JPS6338864A - Refrigeration cycle device - Google Patents

Refrigeration cycle device

Info

Publication number
JPS6338864A
JPS6338864A JP18381286A JP18381286A JPS6338864A JP S6338864 A JPS6338864 A JP S6338864A JP 18381286 A JP18381286 A JP 18381286A JP 18381286 A JP18381286 A JP 18381286A JP S6338864 A JPS6338864 A JP S6338864A
Authority
JP
Japan
Prior art keywords
refrigerant
valve
refrigeration cycle
accumulator
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18381286A
Other languages
Japanese (ja)
Inventor
秀一 谷
隆司 志賀
浜 宏明
等 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18381286A priority Critical patent/JPS6338864A/en
Priority to KR1019870007921A priority patent/KR910001907B1/en
Priority to US07/079,496 priority patent/US4765149A/en
Publication of JPS6338864A publication Critical patent/JPS6338864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 米発明は、複数台の利用側熱交換器と一台の非利用側熱
交換器に対して一台の圧縮機を備えてなる冷凍サイクル
装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The US invention provides a refrigeration cycle comprising one compressor for a plurality of heat exchangers on the use side and one heat exchanger on the non-use side. Regarding equipment.

〔従来の技術〕[Conventional technology]

従来この種の冷凍サイクル装置は、概略第4図に示すよ
うな構電とされていた。これを筒中に説す1すると、図
中符号1.2は一台の圧縮機、3は四方切換弁、4は一
台の非利用側熱交換器、5は暖房連転時の膨張機構、6
は冷房運転時の膨張機構、7.8は一台の利用側熱交換
器、9はアキュムレータで、これらは順次冷媒配管で連
結されて冷凍サイクルを構成している。また、10は圧
縮fit、2のシェル同士を下側部において接続し内部
油量の均等化を図るための均油管、11.12は前記各
圧縮fit、2の吐出側のそれぞれと四方切換弁3との
間に介在された逆11:弁、13.14はmI記各膨張
機構5.6とそれぞれ並列に接続された逆lヒ弁、15
.16は前記各利用側熱交換器7.8の冷房運転時の入
口側にそれぞれ接続された゛IE磁開開開閉弁る。
Conventionally, this type of refrigeration cycle apparatus has had an electric structure as schematically shown in FIG. 4. Explaining this in the cylinder, 1 and 2 in the figure are one compressor, 3 is a four-way switching valve, 4 is one non-use side heat exchanger, 5 is an expansion mechanism during continuous heating, 6
7.8 is an expansion mechanism during cooling operation, 7.8 is a heat exchanger on the user side, and 9 is an accumulator, which are successively connected by refrigerant piping to form a refrigeration cycle. In addition, 10 is a compression fit, an oil equalizing pipe for connecting the shells of 2 at the lower part to equalize the internal oil amount, 11.12 is each of the compression fits, each of the discharge sides of 2, and a four-way switching valve. Inverse valve 11: valve 13.14 interposed between 3 and 3 is an inverse valve 15 connected in parallel with each expansion mechanism 5.6.
.. Reference numeral 16 denotes an IE magnetic opening/closing valve connected to the inlet side of each of the user-side heat exchangers 7.8 during cooling operation.

ここで、この第4図中実線で示す矢印は冷房運転時およ
びデフロス) ?[転時の冷媒の流れを、図山破線で示
す矢印は暖房運転時の冷媒の流れをそれぞれ示している
Here, the arrow shown by the solid line in Fig. 4 indicates during cooling operation and defrosting)? [The arrows in the figure showing the flow of refrigerant during heating operation are shown by the broken lines, respectively.

このような構成による従来の冷凍サイクル装置において
、たとえば冷房運転時およびデフロスト」!転時には、
圧1111機1.2から吐出された高温、高圧の冷奴は
、それぞれi!!止弁11.12を通り四方切換弁3に
より非利用側熱交換器4に送られ、ここで熱交換により
液化される0次で、この液化された冷媒すなわち液冷媒
は逆止弁13を通り冷房運転時の膨張機構6で減圧され
た後、電磁開閉弁15.16を介して利用側熱交換器7
.8に送り込まれ、ここで熱交換により再び気化される
。そして、この気化された冷媒は四方切換弁3およびア
キュムレータ9を通り再び圧縮fi1.2に吸込まれる
ことで、一台の非利用側熱交換器4と1台の利用側熱交
換器7.8に対して1台の圧縮機1,2を備えた冷房時
の冷凍サイクルが構成され、以後冷媒は」−述した冷凍
サイクル経路内をji「1次液化、気化を繰り返しなが
ら循環される。
In a conventional refrigeration cycle device with such a configuration, for example, during cooling operation and defrost''! When turning,
The high temperature and high pressure cold tofu discharged from the pressure 1111 machine 1.2 are each i! ! It passes through the stop valves 11 and 12 and is sent to the non-use side heat exchanger 4 by the four-way switching valve 3, where it is liquefied by heat exchange.The liquefied refrigerant, that is, the liquid refrigerant, passes through the check valve 13. After the pressure is reduced by the expansion mechanism 6 during cooling operation, it is transferred to the user side heat exchanger 7 via the electromagnetic on-off valve 15, 16.
.. 8, where it is vaporized again through heat exchange. Then, this vaporized refrigerant passes through the four-way switching valve 3 and the accumulator 9 and is sucked into the compression fi1.2 again, so that one non-use side heat exchanger 4 and one use side heat exchanger 7. A refrigeration cycle for air conditioning is configured with one compressor 1 and 2 for every 8. Thereafter, the refrigerant is circulated through the above-mentioned refrigeration cycle path while repeating primary liquefaction and vaporization.

