JPS6338855A - Temperature control method for heat accumulating tank - Google Patents

Temperature control method for heat accumulating tank

Info

Publication number
JPS6338855A
JPS6338855A JP61179564A JP17956486A JPS6338855A JP S6338855 A JPS6338855 A JP S6338855A JP 61179564 A JP61179564 A JP 61179564A JP 17956486 A JP17956486 A JP 17956486A JP S6338855 A JPS6338855 A JP S6338855A
Authority
JP
Japan
Prior art keywords
air conditioning
temperature
conditioning load
heat storage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61179564A
Other languages
Japanese (ja)
Other versions
JPH0424613B2 (en
Inventor
Shinichi Kaburagi
蕪木 伸一
Masakazu Nishimura
正和 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP61179564A priority Critical patent/JPS6338855A/en
Publication of JPS6338855A publication Critical patent/JPS6338855A/en
Publication of JPH0424613B2 publication Critical patent/JPH0424613B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To suppress heat loss and make it possible to control a tank temp. to a target temperature by predicting an amount of air conditioning load for tomorrow from the amount of air conditioning load of today and actual air conditioning load in the past and conducting heating by using midnight electric power. CONSTITUTION:From an air conditioning load Lp actually handled in the past which is stored in a memory 15 and an air conditioning load Lt at every hour of today a required air conditioning load at every hour of tomorrow is estimated, and at the same time an estimated load is stored in the memory 15. By storing a mathematical formula which approximates the relation between the load percentage and a required temperature of fed water beforehand in a small computer a required temperature of fed water can be easily calculated. A calculated temperature as a target the temperatures at the inlet and outlet of a heat accumulating tank and heat source 3 are controlled in the time span of the midnight electric power and the time to start the heat source 3 is determined so that the heat source 3 is operated as many hours as required by amount of heat accumulation which is calculated from the average temperature at present in the heat accumulating tank.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、冷暖房における蓄熱槽の温度側jl11方
法に関し、特に深夜電力利用システムの改善を行うもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the temperature side of a heat storage tank in air conditioning and heating, and is particularly intended to improve a late-night power utilization system.

〔従来の技術〕[Conventional technology]

深夜電力を利用して、暖房用温水や冷房用冷水を予め蓄
熱槽に貯えておくようにした冷暖房における水蓄熱シス
テムは、電力需要のピークの平均化を図る見地から大い
に推奨され、今後益々普及していく傾向にある。
Water thermal storage systems for air conditioning and heating, which use late-night electricity to store hot water for heating and cold water for cooling in a thermal storage tank, are highly recommended from the perspective of averaging out peak electricity demand, and will become more popular in the future. There is a tendency to

もっとも現時点では、この蓄熱システムは、大規模ビル
ディング用か或いは反対に小規模な簡易型の両極端に分
かれており、今後量も普及することが予想される延べ床
面積3000−10000mの中規模ビルディングに対
応できるものがない。それは、従来の大規模ビルディン
グ用の水蓄熱システムではコストが掛かりすぎ、一方簡
易型水蓄熱システムでは温度制′411の精度がかなり
悪く、管理に手間がかかるためである。
However, at present, this heat storage system is divided into two extremes: those for large-scale buildings, and those of small-scale simple types, and are expected to become more popular in the future for medium-sized buildings with a total floor area of 3,000 to 10,000 m. There is nothing that can be done. This is because conventional water heat storage systems for large-scale buildings are too expensive, and simple water heat storage systems have very low accuracy in temperature control 411 and require time and effort to manage.

そこで、中規模ビルディングを対象とした汎用性のある
水蓄熱システム、特にその蓄熱槽の温度制御方法の開発
が強く望まれていた。
Therefore, there has been a strong desire to develop a versatile water heat storage system for medium-sized buildings, especially a method for controlling the temperature of the heat storage tank.

ところで、従来の水蓄熱システムにおける最も一般的な
温度制御方法には次ぎのようなものがある。
By the way, the most common temperature control methods in conventional water heat storage systems include the following.

それは、まず水蓄熱システムを制御する蓄熱量制御手段
に各月毎に蓄熱目標温度を入力し記憶させておく。
First, a heat storage target temperature is input and stored each month into the heat storage amount control means that controls the water heat storage system.

一方、毎日の深夜電力時間帯の始めに、蓄熱槽熱源の最
適な起動時刻を算出する。その時刻は、深夜電力時間帯
の終了時における蓄熱行内平均温度がその月の蓄熱目標
温度と一致するように、学習機能によって過去の空調負
荷の実績を参照しつつ算出される。
On the other hand, at the beginning of the late-night power period every day, the optimum startup time for the heat storage tank heat source is calculated. The time is calculated by the learning function with reference to past air conditioning load performance so that the average temperature within the heat storage line at the end of the late night power period matches the heat storage target temperature for that month.

そして、深夜電力時間帯中に、その熱源最適起動時刻に
なると蓄熱槽熱源を起動させ、深夜電力時間帯の終わり
には蓄熱槽水温が前記目標温度になるように制御する。
Then, during the late-night power period, the heat storage tank heat source is activated at the optimum start time of the heat source, and the heat storage tank water temperature is controlled to reach the target temperature at the end of the late-night power period.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような従来の一般的な蓄熱槽の温度
制御方法にあっては、制御上置も重要な要素である蓄熱
目標温度を、管理者がさしたる根拠もなしに適当に定め
て入力するものとなっていたので、次ぎのような問題点
があった。
However, in such a conventional general temperature control method for a heat storage tank, the heat storage target temperature, in which the control setting is also an important element, is determined and inputted by the administrator without any particular basis. Therefore, there were the following problems.

