)のしや断器2Aaに
おける引外しコイル部分の電気回路を示したもの
である。第4図は第3図の動作説明用の整定動作
特性曲線図で、横軸に事故電流を縦軸に動作時間
を取つている。第3図において、引外しコイル5
は付勢時にしや断器2Aa1をしや断させるもので
ある。メイン(主)接点6は継電器装置4Aa1
誘導円板が所定回転角度回転すると第4図の特性
曲線6に応じて閉成するもので、引外しコイル5
とメイン接点6とは直列接続されて正、負電源母
線+、−間に接続されている。引外しコイル7は
付勢時にしや断器2Aaをしや断させるものであ
る。メイン(主)接点8は継電器装置4Aaの誘
導円板が所定回転角度回転する第4図の特性曲線
8に応じて閉成するものである。サブ(補助)接
点9は継電装置4Aa1の誘導円板が所定回転角度
回転すると第4図の特性曲線9に応じて開放する
ものである。
FIG. 3 is an electrical wiring diagram showing one embodiment of the protective interlocking device for the shield breaker according to the present invention, and in particular, the first
Shiya disconnector 2 of the quaternary system (lower system) in the diagram
This figure shows the electric circuits of the tripping coils in Aa 1 and breaker 2Aa of the tertiary system (upper system). FIG. 4 is a settling operation characteristic curve diagram for explaining the operation of FIG. 3, in which the horizontal axis represents the fault current and the vertical axis represents the operating time. In FIG. 3, the tripping coil 5
is used to cause the shear breaker 2Aa 1 to rupture when energized. The main contact 6 closes according to the characteristic curve 6 in FIG. 4 when the induction disk of the relay device 4Aa 1 rotates by a predetermined rotation angle,
and the main contact 6 are connected in series between the positive and negative power supply buses + and -. The tripping coil 7 causes the crimper breaker 2Aa to rupture when energized. The main contact 8 closes according to the characteristic curve 8 shown in FIG. 4 when the induction disk of the relay device 4Aa rotates by a predetermined rotation angle. The sub (auxiliary) contact 9 opens according to the characteristic curve 9 in FIG. 4 when the induction disk of the relay device 4Aa 1 rotates by a predetermined rotation angle.

次に第3図の動作を第4図を用いて説明する。
今、第1図に示す点F1において例えば短絡事故
が発生すると、四次〜一次系統1Aa1〜1に第4
図に示す事故電流I1が流れる。この事故電流I1
流れる。この事故電流I1は通常の負荷電流に対し
てはるかに大きいため、過電流継電装置4Aa,
4Aa1の誘導円板が回転し、これら誘導円板に取
付けられたメイン接点6,8は第4図の特性曲線
に応じて閉成し、サブ接点9は開放する。この場
合、サブ接点9が開放した後、時間T1後にメイ
ン接点6が閉成し、さらに時間T2後にメイン接
点8が閉成するように構成されている。従つて、
第3図から明らかなように、メイン接点9が開放
して引外しコイル7を施錠した後、メイン接点6
が閉成して引外しコイル6を付勢し、しや断器2
Aa1をしや断する。
Next, the operation shown in FIG. 3 will be explained using FIG. 4.
Now, for example, if a short circuit occurs at point F 1 shown in Figure 1, the fourth to primary system 1Aa 1 to 1
The fault current I1 shown in the figure flows. This fault current I1 flows. Since this fault current I1 is much larger than the normal load current, the overcurrent relay device 4Aa,
The induction disks 4Aa 1 rotate, the main contacts 6 and 8 attached to these induction disks close in accordance with the characteristic curve shown in FIG. 4, and the sub-contact 9 opens. In this case, after the sub-contact 9 is opened, the main contact 6 is closed after a time T1 , and the main contact 8 is further closed after a time T2 . Therefore,
As is clear from FIG. 3, after the main contact 9 opens and locks the tripping coil 7, the main contact 6
closes and energizes the tripping coil 6, causing the breaker 2 to close.
Break Aa 1 .