また、暖房運転時には、圧1iiJa1.2から吐出さ
れた高温、高圧の冷媒は、それぞれ逆1F弁11.12
を通り四方!、TJ換弁3により利用側熱交換器7.8
に送られ、ここで熱交換により液化される。次で、この
液冷媒は、電磁開閉弁15゜16を通り逆止弁14を経
て暖房運転時の膨張機構5で減圧される。そして、この
減圧された冷媒は、非利用側熱交換器4にて熱交換によ
り再び気化され、四方切換弁3およびアキュムレータ9
を通り再び圧!tII機1,2に吸込まれ、これにより
!援房時の冷凍サイクルが構成されるものであった。
In addition, during heating operation, the high temperature and high pressure refrigerant discharged from the pressure 1iiJa1.2 is transferred to the reverse 1F valve 11.12, respectively.
In all directions! , the user side heat exchanger 7.8 by TJ exchange valve 3
where it is liquefied by heat exchange. Next, this liquid refrigerant passes through the electromagnetic on-off valves 15 and 16, passes through the check valve 14, and is depressurized by the expansion mechanism 5 during heating operation. Then, this decompressed refrigerant is vaporized again by heat exchange in the non-use side heat exchanger 4, and is then vaporized again by the four-way switching valve 3 and the accumulator 9.
Pressure again through! It was sucked into the tII machines 1 and 2, and as a result! This consisted of a refrigeration cycle when the cellar was saved.

さらに、上述した構成による従来の冷凍サイクル′A首
において、冷房i1!小云時および暖房運転時に利用側
の負荷の大きさに応じて圧m機1,2の運転が選択され
、また利用側熱交換37,8が電磁開閉弁15.16の
開閉制御により^宜選択されるものであった。すなわち
、一方の利用側熱交換器7または8のみを選択する場合
にはこちら側の゛改磁開閉弁15または16を開状態、
他方を閉状態とし、またいずれをも選択する場合には両
電磁開閉弁15.16を共に開状態とすればよいもので
あった。
Furthermore, in the conventional refrigeration cycle 'A neck with the above-mentioned configuration, cooling i1! The operation of the pressurizers 1 and 2 is selected depending on the load on the user side during light hours and during heating operation, and the user side heat exchangers 37 and 8 are controlled to open and close as needed by the electromagnetic on-off valves 15 and 16. It was chosen. That is, when selecting only one of the heat exchangers 7 or 8 on the user side, the "magnetization change on/off valve 15 or 16 on this side is in the open state,"
The other one should be closed, and if either one is selected, both electromagnetic on-off valves 15 and 16 should be opened.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述した従来′?;C置では、運転中に余剰
の冷媒を溜めておく場所が特別には設けられていないた
め、利用側における負荷変動に対して常に適正な運転状
態を得ることができないといった問題があった。
By the way, the above-mentioned conventional '? In the case of C-station, there is no special place for storing surplus refrigerant during operation, so there is a problem in that it is not always possible to obtain an appropriate operating state in response to load fluctuations on the user side.

たとえば冷房d!輪転時おいて圧縮機1,2および利用
側熱交換器7.8の両方が共に選択されるような冷房負
荷が大きい場合に、この冷凍サイクル装置vjが適切な
運転状態を得るために必要な冷媒量と、暖房運転面にお
いてたとえば圧縮機1.2および利用側熱交換器7,8
のいずれか一方のみがそれぞれ選択されるような暖房負
荷が小さい場合に適正な運転状態を得るために必要な冷
媒量とでは、大きな冷が生じるものである。ここで、両
利用側熱交換器7,8での熱交換容にが同じであるとす
ると、1111述した冷房負荷が大きい場合の適正冷媒
賃と、暖房負荷が小さい場合の適止冷媒賃とでは、後者
が前者の約30%程度と充分に小さいものである。
For example, air conditioning d! When the cooling load is large such that both the compressors 1 and 2 and the utilization side heat exchanger 7.8 are selected during rotary rotation, the refrigeration cycle device vj is required to have an appropriate operating state. In terms of refrigerant amount and heating operation, for example, the compressor 1.2 and the user side heat exchangers 7, 8
If the heating load is small and only one of these is selected, a large amount of cooling will occur compared to the amount of refrigerant required to obtain a proper operating state. Here, assuming that the heat exchange volumes in both heat exchangers 7 and 8 are the same, the appropriate refrigerant cost when the cooling load is large and the appropriate refrigerant cost when the heating load is small as described in 1111. The latter is about 30% of the former, which is sufficiently small.