(イ)口々の負荷変動に即応したきめ細かい制御ができ
ず、制御11精度が悪い。
(a) It is not possible to perform fine-grained control that immediately responds to load fluctuations, and the accuracy of the control 11 is poor.

(ロ)日中の無駄運転が生じ易い。すなわち、通常、安
全性を考えてその月のピークの負荷に合わせて目標温度
を決定するから、そのピーク以外の日にあっては冷し過
ぎ或いは温め過ぎの傾向となり、無駄な運転がなされて
熱損失を生じる。
(b) Wasteful driving during the day is likely to occur. In other words, the target temperature is usually determined based on the peak load of the month for safety reasons, so on days other than the peak load, the temperature tends to be too cold or too warm, resulting in unnecessary operation. Causes heat loss.

(ハ)さりとて、蓄熱目標温度の設定を、日毎に、人の
手でいちいちきめ細かく行うのでは管理に手間が掛りす
ぎる。
(c) However, it would take too much time and effort to manage the heat storage target temperature by manually setting it every day.

そこでこの発明の目的は、日々の蓄熱目標温度を、過去
の実績データをもとに得られる関係式から自動的に決定
するとともに、深夜電力を有効に利用して、前夜のうち
にぞの目標温度に自動制御する蓄熱槽の温度側?I[1
方法を提供することにある。
Therefore, the purpose of this invention is to automatically determine the daily target heat storage temperature from a relational expression obtained based on past performance data, and to effectively utilize late-night electricity to set the target temperature the night before. The temperature side of the heat storage tank that automatically controls the temperature? I[1
The purpose is to provide a method.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の蓄熱槽の温度制御方法は、1日の空調終了時
に当日の空調負荷量を算出し、次いでその当日空調負荷
量と記憶させてある過去の実績空調負荷量とから、翌日
の空調負荷ILを推定した後、この翌日空調負荷量りと
予め設定したピーク空調負荷量Lmとから負荷率x=L
/ L mを算出して、該負荷率Xと空調機コイルへの
必要送水温度yとの関係式y=f(x)+C(Cは定数
)に基づき、翌日の必要送水温度yを算出し、該必要送
水温度yを目標蓄熱温度として、深夜電力を利用し蓄熱
槽熱源系統の運転を制御する。
The heat storage tank temperature control method of the present invention calculates the air conditioning load for the day at the end of the day, and then calculates the next day's air conditioning load from the current day's air conditioning load and the stored past actual air conditioning load. After estimating IL, the load factor x=L is calculated from the next day's air conditioning load amount and the preset peak air conditioning load amount Lm.
/ L m, and calculate the required water supply temperature y for the next day based on the relational expression y = f (x) + C (C is a constant) between the load factor X and the required water supply temperature y to the air conditioner coil. , the required water supply temperature y is set as the target heat storage temperature, and late-night power is used to control the operation of the heat storage tank heat source system.

(作用] 10の空調実施中に求めた当日の空調負荷量と、記憶さ
れた過去の実績空調負荷とから、翌日の空調負荷量を予
測し、その予測値と予め求めた冷暖房の年間ピーク負荷
量とから負荷率を算出する。そして、この負荷率と空、
J[コイルへの必要送水温度との関数式に基づいて翌日
の必要送水温度を演算し、その演算結果に基づき深夜電
力時間帯の蓄熱槽熱源の作動を制御し、該深夜電力時間
帯の終了時には蓄熱水温を必要送水温度にしておく。
(Function) The next day's air conditioning load is predicted from the air conditioning load of the day obtained during the air conditioning operation in step 10 and the past actual air conditioning loads stored, and the predicted value and the predetermined annual peak load of air conditioning and heating are calculated. Calculate the load factor from the amount and the empty,
J[Calculate the required water supply temperature for the next day based on the functional formula with the required water supply temperature to the coil, control the operation of the heat storage tank heat source during the late night power period based on the calculation result, and end the late night power period. Sometimes the heat storage water temperature is kept at the required water supply temperature.

かくして、深夜電力を利用して蓄熱槽内の水を所要温度
まで加熱または冷却するに際し、手間を要せず、しかも
熱損失を極力抑え、高精度で目標温度に制御することが
可能である。
In this way, when heating or cooling the water in the heat storage tank to a required temperature using late-night electricity, it is possible to control the target temperature with high precision without requiring any effort, while minimizing heat loss.

〔実施例〕〔Example〕

第1図はこの発明を適用し得る空調装置を示す概略構成
図である。
FIG. 1 is a schematic configuration diagram showing an air conditioner to which the present invention can be applied.

図中、1は所定量の水が充填されている蓄熱槽であって
、連通孔2a、2bを存する多数の隔壁2で複数の区画
に仕切られ、各区画には温度センサT、、T2 ・・・
T、lが配設しである。
In the figure, reference numeral 1 denotes a heat storage tank filled with a predetermined amount of water, which is partitioned into a plurality of compartments by a large number of partition walls 2 having communication holes 2a and 2b, and each compartment is equipped with temperature sensors T, , T2.・・・
T and l are arranged.