このように下位系統のメイン接点6が閉成する
前に下位系統のサブ接点9を開放させ、このサブ
接点9の開放によつて上位系統の引外しコイル7
を施錠するようにしているため、第4図に示す時
間T1,T2が例え0秒であつたとしても上位系統
のしや断器2Aaが引外されることがない。また
しや断器2Aa1がしや断された事故点F1が系統か
らしや断されると、過電流継電装置4Aa1,4
Aaの誘導円板は逆方向に回転して再び元の位置
に戻ため、サブ接点9は再び閉成して上位系統の
引外しコイル7の引外し回路は再び構成される。
In this way, before the main contact 6 of the lower system closes, the sub contact 9 of the lower system is opened, and by opening the sub contact 9, the trip coil 7 of the upper system is opened.
4. Therefore, even if the times T 1 and T 2 shown in FIG. 4 are 0 seconds, the upper system shield breaker 2Aa will not be tripped. When the fault point F1 , where the disconnector 2Aa 1 is suddenly disconnected, is suddenly disconnected from the system, the overcurrent relay devices 4Aa 1 , 4
Since the induction disk Aa rotates in the opposite direction and returns to its original position, the sub-contact 9 is closed again and the tripping circuit of the tripping coil 7 of the upper system is reconfigured.

また、下位系統のしや断器2Aa1による事故点
F1のしや断失敗による救済(バツクアツプ)の
問題は、下位系統の過電流継電装置4Aa1のサブ
接点9を一旦動作した後、一定時間後に復帰させ
るようにすることにより解決している。即ち、こ
のように復帰させることにより上位系統の引外し
コイル7の引外し回路は再び構成されるので、上
位系統のしや断器2Aaによるバツクアツプしや
断が可能となる。ただしこのようなサブ接点9を
一定時間後に復帰させる場合においては、数段に
わたる過電流継電装置4〜4Aa1の協調を取つて
行けば、サブ接点9を復帰させるのに時間がかか
るため、例えば過電流継電装置4と発電所に設置
された過電流継電装置(図示せず)との間に協調
が取れなくなる恐れがある。しかしながら、この
ようなバツクアツプしや断は全段において協調を
取る必要はなく、一部分の段のブロツク毎にバツ
クアツプしや断の協調を取るようにすればよい。
また上記実施例では上位系統の引外し回路に下位
系統のサブ接点9を1個直列接続した場合を示し
たが、例えば二次系統1Aのしや断器2Aの引外
し回路(図示せず)に過電流継電器4Aa1のサブ
接点9と過電流継電器4Aaのサブ接点(図示せ
ず)とを直列接続するように構成することもでき
る。さらに上記実施例では、単一の過電流継電器
4Aa1にメイン接点6とサブ接点9とを設けた場
合を示したが、2個の過電流継電器にそれぞれ別
個にメイン接点6とサブ接点9とを設けるように
してもよい。
In addition, the accident point due to lower system disconnection 2Aa 1
The problem of backup caused by failure of F1 is solved by activating the sub-contact 9 of the overcurrent relay device 4Aa 1 in the lower system and then returning it after a certain period of time. . That is, by restoring in this way, the tripping circuit of the tripping coil 7 of the upper system is reconfigured, so that backup and disconnection by the upper system disconnector 2Aa becomes possible. However, in the case of returning such a sub-contact 9 after a certain period of time, it will take time to return the sub-contact 9 if the overcurrent relay devices 4 to 4Aa 1 in several stages are coordinated. For example, there is a possibility that coordination between the overcurrent relay device 4 and an overcurrent relay device (not shown) installed at the power plant may be lost. However, it is not necessary to coordinate such backups and cuts in all stages, but it is sufficient to coordinate backups and cuts for each block in some stages.
Furthermore, in the above embodiment, the case where one sub-contact 9 of the lower system is connected in series to the tripping circuit of the upper system is shown, but for example, the tripping circuit of the disconnector 2A of the secondary system 1A (not shown) Alternatively, the sub-contact 9 of the overcurrent relay 4Aa 1 and the sub-contact (not shown) of the overcurrent relay 4Aa may be connected in series. Furthermore, in the above embodiment, the single overcurrent relay 4Aa 1 is provided with the main contact 6 and the sub contact 9, but two overcurrent relays are provided with the main contact 6 and the sub contact 9 separately. may be provided.