したがって、冷凍サイクル装置に充填する冷媒1i)を
、暖房負荷の最小な場合に適正な運転状態を11トるた
めに必要な冷媒量を合せると、冷房負荷が最大の場合に
冷媒不足の運転状態となり、圧縮機1.2が過熱運転さ
れることで圧縮機寿命を箸しく縮められてしまう、また
、冷房負荷が最大の場合に最適な運転状態を得るために
必要な冷奴を充填すると、暖房負荷が最小の場合に冷媒
余剰の運転状態となり、圧縮fil、2に吸入される冷
媒に液状態のものが混じる液バツク運転となり、この場
合にも圧縮機1.2の故障の原因となるものであった。
Therefore, if the refrigerant 1i) charged in the refrigeration cycle equipment is combined with the amount of refrigerant required to achieve a proper operating state when the heating load is at its minimum, then when the cooling load is at its maximum, the operating state is insufficient. As a result, compressors 1 and 2 are operated at overheating, which significantly shortens the compressor life.Furthermore, when the cooling load is at its maximum, filling the cold tofu necessary to obtain the optimum operating condition will cause the heating When the load is at its minimum, there will be an operating state with a surplus of refrigerant, resulting in liquid back operation where the refrigerant sucked into the compressor fil, 2 will be mixed with liquid, which will also cause a failure of the compressor 1.2. Met.

すなわち、従来の冷凍サイクル装置では、上述した説明
から明らかな通り、利用側の負荷の変動に対して常に適
正な運転状態を得ることができないものであった。
That is, in the conventional refrigeration cycle apparatus, as is clear from the above explanation, it is not possible to always obtain an appropriate operating state in response to fluctuations in the load on the user side.

未発1!11は上述した基情に鑑みてなされたもので、
利用側の負荷変動に対して冷凍サイクル内で冷媒を溜め
たりあるいは供給することができ、常に適正な冷媒量で
最適な運転状態が得られる冷凍サイクル装置を得ること
を目的としている。
Unreleased 1!11 was made in view of the above-mentioned circumstances,
It is an object of the present invention to provide a refrigeration cycle device that can store or supply refrigerant within the refrigeration cycle in response to load fluctuations on the user side, and that can always obtain optimal operating conditions with an appropriate amount of refrigerant.

C問題点を解決するための手段〕 本発明に係る冷凍サイクル装置は、冷媒量の制御手段と
して、アキュムレータに吋し上部がオー7へ−フロー管
で、底部が電磁開閉弁を有する供給管で接続される液溜
を並列して設けるとともに、この液溜に高圧側である膨
張機構入口側から電磁開閉弁を介して冷媒が流入する流
入管を接続させてi没けるようにしたものである。
Means for Solving Problem C] The refrigeration cycle device according to the present invention has, as a means for controlling the amount of refrigerant, a supply pipe that connects to the accumulator, has a flow pipe at the top to O7, and has an electromagnetic shut-off valve at the bottom. In addition to providing connected liquid reservoirs in parallel, this liquid reservoir is connected to an inflow pipe through which refrigerant flows from the expansion mechanism inlet side, which is the high pressure side, via an electromagnetic shut-off valve, so that the refrigerant can be submerged. .

〔作用〕[Effect]

本発明によれば、冷凍サイクル内での冷媒が余剰の場合
には流入管を通して液溜に冷媒を溜めるようにし、一方
冷媒が不足している場合には供給管を通して冷凍サイク
ル側に必要とされる冷媒量を適切に供給し得るものであ
る。
According to the present invention, when there is a surplus of refrigerant in the refrigeration cycle, the refrigerant is stored in the liquid reservoir through the inflow pipe, while when there is a shortage of refrigerant, the refrigerant is transferred to the refrigeration cycle side through the supply pipe. It is possible to supply an appropriate amount of refrigerant.

〔実施例〕〔Example〕

以下、本発明を図面に示した実施例を用いて詳細に説明
する。
Hereinafter, the present invention will be explained in detail using embodiments shown in the drawings.

第1図は本発明に係る冷凍サイクルlの一実施例を示す
ものであり、図において前述した第4図と同一または相
当する部分には同一番号を付してその説明は省略する。
FIG. 1 shows an embodiment of a refrigeration cycle I according to the present invention, and in the figure, the same or corresponding parts as in FIG. 4 described above are given the same numbers, and the explanation thereof will be omitted.