蓄熱サイクルでは、その水を、蓄熱槽1の熱源3を通し
てポンプ4で循環させる。そして、電力によって駆動さ
れる冷却装置、加熱装置等で構成される蓄熱槽熱源3の
冷媒又は熱媒と熱交換することにより、槽内の水が冷却
又は加熱される。
In the heat storage cycle, the water is circulated by a pump 4 through the heat source 3 of the heat storage tank 1. The water in the tank is cooled or heated by exchanging heat with the refrigerant or heat medium of the heat storage tank heat source 3, which is composed of a cooling device, a heating device, etc. driven by electric power.

ポンプ4の吸い込み側にミキシングバルブとしての三方
弁5があり、蓄熱槽I内の最も下流の区画と最も上流の
区画とから吸い込んだ水が、この三方弁5で、制御され
た比率に混合されて熱源3へ送られる。その循環管路6
に温度センサT A 、 T llが設けられている。
There is a three-way valve 5 as a mixing valve on the suction side of the pump 4, and the water sucked from the most downstream compartment and the most upstream compartment in the heat storage tank I is mixed in a controlled ratio by this three-way valve 5. and sent to heat source 3. The circulation pipe 6
Temperature sensors T A and T ll are provided.

放熱サイクルは従来と同様であり、上記の冷却又は加熱
された蓄熱槽1内の水を、配管8を介して、ビルディン
グ内の各室に配置された空調コイル10にポンプ9で循
環供給する。なお配管8内は圧力を一定にするように、
逃がし弁7で調節している。これにより、空調コイルI
Oを介して空気と熱交換され、室内には冷風又は温風が
吹き出されて冷房又は暖房が行われる。
The heat radiation cycle is the same as the conventional one, and the pump 9 circulates and supplies the cooled or heated water in the heat storage tank 1 through the piping 8 to the air conditioning coils 10 arranged in each room in the building. In addition, in order to keep the pressure constant inside the pipe 8,
It is regulated by relief valve 7. As a result, air conditioning coil I
Heat is exchanged with the air through O, and cold or warm air is blown into the room for cooling or heating.

すなわち、各空調コイル10の入口側には、被空調室内
温度を検知する温度センサThと、これに連動して開閉
する電磁弁11が配設されている。そして各室内に配置
された温度センサThの検出信号に基づき、室内温度が
設定温度になるように、電磁弁11を制御している。
That is, on the inlet side of each air conditioning coil 10, a temperature sensor Th that detects the temperature inside the air-conditioned room and a solenoid valve 11 that opens and closes in conjunction with the temperature sensor Th are disposed. Based on a detection signal from a temperature sensor Th placed in each room, the solenoid valve 11 is controlled so that the room temperature reaches the set temperature.

空調終了時刻になると、送水ポンプ9が停止されて、各
空調コイル10に対する蓄熱槽lからの送水を停止し、
当日の空調が終了する。
When the air conditioning end time comes, the water pump 9 is stopped and the water supply from the heat storage tank l to each air conditioning coil 10 is stopped.
Air conditioning ends for the day.

なお、給水配管8には、蓄熱槽1から送出する温水又は
冷水の温度を検出する温度センサTcと、蓄熱槽1へ戻
る温水又は冷水の温度を検出する温度センサT、と、流
量計りが配設されている。
The water supply pipe 8 is equipped with a temperature sensor Tc that detects the temperature of the hot water or cold water sent out from the heat storage tank 1, a temperature sensor T that detects the temperature of the hot water or cold water that returns to the heat storage tank 1, and a flow meter. It is set up.

この空調装置における蓄熱槽1への蓄熱は、深夜電力を
有効利用してなされる。すなわち、マイクロコンピュー
タからなるコントローラ12からの制御信号により、深
夜電力時間帯において熱源3.ポンプ4.三方弁5の駆
動を制御することで、蓄熱槽1の水温を後述する所定の
温度に冷却又は加熱するものである。
Heat is stored in the heat storage tank 1 in this air conditioner by effectively utilizing late-night electricity. That is, a control signal from a controller 12 consisting of a microcomputer controls the heat source 3. Pump 4. By controlling the drive of the three-way valve 5, the water temperature in the heat storage tank 1 is cooled or heated to a predetermined temperature, which will be described later.

このコントローラ12は、インタフェース回路13、演
算処理装置14及び記憶装置15を少なくとも備えてい
る。インタフェース回路13の入力端には各温度センサ
T1〜T、及びT。
This controller 12 includes at least an interface circuit 13, an arithmetic processing unit 14, and a storage device 15. At the input end of the interface circuit 13, there are temperature sensors T1 to T and T.

〜TDの温度検出信号及び流量計りの流量積算検出信号
が供給されるとともに、設定器16で設定する空調開始
時刻及び終了時刻の設定信号が入力され、−力出力側か
らは、熱源3.ポンプ4.三方弁5の駆動をそれぞれ制
御する制御信号が出力される。
-A temperature detection signal from the TD and a flow rate integration detection signal from the flowmeter are supplied, and setting signals for the air conditioning start time and end time set by the setting device 16 are input, and from the power output side, the heat source 3. Pump 4. Control signals for controlling the drive of the three-way valves 5 are output.