この発明は上記のように構成され、下位系統の
継電装置の主動作より早く動作する補助動作によ
つて、上位系統の引外し回路を施錠するようにし
ているため、電力系統の保護協調を上位系統から
下位系統にわたつて多段数に容易に取ることがで
きる。このため従来においては多段数の系統にわ
たつて系統しや断が行われてもやむを得ないとさ
れていた事故に対しても、事故点の系統のみの選
択しや断が可能となり、電力供給の信頼度が高ま
り、かつ安定した電力を負荷に供給することがで
きる。また、前記補助接点の動作の後一定時間後
にこれを復帰させるようにしているので、下位系
統のしや断器によるしや断失敗があつても上位系
統のしや断器によるバツクアツプしや断が可能で
ある。
This invention is configured as described above, and the tripping circuit of the upper system is locked by the auxiliary operation that operates earlier than the main operation of the relay device of the lower system, thereby improving the protection coordination of the power system. It is possible to easily create multiple stages from the upper system to the lower system. Therefore, even in the event of an accident that was considered unavoidable even if the system was connected or disconnected across multiple stages, it is now possible to select or disconnect only the system at the point of failure, and the power supply can be improved. Reliability is increased and stable power can be supplied to the load. In addition, since the auxiliary contact is reset after a certain period of time after operation, even if there is a failure to disconnect due to the disconnection in the lower system, there will be no backup or disconnection due to the disconnection in the upper system. is possible.

以上のようにこの発明によれば、電力系統の保
護協調を多段数にわたつて取ることができ、電力
供給の信頼度が高まる等の諸効果を有する。
As described above, according to the present invention, protection coordination of the power system can be achieved over multiple stages, and the reliability of power supply is increased, among other effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電力系統を示す電力系統図、第
2図は第1図に示す過電流継電装置の整定動作特
性曲線図、第3図はこの発明に係るしや断器の保
護連動装置の一実施例を示す電気結線図、第4図
は第3図の動作説明用の整定動作特性曲線図であ
る。 図において、1,1A〜1C,1Aa〜1Ac,
1Aa1〜1Aa2は一次、二次、三次、四次系統、
2,2A〜2C,2Aa〜2Ac,2Aa1〜2Aa2
はしや断器、4,4A〜4C,4Aa〜4Ac,4
Aa1〜2Aa2は過電流継電装置、5は引外しコイ
ル、6はメイン(主)接点、7は引外しコイル、
8はメイン(主)接点、9はサブ(補助)接点で
ある。
Fig. 1 is a power system diagram showing a conventional power system, Fig. 2 is a settling operation characteristic curve diagram of the overcurrent relay device shown in Fig. 1, and Fig. 3 is a protection interlocking of the shield breaker according to the present invention. FIG. 4 is an electrical wiring diagram showing one embodiment of the device, and FIG. 4 is a settling operation characteristic curve diagram for explaining the operation of FIG. 3. In the figure, 1, 1A to 1C, 1Aa to 1Ac,
1Aa 1 to 1Aa 2 are primary, secondary, tertiary, quaternary systems,
2, 2A ~ 2C, 2Aa ~ 2Ac, 2Aa 1 ~ 2Aa 2
Chopsticks and disconnectors, 4, 4A to 4C, 4Aa to 4Ac, 4
Aa 1 to 2 Aa 2 is an overcurrent relay device, 5 is a tripping coil, 6 is a main contact, 7 is a tripping coil,
8 is a main contact, and 9 is a sub (auxiliary) contact.

Claims (1)