さて、本発明によれば、冷媒量の制御手段として、冷凍
サイクル装置の低圧側に液溜20を、アキュムレータ9
と並列して設けたところに特徴を有している。
Now, according to the present invention, as a means for controlling the amount of refrigerant, the liquid reservoir 20 is provided on the low pressure side of the refrigeration cycle device, and the accumulator 9
It has a distinctive feature in that it is placed in parallel with the .

これを詳述すると、この液溜20は、その底部がアキュ
ムレータ9の底部よりも高位置にあるようにして並設し
て設置され、またその」二端部には、装置高圧側として
の前記膨張機構5,6間の冷媒配管から第1の電磁開閉
弁21および毛細管22を介して冷媒が流入する流入管
23が接続され、さらに前記アキュムレータ9との間は
上部がオーバフロー管24により、また底部が第2の電
磁開閉弁25を有する供給管26により接続されている
To explain this in detail, the liquid reservoirs 20 are installed in parallel so that their bottoms are higher than the bottoms of the accumulators 9. An inflow pipe 23 through which refrigerant flows from the refrigerant pipe between the expansion mechanisms 5 and 6 via a first electromagnetic on-off valve 21 and a capillary tube 22 is connected, and an overflow pipe 24 connects the upper part to the accumulator 9. The bottom part is connected by a supply pipe 26 having a second electromagnetic on-off valve 25.

また、図中30は非利用側熱交換器4に取付けられ冷房
時には凝縮温度を、暖房時には蒸発温度を検出する温度
素子、31は冷房時における膨張機構6の入口側冷媒温
度を検出する温度素子である。さらに、32.33は利
用側熱交換器7.8に取付けられ冷房時には蒸発温度、
暖房時には凝縮温度を検出する温度素子で、・また34
は暖房時における膨張機構5の入口側冷媒温度を検出す
る温度素子、35はアキュムレータ9の入口側冷媒温度
を検出する温度素子である。
Further, in the figure, 30 is a temperature element attached to the heat exchanger 4 on the non-use side and detects the condensation temperature during cooling and the evaporation temperature during heating, and 31 is a temperature element that detects the refrigerant temperature on the inlet side of the expansion mechanism 6 during cooling. It is. Furthermore, 32.33 is attached to the heat exchanger 7.8 on the user side, and when cooling, the evaporation temperature,
A temperature element that detects the condensation temperature during heating, and 34
35 is a temperature element that detects the refrigerant temperature on the inlet side of the expansion mechanism 5 during heating, and 35 is a temperature element that detects the refrigerant temperature on the inlet side of the accumulator 9.

さらに、36は前記温度素子30〜35により検出した
温度により冷房運転時の膨張機構6における過冷却度、
暖房運転時におけるIll張機構5における過冷却度、
アキュムレータ9人日側における過熱度を演算するため
の演算手段、37はこの演算手段36で演算した過冷却
度、過熱度に応じて前記液溜20への流入管23および
供給管26上の71!磁開閉弁21.25を制御する弁
制御手段である。
Furthermore, 36 indicates the degree of supercooling in the expansion mechanism 6 during cooling operation based on the temperature detected by the temperature elements 30 to 35;
The degree of supercooling in the Ill tension mechanism 5 during heating operation,
Calculating means 37 for calculating the degree of superheating on the accumulator 9 side, 71 on the inlet pipe 23 and supply pipe 26 to the liquid reservoir 20 according to the degree of supercooling and superheating calculated by this calculating means 36; ! This is a valve control means that controls the magnetic on-off valves 21 and 25.

次に、以上の構成を有する冷凍サイクル装置の動作を、
第2図および第3図を参照して説明する。ここで、第2
図は前記弁制御手段37による:51および:j42の
電磁開閉弁21.25の制御動作のフローチャートを示
す図、第3図は冷凍サイクル装置の過冷却度、過熱度を
判定する判定動作の説明図である。
Next, the operation of the refrigeration cycle device having the above configuration is as follows.
This will be explained with reference to FIGS. 2 and 3. Here, the second
The figure shows a flowchart of the control operation of the electromagnetic on-off valves 21 and 25 of :51 and :j42 by the valve control means 37, and FIG. It is a diagram.