演算処理装置14は、所定の処理プログラムに従い、設
定器16で設定された範囲に応じて演算処理を実行する
。すなわち、設定器16で設定する空調開始時刻から終
了時刻までの空調時間帯で、当日の空調負荷量を(本実
施例では各時刻毎に)算出すると共に、その算出結果に
基づいて、空調終了時刻以降の深夜電力時間帯内で蓄熱
サイクルを制?2ff L、蓄熱槽l内の水温を必要送
水温度となるように制御する。
The arithmetic processing unit 14 executes arithmetic processing according to a range set by the setting device 16 according to a predetermined processing program. That is, in the air conditioning time period from the air conditioning start time to the air conditioning end time set by the setting device 16, the air conditioning load amount for the day is calculated (for each time in this embodiment), and based on the calculation result, the air conditioning is terminated. Control the heat storage cycle during the late night power hours after the time? 2ff L, the water temperature in the heat storage tank L is controlled to the required water supply temperature.

記憶装置15は、前記演算処理装置14の処理に必要な
処理プログラムとして、第2図に示す当日の空調負荷算
出用のタイマ割り込み処理プログラムと第3図に示す蓄
熱サイクル制御用のメインプログラムを記憶していると
共に、演算処理装置14による処理過程での演算結果を
当日の各時刻及び過去(例えば前日分)の各時刻につき
記憶する。
The storage device 15 stores a timer interrupt processing program for calculating the current day's air conditioning load shown in FIG. 2 and a main program for heat storage cycle control shown in FIG. 3 as processing programs necessary for the processing of the arithmetic processing unit 14. At the same time, the calculation results of the processing by the calculation processing unit 14 are stored for each time on the current day and each time in the past (for example, the previous day).

更にまた、被空調建物の構造・材質やその地域の気象条
件等に基づき、年間を通しての単位時間当たり最大空調
負荷量をピーク空調負荷量Lmとして、空調システムの
設計時に求めたものが、予め記憶装置15内の所定領域
に記憶させてある。
Furthermore, the peak air conditioning load Lm, which is the maximum air conditioning load per unit time throughout the year, based on the structure and material of the building to be air conditioned and the local weather conditions, etc., is calculated in advance when designing the air conditioning system. It is stored in a predetermined area within the device 15.

次に、上記演算処理装置14の処理手順を示す第2図及
び第3図のフローチャートに従って、この発明による蓄
熱槽温度制御方法を説明する。
Next, the heat storage tank temperature control method according to the present invention will be explained according to the flowcharts of FIGS. 2 and 3 showing the processing procedure of the arithmetic processing unit 14.

演算処理装置14は、設定器16で設定された当日の空
調開始時刻〜空調終了時刻間、すなわち空調時間帯に於
いて、タイマで設定された所定の時刻になると、第2図
のタイマ割り込みフローチャートに従い当日の空調負荷
量の演算を実行する。
When the predetermined time set by the timer is reached between the air conditioning start time and the air conditioning end time of the day set by the setting device 16, that is, the air conditioning time zone, the arithmetic processing unit 14 executes the timer interrupt flowchart shown in FIG. Calculate the air conditioning load amount for the day according to the following.

先ず、ステップ■で、空調系統の送水温度1cと戻り水
温tlllとを温度センサT。及びT。から読み込み、
これらを記憶装置15の所定の記憶領域に記憶する。次
いでステップ■に移行し、流量計りから単位時間当たり
の空調送水hIQを読み込み、これを最初の設定時刻に
おける送水量として記1.0装置15の所定の記I!X
領域に記憶する。その後ステップ■に移行して、上記の
水l詰tcとり、及び単位時間当たりの空調送水星Qを
それぞれの記憶領域から呼び出し、当該時刻における空
調負荷量1. を−(tc   to ) ×Qを単位
時間当たりの熱量として演算するとともに、その結果を
所定の記憶領域に記憶させたのち第3図のメインプログ
ラムに戻る。
First, in step (2), the water supply temperature 1c and the return water temperature tllll of the air conditioning system are measured by the temperature sensor T. and T. read from,
These are stored in a predetermined storage area of the storage device 15. Next, the process moves to step (3), where the air conditioning water supply hIQ per unit time is read from the flow meter, and this is set as the water supply amount at the first set time. X
Store in area. Thereafter, the process moves to step (3), where the above-mentioned water tc and air conditioning supply mercury Q per unit time are retrieved from the respective storage areas, and the air conditioning load amount 1. -(tcto)xQ is calculated as the amount of heat per unit time, and after storing the result in a predetermined storage area, the process returns to the main program shown in FIG.

このステップ■〜ステップ■のタイマ割り込み処理は、
例えば当日の午面9時、10時、11時・・・・午後5
時、6時の如く、設定時刻毎に実行される。
The timer interrupt processing in steps ■ to step ■ is as follows:
For example, 9:00 p.m., 10:00 p.m., 11:00 p.m. on that day...5 p.m.
This is executed at each set time, such as at 6 o'clock.