【特許請求の範囲】 1 下位系統に設置され動作時に下位系統のしや
断器引外し回路を付勢する主接点と前記主接点よ
りも早く動作しかつこの動作後一定時間経過後に
復帰する補助接点とを有する下位系統の継電装
置、および上位系統に設置され前記主接点よりも
遅く動作しかつ動作時に上位系統のしや断器引外
し回路を付勢する主接点を有する上位系統の継電
装置を備え、前記下位系統の継電装置の補助接点
が動作した時にはこの動作によつて前記上位系統
のしや断器引外し回路が付勢されないようにする
と共に、この補助接点が復帰した時にはこの復帰
によつて前記上位系統のしや断器引外し回路を再
形成するようにしたことを特徴とするしや断器の
保護連動装置。 2 下位系統の継電装置の主接点と補助接点とを
それぞれ同一継電器に設けた特許請求の範囲第1
項記載のしや断器の保護連動装置。 3 下位系統の継電装置の主接点と補助接点とを
それぞれ異なる継電器に設けた特許請求の範囲第
1項記載のしや断器の保護連動装置。
[Scope of Claims] 1. A main contact that is installed in the lower system and energizes the circuit breaker tripping circuit of the lower system during operation, and an auxiliary contact that operates earlier than the main contact and returns after a certain period of time after this operation. A relay device for a lower system having a contact, and a relay for an upper system having a main contact installed in the upper system that operates slower than the main contact and energizes the disconnector tripping circuit of the upper system when activated. an electrical device, and when the auxiliary contact of the relay device in the lower system is operated, this operation prevents the breaker tripping circuit of the upper system from being energized, and the auxiliary contact is restored. A protective interlocking device for a shield breaker, characterized in that the reset causes a circuit breaker tripping circuit of the upper system to be reconfigured. 2 Claim 1 in which the main contacts and auxiliary contacts of the relay device of the lower system are provided in the same relay, respectively.
Protective interlocking device for breaker as described in section. 3. A protection interlocking device for a shield breaker according to claim 1, wherein the main contact and the auxiliary contact of the relay device of the lower system are provided in different relays.
JP16377480A 1980-11-19 1980-11-19 Protecting interlocking device for breaker Granted JPS5788826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16377480A JPS5788826A (en) 1980-11-19 1980-11-19 Protecting interlocking device for breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16377480A JPS5788826A (en) 1980-11-19 1980-11-19 Protecting interlocking device for breaker

Publications (2)

Publication Number Publication Date
JPS5788826A JPS5788826A (en) 1982-06-02
JPS6338938B2 true JPS6338938B2 (en) 1988-08-02

Family

ID=15780457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16377480A Granted JPS5788826A (en) 1980-11-19 1980-11-19 Protecting interlocking device for breaker

Country Status (1)

Country Link
JP (1) JPS5788826A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113727A (en) * 1980-12-29 1982-07-15 Fuji Electric Co Ltd Overcurrent relay
JPH0767236B2 (en) * 1988-12-23 1995-07-19 株式会社日立製作所 Distribution line protection device
EP2654156B1 (en) * 2012-04-17 2021-05-26 Siemens Energy AS Fault protection system for a power system of dynamically positioned vessel
EP2654157B1 (en) 2012-04-17 2022-07-20 Siemens Energy AS Fault protection system for a power system of dynamically positioned vessel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297141A (en) * 1976-02-12 1977-08-15 Mitsubishi Electric Corp Short-circuit protection relay system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297141A (en) * 1976-02-12 1977-08-15 Mitsubishi Electric Corp Short-circuit protection relay system

Also Published As

Publication number Publication date
JPS5788826A (en) 1982-06-02

Similar Documents

Publication Publication Date Title
US4477855A (en) Protecting system for transmission lines
CN110474288B (en) Programmable microcomputer protection device
JPS6338938B2 (en)
Jonsson Line Protection and Power System Collapse
CN213754084U (en) Dual-power supply system adopting power supplies with different grounding modes
JP3248962B2 (en) How to protect the inverter distribution system
US4974112A (en) Apparatus for improved protection against lower magnitude faults in an electrical power distribution system
RU2695643C1 (en) Method of transforming power supply systems tn-cs and tt and power supply system for implementing method with protective input heterogeneous communication switching device
JPH1014100A (en) Ground self-breaking type automatic section switch
JP3081494B2 (en) Automatic section switch
SU114366A1 (en) Device for automatically switching on high voltage distribution network sections
JP2684317B2 (en) Grid connection protection device
SU904094A1 (en) Substation with switches of load
JPH0323802Y2 (en)
JP2550006B2 (en) Distribution line protection relay device
SU1188823A2 (en) Device for protective switching-off in a.c.network
JPH0112510Y2 (en)
US1729406A (en) Protective apparatus for distribution systems
JPH04244729A (en) Spot network system
JPH0373215B2 (en)
JPH03251042A (en) Spot network incoming transfer system
JPS6251053B2 (en)
JPH0119207B2 (en)
JPS6258826A (en) Control circuit for gas insulated switchgear
JPS61164424A (en) Network controller