たとえば冷房運転時において、圧縮4ill、2および
利用側熱交換器7.8の両方が選択されるような冷房負
荷が大きい場合には適正な運転状態がfFられるような
冷媒量が冷凍サイクル内に充填されているとする。この
状態において、冷房運転が、上述した圧li1機1.2
および利用側熱交換器7.8の両方が選択されるような
冷房負荷が大きい場合から圧縮fit、2および利用側
熱交換器7.8のうちのそれぞれから片方だけが選択さ
れるような冷房負荷が小さい場合に変化すると、この冷
凍サイクル装置のざ転状態は冷媒過剰の状態となる。こ
のような状態となると、前記温度素子32.33および
35によって検出され演算装置36で演算されるアキュ
ムレータ9の入口側での過熱度SHIは小さくなり、一
方温度素子30゜31によって検出され演算手段36で
演算される冷房運転時の膨張11!1構6の入口側にお
ける過冷却+Hscは大きくなる。すなわち、この冷凍
サイクル装置の2■転状態は、第3図に示したような冷
媒−刺の運転状態の領域Aに入ることとなる。
For example, during cooling operation, if the cooling load is large such that both compression 4ill. Suppose it is filled. In this state, the cooling operation is performed as follows:
In cases where the cooling load is large such that both the user-side heat exchanger 7.8 and the user-side heat exchanger 7.8 are selected, the cooling load is such that only one of the compression fit, 2 and the user-side heat exchanger 7.8 is selected. If the load changes when the load is small, the idle state of the refrigeration cycle device becomes a state in which there is an excess of refrigerant. In such a state, the degree of superheat SHI on the inlet side of the accumulator 9 detected by the temperature elements 32, 33 and 35 and calculated by the calculation unit 36 becomes small, while the degree of superheat SHI detected by the temperature elements 30, 31 and calculated by the calculation unit 36 becomes small. The supercooling +Hsc on the inlet side of the expansion 11!1 structure 6 during cooling operation calculated in step 36 becomes larger. That is, the 2-turn state of this refrigeration cycle device falls into region A of the refrigerant-switching operating state as shown in FIG.

そこで、このような場合には、適正な運転状態である領
域Cになるように、弁制御手段37は第2図に示した通
り、導入管23側の′4i磁開閉弁21を開状態とし、
他方供給管26側の′I¥磁開開開閉弁25状態とする
制御を行なう。そして、このような制御により液溜20
には、高圧側である膨張機構6の入口側から電磁開閉弁
2L毛細管22を経て流入管23より冷媒が流入する。
Therefore, in such a case, the valve control means 37 opens the '4i magnetic on-off valve 21 on the inlet pipe 23 side, as shown in FIG. ,
On the other hand, control is performed to set the 'I magnetic on-off valve 25 on the supply pipe 26 side to the state. Through such control, the liquid reservoir 20
Refrigerant flows from the inlet side of the expansion mechanism 6, which is the high pressure side, through the capillary tube 22 of the electromagnetic on-off valve 2L, and from the inflow pipe 23.

一方、アキュムレータ9に通じる供給管26のIせ心間
閉弁25は閉状態であるため、液溜20からアキュムレ
ータ9には冷媒は供給されず、冷凍サイクル装置の余剰
な冷媒は、液溜20に対し順次溜められていく、そして
、このようにして冷凍サイクル内の冷媒液が制御される
と、温度素子32゜33および35によって得られるア
キュムレータ9の入口側における過熱度SHIは大きく
なり、一方温度素子30.31によって得られる1膨張
機構6の入[コ側における過冷却度SCは小さくなり、
第3図に示す領域Cの適正な運転状態に入り、これによ
り第2図に示したように、弁制御手段37は両電磁開閉
弁21.25を共に閉状態とするように制御する。
On the other hand, since the I-serial closing valve 25 of the supply pipe 26 leading to the accumulator 9 is in a closed state, refrigerant is not supplied from the liquid reservoir 20 to the accumulator 9, and excess refrigerant of the refrigeration cycle device is transferred to the liquid reservoir 20. When the refrigerant liquid in the refrigeration cycle is controlled in this way, the degree of superheat SHI on the inlet side of the accumulator 9 obtained by the temperature elements 32, 33, and 35 increases; 1 The degree of supercooling SC on the input side of the expansion mechanism 6 obtained by the temperature elements 30 and 31 becomes smaller,
The proper operating state in region C shown in FIG. 3 is entered, and thereby, as shown in FIG. 2, the valve control means 37 controls both electromagnetic on-off valves 21, 25 to be in the closed state.

また、これとは逆に冷房負荷が小さい場合から大きい場
合へと変化すると、冷凍サイクル装置は冷媒不足の運転
状態となり、この状態では温度素子32.33:35に
よって検出されて演算されるアキュムレータ9の入口側
の過熱度SHIは大きくなり、温度素子32.33によ
って検出されて演算される膨張機構6の入口側における
過冷却度SCは小さくなる。すなわち、第3図において
領域Bに運転状態は入る。そこで、適正な運転状態であ
る領域Cとするために、弁制御手段37は、第2図に示
されるように、電磁開閉弁21を閉状態とし、電磁開閉
弁25を開状態とする。そして、この制御によって液溜
20に溜まっていた冷媒は供給管26により′重心開閉
弁25を通り、この液溜20の底部よりも底部の位置が
低く設置されているアキュムレータ9側に供給される。
Conversely, when the cooling load changes from small to large, the refrigeration cycle device enters a refrigerant-deficient operating state, and in this state, the accumulator 9 detected and calculated by the temperature element 32, 33: 35 The degree of superheating SHI on the inlet side of the expansion mechanism 6 becomes larger, and the degree of supercooling SC on the inlet side of the expansion mechanism 6, which is detected and calculated by the temperature elements 32 and 33, becomes smaller. That is, the operating state falls into region B in FIG. Therefore, in order to maintain the proper operating state in region C, the valve control means 37 closes the electromagnetic on-off valve 21 and opens the electromagnetic on-off valve 25, as shown in FIG. By this control, the refrigerant accumulated in the liquid reservoir 20 is supplied to the accumulator 9 side, which is installed at a bottom position lower than the bottom of the liquid reservoir 20, through the supply pipe 26 and the center of gravity opening/closing valve 25. .