設定器16で設定された当日の空調終了時刻になると、
演算処理装置14は第3図に示すメインプログラムを実
行することとなる。
When the air conditioning end time for the day set in the setting device 16 is reached,
The arithmetic processing unit 14 executes the main program shown in FIG.

すなわち、ステップ[相]で空調時間帯が終了したか否
かがチエツクされる。これは設定器16からの当日の空
調終了時刻信号の有無により判断される。空調終了時刻
信号が人力されると、ステップ■に羊多行する。
That is, in step [phase], it is checked whether the air conditioning period has ended. This is determined based on the presence or absence of the current day's air conditioning end time signal from the setting device 16. When the air conditioning end time signal is input manually, the process goes to step (3).

ステップ0では、記憶装置15内の所定記憶領域に格納
されている過去の(この実施例では、前日の各時刻毎の
)実績空調負荷ff1Lpを順次読み出す。
In step 0, the past actual air conditioning loads ff1Lp (in this embodiment, for each time of the previous day) stored in a predetermined storage area in the storage device 15 are sequentially read out.

次いでステップ0に移行して、その日の空調時間帯にお
いて、各時刻毎に算出して記憶されている当日の空調負
荷量Ltを順次読み出す。
Next, the process moves to step 0, and the air conditioning load amount Lt of the day calculated and stored for each time in the air conditioning time period of that day is sequentially read out.

続いてステップ0に移行し、過去の各時刻の空調負荷実
績値しpと、当日の各時刻の空調負荷値Ltとから、翌
日の各時刻毎の所要空調負荷ftL+、z〜。(こごに
、1.2〜nは9時。
Next, the process moves to step 0, and the required air conditioning load ftL+, z~ for each time on the next day is calculated from the air conditioning load actual value p at each past time and the air conditioning load value Lt at each time on the current day. (Kogoni, 1.2-n is 9 o'clock.

10時〜n時等の各設定時刻を表す)を推定するととも
に、その推定結果を記憶装置15の所定記憶領域に記憶
する。
(representing each set time such as 10 o'clock to n o'clock) is estimated, and the estimation result is stored in a predetermined storage area of the storage device 15.

次いでステップ■に移行して、前記ステップ0で推定し
た翌日の各時刻毎の所要空調負荷量L1.2〜7のうち
の最大値し、、、、Xを求める。
Next, the process moves to step (2), and the maximum value of the required air conditioning load amount L1.2 to L7 for each time of the next day estimated in step 0 is determined.

次いでステップ[相]に移行し、予め設計時に求めて記
憶装置15に記憶させてある年間のピーク空調負荷量L
mを、所定の記憶領域から読み出しステップ[相]に移
行する。
Next, the process moves to step [phase], in which the annual peak air conditioning load amount L is determined in advance at the time of design and stored in the storage device 15.
m is read from a predetermined storage area and transferred to a reading step [phase].

ステップ[相]では、その年間ピーク空調負荷量Lmと
ステップ■で求めた翌日の予測空調負荷最大値L ff
1sxとから、翌日の負荷率Xを次式%式%(1) により算出する。
In step [phase], the annual peak air conditioning load amount Lm and the next day's predicted maximum air conditioning load value Lff obtained in step ■ are calculated.
1sx, the next day's load factor X is calculated using the following formula % formula % (1).

ところで、ある建物の空調負荷に対し、その負荷を取り
きるための空調機コイルに対する必要送水温度yは一義
的にきまる。しかしこれを解くには、空調機の諸条件、
被空調室内負荷量。
By the way, with respect to the air conditioning load of a certain building, the required water supply temperature y for the air conditioner coil in order to remove the load is uniquely determined. However, to solve this problem, the various conditions of the air conditioner,
Load amount in the air-conditioned room.

外気負荷量等のデータを用いてのコイルシュミレーショ
ンが必要であり、そのデータ量が多い上に複雑な計算を
行うことになり、シュミレーションをマイクロコンビエ
ータ等の小型のコンピュータで行うことは不可能である
Coil simulation using data such as outside air load is required, which requires a large amount of data and complex calculations, making it impossible to perform simulations on a small computer such as a micro combinator. be.

そこで、この発明にあっては、予め各地域毎に、例えば
オフィスビルとか店舗など典型的な建物用途別に、各地
域の気象条件下での空1;Σ・□(1′+。
Therefore, in the present invention, the sky 1;Σ・□(1'+) under the weather conditions of each region is determined in advance for each region, for example, by typical building use such as an office building or a store.

荷に対するコイルシュミレーションを行う。Perform coil simulation for the load.

第4図および第5図はその結果得られた負荷率と必要送
水温度との関係の一例を示すもので、関東のA地点にお
けるオフィスビル内の事務所の冷房時(第4図)と暖房
時(第5図)を、コイルへの送水量をパラメータとして
示しである。
Figures 4 and 5 show an example of the relationship between the resulting load factor and the required water supply temperature. The time (Fig. 5) is shown using the amount of water sent to the coil as a parameter.

これによれば、負荷率Xと必要送水温度yとの間には直
線で表し得る非常に高い相関関係が認められる。
According to this, a very high correlation that can be expressed by a straight line is recognized between the load factor X and the required water supply temperature y.