一方、電磁開閉弁21が閉状態であるために、高圧側か
ら′電磁開閉弁21、毛細管22、流入管23を通って
は冷媒は流入しない。このようにして液XW 20から
アキュムレータ9への冷媒を供給することで冷凍サイク
ル内の冷媒丑が制御されると、温1ツ素子32.33.
35によって得られるアキュムレータ9の人ト1側の過
熱度SHIは小さくなり、また温度素子30.31によ
って得られる膨最機構6の入口側では過冷却度SCは大
きくなる。すなわち、第3図に示す望城Cの適正な運転
状態に入り、これにより弁制御手段37は第2図に示さ
れる通り、電磁開閉弁21および電磁開閉力゛25を共
に閉状y出とする。
On the other hand, since the electromagnetic on-off valve 21 is closed, the refrigerant does not flow from the high pressure side through the electromagnetic on-off valve 21, the capillary tube 22, and the inlet pipe 23. When the refrigerant flow in the refrigeration cycle is controlled by supplying the refrigerant from the liquid XW 20 to the accumulator 9 in this way, the hot elements 32, 33.
The degree of superheating SHI of the accumulator 9 on the passenger 1 side obtained by the temperature elements 30 and 35 becomes smaller, and the degree of supercooling SC on the inlet side of the expansion mechanism 6 obtained by the temperature elements 30 and 31 becomes larger. That is, the Bojo C shown in FIG. 3 enters a proper operating state, and thereby the valve control means 37 outputs both the electromagnetic opening/closing valve 21 and the electromagnetic opening/closing force 25 to the closed state, as shown in FIG.

また、暖房連転時にも、冷房運転時と同様に第2図に示
したフローチャートに従って冷凍サイクル内の冷奴!−
を過室制御する。
Also, during continuous heating operation, the flowchart shown in Figure 2 is followed in the same way as during cooling operation. −
to control overrooming.

たとえば暖房だ■転時において温度素子30゜35で検
出され演算子段36によって演算されたアキュムレータ
9の入口側の過熱度SHIが小さく、温度素子32.3
3.34によって検出され演算手段36によって演算さ
れた暖房運転時の膨張機構5の入口側における過冷却度
SCが大きく、運転状態が第3図に示す領域Aの冷媒が
過剰な運転状態の場合には、第2図のフローチャートに
従い弁制御手段37は電磁開閉弁21を開状態とし、電
磁開閉弁25を閉状態とする。これにより、液溜20に
は高圧側の膨張機構5の入口側から電磁開閉弁21.毛
細管22を経て流入管23により冷媒が流入する。一方
、アキュムレータ9側に通じる供給管26の電磁開閉弁
25は閉状1ホにあるため、液溜20からアキュムレー
タ9には冷媒が供給されず、冷凍サイクル装置の余剰な
冷媒は液A’B20に溜められていく、このようにして
冷媒液が制御されると、温度素子30.35で11トら
れるアキュムレータ9の入口側の過熱度SHIは大きく
なり、温度素子32.33 ; 34で得られる膨張機
構5の入口側の過冷却度SCは小さくなる。すなわち、
第3図に示す領MCの適正な蓮転状態に入り、第2図に
示すフローチャートに従い、弁制御手段37は電磁開閉
弁21.25を共に閉状態とする。
For example, when heating is turned on, the degree of superheat SHI on the inlet side of the accumulator 9 detected by the temperature element 30.35 and calculated by the operator stage 36 is small, and the temperature element 32.3
3. When the degree of supercooling SC on the inlet side of the expansion mechanism 5 during heating operation detected by 3.34 and calculated by the calculating means 36 is large, and the operating state is an operating state in which the refrigerant in region A shown in FIG. 3 is excessive. In accordance with the flow chart shown in FIG. 2, the valve control means 37 opens the electromagnetic on-off valve 21 and closes the electromagnetic on-off valve 25. As a result, the electromagnetic on-off valve 21. The refrigerant flows through the capillary tube 22 and through the inlet tube 23 . On the other hand, since the electromagnetic on-off valve 25 of the supply pipe 26 leading to the accumulator 9 side is in the closed position 1H, refrigerant is not supplied from the liquid reservoir 20 to the accumulator 9, and excess refrigerant in the refrigeration cycle device flows into liquid A'B20. When the refrigerant liquid is stored and controlled in this way, the degree of superheat SHI on the inlet side of the accumulator 9, which is increased by the temperature elements 30 and 35, increases, and the expansion obtained by the temperature elements 32 and 33; The degree of supercooling SC on the inlet side of the mechanism 5 becomes smaller. That is,
The valve controller 37 enters the proper lotus rotation state shown in FIG. 3, and according to the flowchart shown in FIG. 2, the valve control means 37 closes both the electromagnetic on-off valves 21 and 25.

また、温度素子30.35で検出されて演算されたアキ
ュムレータ9の入口側の過熱度SHIが大きく、温度素
子32.33.34によって検出されて演算された膨張
機構5の入口側の過冷却度SCが小さく、運転状態が第
3図に示す領域Bの冷媒不足である場合には、第2図に
示されるフローチャートに従い、弁制御手段37は”J
!、心間閉弁21を閉状態とし、電磁開閉弁25を開状
態とする。これによって、液溜20に溜まっていた冷媒
は供給’?F26によりTfi磁開閉弁25を通って液
溜20の底部からその底部の位置が低いアキュムレータ
9側に供給される。一方、電磁開閉弁21が閉状態にあ
るため、高圧側から流入管23を通っての冷媒の流入は
ない、このようにして液溜20からアキュムレータ9側
に冷媒を供給することで冷凍サイクル内の冷媒量が制御
されると、温度素子30.35で得られるアキュムレー
タ9の入口側での過熱度SHIは小さくなり、温度素子
32.33.34で得られる膨張機構5の入口側での過
冷却度SCは大きくなる。すなわち、第3図に示す領域
Cの適正な運転状態に入り、第2図に示すフローチャー
トに従い、弁制御手段37は・電磁開閉弁21.25を
共に開状態とする。
Further, the degree of superheating SHI on the inlet side of the accumulator 9 detected and calculated by the temperature element 30.35 is large, and the degree of supercooling SHI on the inlet side of the expansion mechanism 5 detected and calculated by the temperature element 32, 33, 34 is large. When SC is small and the operating state is in the region B shown in FIG.
! , the intercenter closing valve 21 is closed, and the electromagnetic on-off valve 25 is opened. As a result, the refrigerant accumulated in the liquid reservoir 20 is supplied. F26 causes the liquid to be supplied from the bottom of the liquid reservoir 20 through the Tfi magnetic on-off valve 25 to the side of the accumulator 9 whose bottom position is lower. On the other hand, since the electromagnetic on-off valve 21 is in the closed state, there is no inflow of refrigerant from the high pressure side through the inflow pipe 23. By supplying refrigerant from the liquid reservoir 20 to the accumulator 9 side in this way, the refrigeration cycle is When the amount of refrigerant is controlled, the degree of superheat SHI at the inlet side of the accumulator 9 obtained by the temperature element 30.35 becomes smaller, and the degree of superheat SHI at the inlet side of the expansion mechanism 5 obtained by the temperature element 32, 33, 34 decreases. The cooling degree SC increases. That is, the valve control means 37 enters the proper operating state in region C shown in FIG. 3, and opens both the electromagnetic on-off valves 21 and 25 according to the flowchart shown in FIG.

なお、本発明は上述した実施例構造に限定されず、冷凍
サイクル装置各部の形状、構造等を。
It should be noted that the present invention is not limited to the structure of the above-described embodiments, but may vary in shape, structure, etc. of each part of the refrigeration cycle device.

必要に応じて適宜変形、変更することは自由である。You are free to modify and change it as necessary.