また第6図は、第4図に更に重ねて、東北のB地点と九
州のC地点に於けるオフィスビルの冷房時の負荷率と必
要送水温度との関係をプロットしたものであり、この場
合は直線もしくは曲線で表し得る相関関係が認められる
Furthermore, Figure 6 is a plot of the relationship between the cooling load factor and the required water supply temperature for office buildings at point B in Tohoku and point C in Kyushu, superimposed on figure 4. A correlation that can be expressed as a straight line or a curve is recognized.

この発明は、上記図示の関係を予め数式で近似させたも
のを、比較的小型のコンピュータに予め記憶させること
により、簡便な演算でその時々の必要送水温度を容易に
算出できるようにしたものである。
This invention makes it possible to easily calculate the required water supply temperature at any given time using simple calculations by pre-memorizing a numerical formula approximating the relationship shown above in a relatively small computer. be.

例えば、空調システム設計時に於いて定められるピーク
空調負荷量Lmに対する送水温度、すなわち設計ポイン
トをT″Cとすると、必要送水温度y ’cと空調負荷
率Xとの関係は、第6図に示すように、 直線関係の場合であれば y=ax+’r+−b・・・・・・ (2)曲線関係の
場合であれば y = a (x−100)1″+b(x−100)’
 +−−−+T −・(3)又は V= −alog (x+b) +T+c ・・−−−
(41の各式で近似的に表すことができる。
For example, if the water supply temperature for the peak air conditioning load Lm determined at the time of air conditioning system design, that is, the design point, is T''C, then the relationship between the required water supply temperature y'c and the air conditioning load factor X is shown in Figure 6. In the case of a linear relationship, y=ax+'r+-b... (2) In the case of a curved relationship, y = a (x-100)1''+b(x-100)'
+−−−+T −・(3) or V= −alog (x+b) +T+c ・・−−−
(It can be approximately expressed by each equation of 41.

そこで、ステップ@で翌日の空調時間帯における必要送
水温度yを、上記各空調負荷率Xの関数式y−f、X、
+cのうち、最も条件に合う式(前取てマイクロコンピ
ュータ12における記憶装置15の所定の記憶領域に組
み込んである)により算出する。
Therefore, in step @, the required water supply temperature y during the next day's air conditioning time period is determined by the function equation y-f,
+c, it is calculated using the formula that best meets the conditions (built into a predetermined storage area of the storage device 15 in the advance microcomputer 12).

翌日は、その日の各時刻の空調負荷量L11が最大値L
 maxとなるときに、必要送水温度がyであればよい
The next day, the air conditioning load amount L11 at each time of the day is the maximum value L.
It suffices if the required water supply temperature is y when the temperature reaches max.

よって、ステップ0に移行し、ステップ0で算出された
温度y″Cを目標値として、蓄熱槽1内の各温度(’r
、 −’r、 )の平均温度T a vが目+!温度y
″Cとなるように、蓄熱槽熱源3の入口・出口の温度を
深夜電力時間帯において制御する。
Therefore, the process moves to step 0, and each temperature ('r
, -'r, ) average temperature T a v is +! temperature y
The temperature at the inlet and outlet of the heat storage tank heat source 3 is controlled during the late night power hours so that the temperature becomes ``C''.

すなわち、蓄熱槽1内平均温度がyになるためには、温
度計TIIで測定される熱源3の入口温度T i nと
、温度計TAで測定される熱源3の出口温度T。8tと
の関係を、冷房時はT。uL <y<Ttll  、暖
房時はT3゜< y < ’r。。、とする必要がある
。通常、ΔT ”” l TQut  Ti、、l −
5°Cに設定するので、yをT。utとTrnとの中央
値とするとTtn=)’±2.5°C(但し、冷房時+
、暖房時−)である。そこで、熱源3の入口温度が上記
T、□の値となるように三方弁5によりミキシングする
ため、三方弁5に操作信号又は設定信号をおくる。
That is, in order for the average temperature inside the heat storage tank 1 to become y, the inlet temperature T in of the heat source 3 measured by the thermometer TII and the outlet temperature T of the heat source 3 measured by the thermometer TA are required. The relationship with 8t is T when cooling. uL <y<Ttll, T3゜<y<'r during heating. . , it is necessary to do so. Usually, ΔT ”” l TQut Ti,, l −
Since it is set to 5°C, y is T. Assuming the median value of ut and Trn, Ttn=)'±2.5°C (However, when cooling +
, during heating -). Therefore, an operation signal or a setting signal is sent to the three-way valve 5 in order to perform mixing using the three-way valve 5 so that the inlet temperature of the heat source 3 becomes the above-mentioned values T and □.

一方、熱源3の運転時間については、深夜電力時間帯の
終了時刻において蓄熱を終了させた時、丁度、槽内平均
温度T a v =翌日の必要送水温度yとなるように
、現在時刻の槽内平均温度から必要蓄熱量を計算し、そ
の分だけ熱源3を運転するように熱源3の起動時刻を決
定する。
On the other hand, regarding the operation time of the heat source 3, when the heat storage is finished at the end of the midnight power period, the average temperature inside the tank is exactly equal to the required water supply temperature y for the next day. The required amount of heat storage is calculated from the average internal temperature, and the start time of the heat source 3 is determined so that the heat source 3 is operated by that amount.

このようにして求めた熱源運転時間の間、熱源3を連続
運転すればよい。
The heat source 3 may be continuously operated during the heat source operating time determined in this way.