〔発明の効果〕〔Effect of the invention〕

以北説明したように、本発明に係る冷凍サイクル装置に
よれば、冷媒?・の制御手段として液溜を装δの低圧側
に設けるとともに、この液溜を7キユムレータに連通さ
せて設け、この液溜の装置低圧側およびアキュムレータ
に対する連通状態を適宜制御するようにしたので、簡単
な構成にもかかわらず、利用側の負荷変動に対し、また
冷房運転と暖房運転の変化に対して、冷媒が過剰となっ
たときには液溜に溜め、不足となったときには液溜から
供給することにより、利用側の負荷に対応して常に適正
な運転状態が得られる等の種々優れた効果がある。
As explained above, according to the refrigeration cycle device according to the present invention, refrigerant? As a control means, a liquid reservoir is provided on the low pressure side of the device δ, and this liquid reservoir is provided in communication with the 7 accumulator, and the communication state of this liquid reservoir with the low pressure side of the device and the accumulator is appropriately controlled. Despite its simple configuration, it responds to load fluctuations on the user side and changes in cooling and heating operations by storing refrigerant in a reservoir when there is an excess of refrigerant, and supplying it from the reservoir when there is a shortage. As a result, various excellent effects can be obtained, such as being able to always obtain an appropriate operating state depending on the load on the user side.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る冷凍サイクル装置の一実施例を示
す概略系統図、第2図はその動作を説明するためのフロ
ーチャートを示す図、第3図は冷凍サイクル装置内での
過冷却度、過熱度により運転状態を判定する判定動作の
説明図、第4図は従来例を示す概略系統図である。 1.2・・・・圧縮機、3・・・・四方切換弁、4・・
・・非利用側熱交換器、5.6・・・・膨張機構、7,
8・・・・利用側熱交換器、9・・・・アキュムレータ
、20・・・・液溜、21.25・・・・第1および第
2の電磁開閉弁、23・・・・流入管、24・・・・オ
ーバーフロー管、26・・・・供給管。
Fig. 1 is a schematic system diagram showing an embodiment of the refrigeration cycle device according to the present invention, Fig. 2 is a flowchart for explaining its operation, and Fig. 3 is a diagram showing the degree of subcooling within the refrigeration cycle device. , an explanatory diagram of the determination operation for determining the operating state based on the degree of superheating, and FIG. 4 is a schematic system diagram showing a conventional example. 1.2... Compressor, 3... Four-way switching valve, 4...
... Non-use side heat exchanger, 5.6... Expansion mechanism, 7,
8... Usage side heat exchanger, 9... Accumulator, 20... Liquid reservoir, 21.25... First and second electromagnetic shut-off valve, 23... Inflow pipe , 24... Overflow pipe, 26... Supply pipe.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方切換弁、非利用側熱交換器、膨張機構、利
用側熱交換器およびアキュムレータを冷媒配管で順次接
続してなる冷凍サイクル装置において、前記膨張機構の
入口側から第1の電磁開閉弁を介して冷媒が流入する流
入管と前記アキュムレータに対して第2の電磁開閉弁を
介して冷媒を供給する供給管とこのアキュムレータ上部
に接続されるオーバーフロー管とを有する液溜を設け、
かつ前記第1および第2の電磁開閉弁を、冷凍サイクル
内での過熱度および過冷却度に基づいて開閉制御するよ
うに構成したことを特徴とする冷凍サイクル装置。
In a refrigeration cycle device in which a compressor, a four-way switching valve, a non-use side heat exchanger, an expansion mechanism, a use side heat exchanger, and an accumulator are sequentially connected through refrigerant piping, a first electromagnetic opening/closing operation is performed from the inlet side of the expansion mechanism. providing a liquid reservoir having an inflow pipe into which refrigerant flows through a valve, a supply pipe that supplies refrigerant to the accumulator through a second electromagnetic on-off valve, and an overflow pipe connected to the upper part of the accumulator;
A refrigeration cycle device characterized in that the first and second electromagnetic on-off valves are configured to be opened and closed based on a degree of superheating and a degree of subcooling within the refrigeration cycle.
JP18381286A 1986-08-04 1986-08-04 Refrigeration cycle device Pending JPS6338864A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18381286A JPS6338864A (en) 1986-08-04 1986-08-04 Refrigeration cycle device
KR1019870007921A KR910001907B1 (en) 1986-08-04 1987-07-21 Refrigeration cycle apparatus
US07/079,496 US4765149A (en) 1986-08-04 1987-07-30 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18381286A JPS6338864A (en) 1986-08-04 1986-08-04 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JPS6338864A true JPS6338864A (en) 1988-02-19

Family

ID=16142301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18381286A Pending JPS6338864A (en) 1986-08-04 1986-08-04 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JPS6338864A (en)

Similar Documents

Publication Publication Date Title
US5388420A (en) Heat storage type air conditioner, and defrosting method
JP5855129B2 (en) Outdoor unit and air conditioner
CN109595846B (en) Heat pump unit and method for controlling heat pump unit
CN107110547A (en) Refrigerating circulatory device
JPH071128B2 (en) Refrigeration cycle for refrigerator
JP3352469B2 (en) Air conditioner
AU767852B2 (en) Suction line heat exchanger storage tank for transcritical cycles
CN212274312U (en) Temperature control equipment
JPS6338864A (en) Refrigeration cycle device
JP2017116136A (en) Air conditioner
KR20120047677A (en) Air conditioner
JPH07190534A (en) Heat storage type air conditioning equipment
CN209445519U (en) A kind of fresh air dehumidifying system
JPS6338865A (en) Refrigeration cycle device
JPH1089729A (en) Ice heat storage device by supercooled water and operation method
EP2137467A1 (en) Multi-unit air conditioning system and controlling method for the same
EP1616136B1 (en) Refrigeration system and a method for operating such system
JP2006090574A (en) Heat pump type hot water supply heating system
JP5517131B2 (en) Thermal storage air conditioner
JP2508824B2 (en) Air conditioner
KR102031871B1 (en) An air conditioner
JP2548269Y2 (en) Gasoline cooling system
JPS6338867A (en) Refrigeration cycle device
CN111023362B (en) Refrigerant circulation system and air conditioner under heating mode
JPH1061984A (en) Heat storage type air conditioner