かくして、この実施例では、必要送水温度y゛と負荷率
Xとの関係が、予め別途に行うコイルシミュレーション
により簡単な近似式で表されているから、翌日の必要送
水温度yとなる蓄熱温度の目標値を演算する蓄熱量演算
手段の記憶容量および演算能力を極力小さくすることが
可能となった。
Thus, in this example, since the relationship between the required water supply temperature y' and the load factor It has become possible to minimize the storage capacity and calculation capacity of the heat storage amount calculation means for calculating the target value.

また熱源系統も最高の効率での運転が実現できて成績係
数copが改善され、消費電力も少なくなった。
Additionally, the heat source system was able to operate at the highest efficiency, improving the coefficient of performance cop and reducing power consumption.

なお、上記実施例では、過去、当日、翌日の空調負荷量
をそれぞれ各時刻毎に求める場合につき説明したが、例
えば−日の空調時間帯の負荷総量をもちいることも出来
る。
In the above embodiment, a case has been described in which the air conditioning load amounts for the past, the current day, and the next day are calculated at each time, but for example, the total load amount for the air conditioning time period on -day may also be used.

また、蓄熱槽熱源2としては、ヒートポンプ等の他の冷
却・加熱装置を適用することができる。
Further, as the heat storage tank heat source 2, other cooling/heating devices such as a heat pump can be applied.

更に、マイクロコンピュータで蓄熱槽熱源3を直接制御
するかわりに、熱源制御手段を介して制御するようにし
てもよい。
Furthermore, instead of directly controlling the heat storage tank heat source 3 with a microcomputer, it may be controlled via a heat source control means.

また蓄熱槽熱源3は、必要に応じ、空調時間帯において
バンクアップ運転することもできる。
Moreover, the heat storage tank heat source 3 can also be operated in a bank-up manner during the air conditioning time period, if necessary.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、当日の空調負
荷量と例えば前日の実績空調負荷とから翌日の空調負荷
量を予測し、その予測値に基づいて得られる翌日の空調
負荷率に応じて、予め定めた関係式により翌日の必要送
水温度を演算し、それを目標蓄熱温度として蓄熱槽の温
度を深夜電力を利用して制御する。
As explained above, according to the present invention, the next day's air conditioning load is predicted from the current day's air conditioning load and, for example, the previous day's actual air conditioning load, and the next day's air conditioning load factor obtained based on the predicted value is Then, the required water supply temperature for the next day is calculated using a predetermined relational expression, and this is used as the target heat storage temperature to control the temperature of the heat storage tank using late-night electricity.

これにより、日、うの負荷変動に即応してきめ細かく高
精度の温度制御ができる。しかも従来のようなピーク時
以外の日中の無駄運転がな(熱ロスを大幅に減少させて
省エネルギー化を達成することができる。また管理の手
間も省くことができる。
This allows for detailed and highly accurate temperature control in response to daily load fluctuations. In addition, there is no need for wasteful operation during the day outside of peak hours as in the past (heat loss can be significantly reduced and energy savings can be achieved. Management efforts can also be saved).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を適用する制御装置の概略説明図、第
2図はこの発明の蓄熱槽の温度制御方法の手順を示す割
り込みプログラムの流れ図、第3図は同じくメインプロ
グラムの流れ図、第4図、第5図は関東の一地域におけ
る事務所の空調負荷率と必要送水温度との関係を表すグ
ラフで第4図は冷房時、第5図は暖房時のものである。 第6図は第4図に更に他の地域を加えて示す空調負荷率
と必要送水温度との関係グラフである。 1は蓄熱槽、3は蓄熱槽熱源、4.9はポンプ、5は三
方弁、10は空調機コイル、12は蓄熱槽温度制御装置
としてのコントローラ、T1〜T、、T、〜T、、、T
、は温度センサ、Lは流債計である。
Fig. 1 is a schematic explanatory diagram of a control device to which the present invention is applied, Fig. 2 is a flowchart of an interrupt program showing the steps of the temperature control method for a heat storage tank of this invention, Fig. 3 is a flowchart of the main program, and Fig. 4 is a flowchart of the main program. Figures 5 and 5 are graphs showing the relationship between the air conditioning load factor and the required water supply temperature for offices in one region of the Kanto region. Figure 4 is for cooling, and Figure 5 is for heating. FIG. 6 is a graph showing the relationship between the air conditioning load factor and the required water supply temperature, which is shown in FIG. 4 by adding other regions. 1 is a heat storage tank, 3 is a heat storage tank heat source, 4.9 is a pump, 5 is a three-way valve, 10 is an air conditioner coil, 12 is a controller as a heat storage tank temperature control device, T1 to T, , T, to T, , , T
, is a temperature sensor, and L is a flow rate meter.

Claims (1)

【特許請求の範囲】[Claims] (1)1日の空調終了時に当日の空調負荷量を算出し、
次いでその当日空調負荷量と記憶させてある過去の実績
空調負荷量とから、翌日の空調負荷量Lを推定した後、
この翌日空調負荷量Lと予め設定したピーク空調負荷量
Lmとから負荷率x=L/Lmを算出して、該負荷率x
と空調機コイルへの必要送水温度yとの関係式y=f(
x)+C(Cは定数)に基づき、翌日の必要送水温度y
を算出し、該必要送水温度yを目標蓄熱温度として、深
夜電力を利用し蓄熱槽熱源系統の運転を制御することを
特徴とする蓄熱槽の温度制御方法。
(1) Calculate the air conditioning load for the day at the end of the day,
Next, after estimating the air conditioning load amount L for the next day from the air conditioning load amount for that day and the past actual air conditioning load amount that has been stored,
Calculate the load factor x=L/Lm from this next day's air conditioning load amount L and the preset peak air conditioning load amount Lm, and calculate the load factor x
The relational expression y=f(
x) + C (C is a constant), the required water supply temperature y for the next day
A temperature control method for a heat storage tank, comprising: calculating the necessary water supply temperature y as a target heat storage temperature, and controlling the operation of a heat storage tank heat source system using late-night electricity.
JP61179564A 1986-07-30 1986-07-30 Temperature control method for heat accumulating tank Granted JPS6338855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61179564A JPS6338855A (en) 1986-07-30 1986-07-30 Temperature control method for heat accumulating tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61179564A JPS6338855A (en) 1986-07-30 1986-07-30 Temperature control method for heat accumulating tank

Publications (2)

Publication Number Publication Date
JPS6338855A true JPS6338855A (en) 1988-02-19
JPH0424613B2 JPH0424613B2 (en) 1992-04-27

Family

ID=16067937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61179564A Granted JPS6338855A (en) 1986-07-30 1986-07-30 Temperature control method for heat accumulating tank

Country Status (1)

Country Link
JP (1) JPS6338855A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350431A (en) * 1989-07-14 1991-03-05 Nikken Sekkei Ltd Load estimating method
US5010538A (en) * 1987-05-25 1991-04-23 Oki Electric Industry Co., Ltd. Focus servo apparatus
JPH03170735A (en) * 1989-11-30 1991-07-24 Taisei Corp Controlling method for ice heat storage air-conditioning system
JPH043832A (en) * 1990-04-18 1992-01-08 Nikken Sekkei Ltd Heat accumulating amount calculating method
JPH0979644A (en) * 1995-09-13 1997-03-28 Toshiba Corp Control device of heat accumulation plant
CN109974218A (en) * 2019-03-27 2019-07-05 福建工程学院 A kind of multi-online air-conditioning system regulation method based on prediction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232452A (en) * 1984-04-27 1985-11-19 Sekisui Chem Co Ltd Controller of hot water reserving type electric water heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232452A (en) * 1984-04-27 1985-11-19 Sekisui Chem Co Ltd Controller of hot water reserving type electric water heater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010538A (en) * 1987-05-25 1991-04-23 Oki Electric Industry Co., Ltd. Focus servo apparatus
JPH0350431A (en) * 1989-07-14 1991-03-05 Nikken Sekkei Ltd Load estimating method
JPH03170735A (en) * 1989-11-30 1991-07-24 Taisei Corp Controlling method for ice heat storage air-conditioning system
JPH043832A (en) * 1990-04-18 1992-01-08 Nikken Sekkei Ltd Heat accumulating amount calculating method
JPH0979644A (en) * 1995-09-13 1997-03-28 Toshiba Corp Control device of heat accumulation plant
CN109974218A (en) * 2019-03-27 2019-07-05 福建工程学院 A kind of multi-online air-conditioning system regulation method based on prediction

Also Published As

Publication number Publication date
JPH0424613B2 (en) 1992-04-27

Similar Documents

Publication Publication Date Title
US4706882A (en) Adaptive optimum start
US11662113B2 (en) Building cooling systems with energy optimization and model predictive control
US5115967A (en) Method and apparatus for adaptively optimizing climate control energy consumption in a building
US5197666A (en) Method and apparatus for estimation of thermal parameter for climate control
US4110827A (en) Load cycling with space temperature feedback
EP3196558A1 (en) Dual temperature heat pump system
EP0182239B2 (en) System for determining the optimum start/stop time of a temperature control system
US10767887B2 (en) System and method for thermal comfort control
Satyavada et al. An integrated control-oriented modelling for HVAC performance benchmarking
US20080277488A1 (en) Method for Controlling HVAC Systems
US4136392A (en) Load cycling with space temperature feedback
Sun et al. Model-based optimal start control strategy for multi-chiller plants in commercial buildings
EP3306204B1 (en) Hot-water heating system, control device, and control method
JPS6338855A (en) Temperature control method for heat accumulating tank
JP3442037B2 (en) Secondary system for district cooling and heating
JP5937034B2 (en) Operation control method for cold / hot water supply system
US20230109989A1 (en) Regulation system for a thermo-hydraulic circuit and control method
RU2806932C1 (en) Heating and mixing device for liquid heating system
JP3536445B2 (en) Control method of heat input of regenerative heating system
RU2260201C2 (en) Method for optimal control of thermal mode in rooms of buildings
EP3745036A1 (en) System and method for building climate control
JPS62141447A (en) Heat pump type regenerative air conditioning equipment
JP3091414B2 (en) District heating and cooling system receiving equipment
EP4086724A1 (en) Control of cooling and/or of heating
JP3032276B2 (en) Air conditioning and heating systems

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees