JPS633853B2 - - Google Patents

Info

Publication number
JPS633853B2
JPS633853B2 JP54110775A JP11077579A JPS633853B2 JP S633853 B2 JPS633853 B2 JP S633853B2 JP 54110775 A JP54110775 A JP 54110775A JP 11077579 A JP11077579 A JP 11077579A JP S633853 B2 JPS633853 B2 JP S633853B2
Authority
JP
Japan
Prior art keywords
methanol
formaldehyde
air
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54110775A
Other languages
Japanese (ja)
Other versions
JPS5634649A (en
Inventor
Satoshi Nishiwaki
Naotaka Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP11077579A priority Critical patent/JPS5634649A/en
Publication of JPS5634649A publication Critical patent/JPS5634649A/en
Publication of JPS633853B2 publication Critical patent/JPS633853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、銀、銅、白金などの金属触媒の存在
下にメタノールよりホルムアルデヒドを製造する
方法に関するものであり、更に詳しくは、空気と
メタノールを含む原料ガス、特に、空気とメタノ
ールと水蒸気、所望によつてはその他の不活性ガ
スなどを含む原料ガスに水もしくはメタノールを
含む水溶液を触媒層入口部に液状のまま添加する
ことにより、改善された熱経済的に有利なホルム
アルデヒドの製造方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing formaldehyde from methanol in the presence of a metal catalyst such as silver, copper, or platinum. By adding water or an aqueous solution containing methanol to the inlet of the catalyst bed in a liquid state to the raw material gas containing air, methanol, water vapor, and optionally other inert gases, improved thermoeconomic advantages can be achieved. The present invention provides a method for producing formaldehyde.

一般にホルムアルデヒドを工業的に製造するに
は、メタノールを原料とし、これを気化して空気
と混合するが、該混合ガス中のメタノールの混合
比が爆発限界の上限(36容積%)以上、言葉をか
えれば、空気とメタノールのモル比〔空気(モ
ル)/メタノール蒸気(モル)、以下空気・メタ
ノール比と呼ぶ。〕が1.5以下になるごとく混合し
た原料ガスを銀、銅、白金などの金属触媒層を通
過せしめて、ホルムアルデヒドを製造する方法
は、メタノール過剰法と呼ばれて工業的に実施さ
れている方法である。この方法に係わる反応は、
次式によつて示される脱水素反応であるといわれ
ており、この反応は吸熱反応である。
Generally, to industrially produce formaldehyde, methanol is used as a raw material, which is vaporized and mixed with air. In other words, the molar ratio of air and methanol [air (mol)/methanol vapor (mol), hereinafter referred to as the air-methanol ratio. ] is 1.5 or less, and the raw material gas is passed through a metal catalyst layer of silver, copper, platinum, etc. to produce formaldehyde. This method is called the methanol excess method and is used industrially. be. The reaction involved in this method is
It is said to be a dehydrogenation reaction represented by the following formula, and this reaction is an endothermic reaction.

CH3OH→HCHO+H2 (1) 前記メタノール過剰法によるホルムアルデヒド
の製造においては、式(1)の水素は原料ガスとして
用いる空気中の酸素によつて燃焼して水に転化さ
れ、その結果、燃焼熱は式(1)に必要な熱を供給
し、目的とする反応が円滑に進行するように仕組
まれているのである。すなわち、この方法におい
て式(1)の反応を円滑に進行せしめるため、言いか
えれば、原料メタノールがホルムアルデヒドに転
化する割合(以下収率と呼ぶ)をより高くするた
めには、反応温度を500乃至750℃、好ましくは
600乃至700℃に維持すると同時に、空気・メタノ
ール比を適切に選択することがきわめて重要であ
る。
CH 3 OH → HCHO + H 2 (1) In the production of formaldehyde using the excess methanol method, the hydrogen in formula (1) is combusted by the oxygen in the air used as the raw material gas and converted to water. The heat is designed to supply the heat necessary for equation (1) so that the desired reaction proceeds smoothly. That is, in order to make the reaction of formula (1) proceed smoothly in this method, in other words, in order to increase the conversion rate of raw methanol to formaldehyde (hereinafter referred to as the yield), the reaction temperature should be set at 500℃ or higher. 750℃, preferably
It is very important to maintain the temperature between 600 and 700°C and at the same time choose the air/methanol ratio appropriately.

従来、工業装置においてしばしば採用されてい
るメタノールと空気のみを原料とするホルムアル
デヒドの製造法においては、前述のように爆発を
避けるために、空気・メタノール比を1.5以下に
選ばなければならない。そして、この反応が通常
工業的に実施されるような断熱反応である場合に
は、反応温度は空気・メタノール比1.3乃至1.5に
おいて600乃至700℃に到達し、温度条件としては
十分に満足されている。しかし、この場合、空気
量は化学量論的にみて比較的少ないために収率は
低く、反応生成物中に未反応メタノールが多く残
つてしまい、通常、ホルムアルデヒド生成量37重
量部に対して未反応メタノールが5重量部以上も
の割合で残留してしまう。
Conventionally, in the formaldehyde production method that uses only methanol and air as raw materials, which is often used in industrial equipment, the air/methanol ratio must be selected to be 1.5 or less to avoid explosions, as mentioned above. If this reaction is an adiabatic reaction that is usually carried out industrially, the reaction temperature will reach 600 to 700°C at an air/methanol ratio of 1.3 to 1.5, which is sufficient to satisfy the temperature conditions. There is. However, in this case, the yield is low because the amount of air is relatively small from a stoichiometric perspective, and a large amount of unreacted methanol remains in the reaction product. The reaction methanol remains in a proportion of 5 parts by weight or more.

そこで、上記欠点を解消するために、空気とメ
タノールにさらに不活性ガスを添加し、空気とメ
タノールとの混合ガスの爆発限界をせばめてより
高い空気・メタノール比で反応を行なう方法も実
施されている。この方法では、空気量を多くでき
るところからホルムアルデヒドの収率の増大と未
反応メタノールの残留量の低減が実現できるとと
もに、不活性ガスの添加によつて過剰の熱を急速
に奪つて触媒層の過熱を避けるという効果も達成
され、より実用的なホルムアルデヒドの製造方法
と言える。ここに不活性ガスとは、通常、水蒸
気、窒素、アルゴン、ヘリウム等のメタノールか
らホルムアルデヒドを製造する反応に不活性なガ
スを意味し、これらは単独、もしくは二種以上の
混合物として用いられ、更には、ホルムアルデヒ
ド製造装置の吸収塔から排出される廃ガス(以下
単に「廃ガス」と呼ぶ)も不活性ガスとして好適
に用いられるものである。しかし、この不活性ガ
スを添加する方法にも欠陥はあり、たとえば、水
蒸気を不活性ガスとして用いる場合には、製品
ホルムアルデヒド水溶液の濃度を相対的に低くし
てしまう、スチーム原単位を大きくする、など
の欠点があり、廃ガスを用いる場合には、装置
が大きくなるため相対的に建設費が高くなる、
反応生成ガス吸収塔から排出される廃ガスを循
環、添加するための送風機が必要となり、電力原
単位が増大する、などの欠点を伴う。また、水蒸
気や廃ガス以外の不活性ガスを用いる方法では、
ホルムアルデヒドの製造に本来不必要なガスをわ
ざわざ使用することになり、当然ホルムアルデヒ
ドの製造原価に著しい負担を与えることになる。
実際の工業装置においては、不活性ガスとして水
蒸気および廃ガスを単独にまたはこれらを組合わ
せて用いることが実施されるゆえんである。
Therefore, in order to eliminate the above drawbacks, a method has been implemented in which an inert gas is further added to air and methanol to shorten the explosive limit of the mixed gas of air and methanol and to conduct the reaction at a higher air/methanol ratio. There is. This method can increase the amount of air, increasing the yield of formaldehyde and reducing the amount of unreacted methanol remaining.Additionally, by adding an inert gas, excess heat is quickly removed and the catalyst layer is heated. The effect of avoiding overheating was also achieved, and it can be said to be a more practical method for producing formaldehyde. The term "inert gas" as used herein generally refers to gases that are inert to the reaction of producing formaldehyde from methanol, such as water vapor, nitrogen, argon, and helium, which may be used alone or as a mixture of two or more; The waste gas (hereinafter simply referred to as "waste gas") discharged from the absorption tower of the formaldehyde production equipment is also suitably used as the inert gas. However, this method of adding an inert gas also has its flaws; for example, when water vapor is used as an inert gas, the concentration of the product formaldehyde aqueous solution becomes relatively low, and the steam consumption rate increases. There are disadvantages such as, if waste gas is used, the equipment will be larger and the construction cost will be relatively high.
This method requires a blower to circulate and add the waste gas discharged from the reaction product gas absorption tower, resulting in disadvantages such as an increase in electric power consumption. In addition, methods using inert gases other than water vapor or waste gas,
In the production of formaldehyde, a gas that is originally unnecessary is used, which naturally increases the production cost of formaldehyde.
This is because, in actual industrial equipment, water vapor and waste gas are used alone or in combination as inert gases.

本発明者らは、かねてより空気とメタノールに
さらに不活性ガスとして水蒸気を添加した原料混
合ガスを用いたホルムアルデヒドの製造技術につ
いて詳細な検討を行なつてきたが、製品ホルムア
ルデヒド水溶液中のホルムアルデヒド濃度を高め
るために水蒸気とメタノールのモル比〔スチーム
(モル)/メタノール(モル)、以下スチーム・メ
タノール比と呼ぶ。〕を小さくすると、反応温度
が高くなり、副反応が増加して収率が低下する結
果を招き、また、製品ホルムアルデヒド水溶液中
の未反応メタノール濃度を低くするために空気・
メタノール比を大きくすると、この場合も反応温
度が高くなつて副反応が増加し、収率が低下する
ばかりでなく、期待に反して未反応メタノール濃
度が増加するという結果が得られた。
The present inventors have been conducting detailed studies on formaldehyde production technology using a raw material mixed gas consisting of air, methanol, and water vapor added as an inert gas. In order to increase the molar ratio of steam and methanol [steam (mol)/methanol (mol), hereinafter referred to as the steam-methanol ratio. ], the reaction temperature becomes high, side reactions increase, and the yield decreases.In addition, in order to lower the concentration of unreacted methanol in the product formaldehyde aqueous solution, air/
When the methanol ratio was increased, the reaction temperature also increased in this case, resulting in an increase in side reactions, resulting in not only a decrease in yield but also an unexpected increase in the unreacted methanol concentration.

本発明者らは、このような知見に鑑みてさらに
検討を進めたところ、上述の欠点を解消し、反応
条件を適宜選択することによつて、不活性ガスを
添加するホルムアルデヒド製造方法において収率
の改善に効を奏し、収率を悪化させることなく未
反応メタノールの含有量を低下させ、スチーム原
単位の改善をもたらし、相対的に高い濃度のホル
ムアルデヒド水溶液を製造し得る方法を見出し、
本発明を完成した。
The present inventors conducted further studies in light of these findings, and found that by solving the above-mentioned drawbacks and selecting reaction conditions appropriately, the yield of formaldehyde production method in which an inert gas is added is improved. We have discovered a method that is effective in improving the amount of formaldehyde, reduces the content of unreacted methanol without deteriorating the yield, improves the steam consumption rate, and can produce an aqueous formaldehyde solution with a relatively high concentration.
The invention has been completed.

すなわち、本発明は、ホルムアルデヒド製造の
原料として用いられる水もしくはメタノールを含
む水溶液を触媒層入口部に液状のまま添加してホ
ルムアルデヒドを製造する方法である。ここで、
液状で添加される水もしくはメタノールを含む水
溶液としては、原料ガスとして用いられる原料の
水もしくはメタノール水溶液の一部が用いられて
もよく、勿論、空気とメタノールとの原料ガスに
水を液状で添加されてもよく、これらは、たとえ
ば、霧状にして原料ガス中に添加する。この方法
によつて、高いメタノール・空気比においても、
反応温度を適切に制御し、触媒層の過熱を防止す
ることに成功し、上述のごとき種々の利点を成就
し得たのである。このような事実は、不活性ガス
を用いるホルムアルデヒド製造の従来技術におい
て一般的に行なわれている触媒層に送入される原
料をすべてガス状で供給し、僅かに凝縮する液滴
の混入にも注意が払われているところからは予想
もされない成果であつて、従来忌避されていた触
媒層への水もしくはメタノールを含む水溶液の液
状での添加が逆に意外にも好適な結果を生み出す
という新しい知見が得られたのである。
That is, the present invention is a method for producing formaldehyde by adding an aqueous solution containing water or methanol, which is used as a raw material for producing formaldehyde, to the inlet of a catalyst layer in a liquid state. here,
As the water or methanol-containing aqueous solution added in liquid form, part of the water or methanol aqueous solution used as the raw material gas may be used, and of course, water can be added in liquid form to the raw material gas of air and methanol. These may be added to the raw material gas in the form of a mist, for example. With this method, even at high methanol/air ratios,
By appropriately controlling the reaction temperature and successfully preventing overheating of the catalyst layer, the various advantages described above were achieved. This fact is due to the fact that all the raw materials fed to the catalyst bed are supplied in gaseous form, which is common practice in conventional formaldehyde production technology using inert gas, and the contamination of droplets that condense slightly is avoided. This is an unexpected result given the amount of attention paid to it, and is a novel finding in which the addition of an aqueous solution containing water or methanol to the catalyst layer in liquid form, which had been avoided in the past, surprisingly produced favorable results. Knowledge was obtained.

このような知見にもとづいて完成された本発明
は、空気とメタノールとを原料とするホルムアル
デヒドの製造方法を改善してより製造原価の低廉
なホルムアルデヒドを提供するものであり、なか
んづく熱経済的に優れた経済性の高いホルムアル
デヒド製造技術を提供するものである。
The present invention, which was completed based on such knowledge, aims to improve the method for producing formaldehyde using air and methanol as raw materials to provide formaldehyde with a lower manufacturing cost, and above all, is superior in thermoeconomics. This provides a highly economical formaldehyde production technology.

本発明の方法を実施するに当たつて、保持すべ
き触媒層の温度は500℃乃至750℃、好ましくは
600℃乃至700℃である。そして本発明の方法を好
適に実施するためには、触媒層の直前において液
状の水、もしくはメタノールを含む水溶液を原料
ガス中に均等に分散させるために多数の噴霧器
を、反応器上部の器壁内に取り付けることが望ま
しいが、反応器に入る原料ガス送入管内に霧吹き
を取り付けてもよく、その具体的な実施態様はこ
れらに限定されるものではない。原料ガスに添加
される水の量は、メタノールに対する水のモル比
〔水(モル)/メタノール(モル)、メタノールを
含む水溶液については正味の水の量で算出する〕
に換算して0.01〜1.00の範囲である。
When carrying out the method of the present invention, the temperature of the catalyst layer to be maintained is 500°C to 750°C, preferably
The temperature is between 600°C and 700°C. In order to suitably carry out the method of the present invention, a large number of sprayers are installed on the wall of the upper part of the reactor in order to uniformly disperse liquid water or an aqueous solution containing methanol into the raw material gas immediately before the catalyst layer. Although it is preferable to install the atomizer inside the reactor, it is also possible to install the atomizer inside the raw material gas feed pipe that enters the reactor, and the specific embodiment thereof is not limited thereto. The amount of water added to the raw material gas is calculated by the molar ratio of water to methanol [water (mol)/methanol (mol), for aqueous solutions containing methanol, the net amount of water]
It is in the range of 0.01 to 1.00.

以上述べたごとく、本発明は、メタノールと空
気を原料として用いるホルムアルデヒド製造方法
において原料はすべてガス状で触媒層に送入しな
ければならないと考えられていた従来の概念を覆
すもので、液状の水もしくはメタノールを含む水
溶液を触媒層に直接送入することによつて、極め
て熱経済性が高く、かつ未反応メタノールの残留
量の調整が容易で、相対的に高濃度のホルムアル
デヒド水溶液を製造する方法を提供するものであ
り、その工業的価値は極めて高いものである。
As described above, the present invention overturns the conventional concept that in a formaldehyde production method using methanol and air as raw materials, all raw materials must be fed to the catalyst bed in a gaseous state. By directly feeding an aqueous solution containing water or methanol to the catalyst layer, an aqueous formaldehyde solution with extremely high thermoeconomic efficiency, easy adjustment of the amount of unreacted methanol remaining, and a relatively high concentration can be produced. This method provides an extremely high industrial value.

次に、比較例および実施例によつて本発明を説
明する。
Next, the present invention will be explained using comparative examples and examples.

比較例 1 電解銀を高さ20mmに充填した内径20mmの反応管
に毎時メタノール蒸気9.8モル、空気17.5モルお
よび水蒸気7.8モルを送入し、ホルムアルデヒド
生成反応を行なつた。
Comparative Example 1 9.8 moles of methanol vapor, 17.5 moles of air, and 7.8 moles of water vapor were introduced per hour into a reaction tube having an inner diameter of 20 mm and filled with electrolytic silver to a height of 20 mm to carry out a formaldehyde production reaction.

この時の反応温度は670℃、原料メタノールに
対するホルムアルデヒド収率は85.6%であり、生
成物中の未反応メタノールはホルムアルデヒド37
重量部あたり3.7重量部であつた。
The reaction temperature at this time was 670℃, the formaldehyde yield was 85.6% based on the raw material methanol, and the unreacted methanol in the product was 37% formaldehyde.
It was 3.7 parts by weight per part by weight.

実施例 1 比較例1と同様の反応管に、毎時メタノール蒸
気9.8モル、空気18.6モルおよび水蒸気5.8モルを
送入し、更に触媒層上に注射針をそう入して毎時
純水 36グラム(=2モル)を滴下し、ホルムア
ルデヒド生成反応を行なつた。
Example 1 9.8 moles of methanol vapor, 18.6 moles of air, and 5.8 moles of water vapor were fed into the same reaction tube as in Comparative Example 1 per hour, and a syringe needle was inserted onto the catalyst layer to produce 36 grams of pure water (= 2 mol) was added dropwise to perform a formaldehyde production reaction.

この時の反応温度は670℃、原料メタノールに
対するホルムアルデヒド収率は85.8%であり、生
成物中の未反応メタノールはホルムアルデヒド37
重量部あたり1.8重量部であつた。これは、比較
例1に比べて、未反応メタノールが1.9重量部低
くなつたことを示す。
The reaction temperature at this time was 670°C, the yield of formaldehyde based on the raw material methanol was 85.8%, and the unreacted methanol in the product was 37% formaldehyde.
It was 1.8 parts by weight per part by weight. This indicates that unreacted methanol was 1.9 parts by weight lower than in Comparative Example 1.

実施例 2 比較例1と同様の反応管に、毎時メタノール蒸
気9.8モル、空気17.5モルおよび水蒸気6.8モルを
送入し、更に触媒層上に注射針をそう入して毎時
純水 18グラム(=1モル)を滴下し、ホルムア
ルデヒド生成反応を行なつた。
Example 2 9.8 moles of methanol vapor, 17.5 moles of air, and 6.8 moles of water vapor were fed per hour into the same reaction tube as in Comparative Example 1, and a syringe needle was inserted onto the catalyst layer to feed 18 grams of pure water (= 1 mol) was added dropwise to perform a formaldehyde production reaction.

この時の反応温度は646℃、原料メタノールに
対するホルムアルデヒド収率は86.8%であり、生
成物中の未反応メタノールはホルムアルデヒド37
重量部あたり2.5重量部であつた。
The reaction temperature at this time was 646℃, the formaldehyde yield was 86.8% based on the raw material methanol, and the unreacted methanol in the product was 37% formaldehyde.
It was 2.5 parts by weight per part by weight.

これは、比較例1に比べて、ホルムアルデヒド
収率が1.2%高く、未反応メタノールが1.2重量部
低くなつたことを意味する。
This means that, compared to Comparative Example 1, the formaldehyde yield was 1.2% higher and the amount of unreacted methanol was lower by 1.2 parts by weight.

実施例 3 比較例1と同様の反応管に、毎時メタノール蒸
気9.0モル、空気17.5モルおよび水蒸気6.8モルを
送入し、更に触媒層上に注射針をそう入して58.7
重量%のメタノール水溶液43.6グラム(=メタノ
ール0.8モル+純水1.0モル)を滴下し、ホルムア
ルデヒド生成反応を行なつた。
Example 3 9.0 moles of methanol vapor, 17.5 moles of air, and 6.8 moles of water vapor were fed per hour into the same reaction tube as in Comparative Example 1, and a syringe needle was inserted onto the catalyst layer to give a reaction volume of 58.7 moles per hour.
43.6 g of a methanol aqueous solution (=0.8 mol of methanol + 1.0 mol of pure water) was added dropwise to carry out a formaldehyde production reaction.

この時の反応温度は613℃、原料メタノールに
対するホルムアルデヒド収率は88.1%であり、生
成物中の未反応メタノールはホルムアルデヒド37
重量部あたり2.1重量部であつた。
The reaction temperature at this time was 613℃, the yield of formaldehyde based on the raw material methanol was 88.1%, and the unreacted methanol in the product was 37% formaldehyde.
It was 2.1 parts by weight per part by weight.

これは、比較例1に比べてホルムアルデヒド収
率が2.5%高く、未反応メタノールが1.6部低くな
つたことを示す。
This indicates that the formaldehyde yield was 2.5% higher and the amount of unreacted methanol was 1.6 parts lower than in Comparative Example 1.

比較例 2 比較例1と同様の反応管に、毎時メタノール蒸
気9.8モル、空気17.5モルおよび水蒸気4.9モルを
送入し、ホルムアルデヒド生成反応を行なつた。
Comparative Example 2 9.8 moles of methanol vapor, 17.5 moles of air, and 4.9 moles of water vapor were fed per hour into the same reaction tube as in Comparative Example 1 to carry out a formaldehyde production reaction.

この時の反応温度は723℃、原料メタノールに
対するホルムアルデヒド収率は74.8%であり、生
成物中の未反応メタノールはホルムアルデヒド37
重量部あたり2.1重量部であつた。
The reaction temperature at this time was 723°C, the formaldehyde yield relative to the raw material methanol was 74.8%, and the unreacted methanol in the product was 37% formaldehyde.
It was 2.1 parts by weight per part by weight.

実施例 4 比較例1と同様の反応管に毎時メタノール蒸気
9.8モル、空気17.5モルおよび水蒸気3.3モルを送
入し、更に触媒層上に注射針を送入して毎時純水
29グラム(=1.6モル)を滴下し、ホルムアルデ
ヒド生成反応を行なつた。
Example 4 Methanol vapor was added every hour to the same reaction tube as in Comparative Example 1.
9.8 moles of air, 17.5 moles of air, and 3.3 moles of water vapor are introduced, and a syringe needle is also introduced onto the catalyst layer to generate pure water every hour.
29 grams (=1.6 mol) was added dropwise to carry out formaldehyde production reaction.

この時の反応温度は670℃、原料メタノールに
対するホルムアルデヒド収率は85.1%であり、生
成物中の未反応メタノールはホルムアルデヒド37
重量部あたり2.2重量部であつた。
The reaction temperature at this time was 670℃, the formaldehyde yield was 85.1% based on the raw material methanol, and the unreacted methanol in the product was 37% formaldehyde.
It was 2.2 parts by weight per part by weight.

これは、比較例2に比べてホルムアルデヒド収
率が10.3%高くなつたことを示す。
This indicates that the formaldehyde yield was 10.3% higher than in Comparative Example 2.

また、この実施例は、比較例1に比べれば、ホ
ルムアルデヒド収率はほぼ同じであるが、反応系
に添加する水分(3.3モル+1.6モル=4.9モル)が
比較例1の場合の水分(7.8モル)に比べて著し
く少ないために、相対的にホルムアルデヒド高濃
度の生成物が得られる条件で行なつたものであ
る。
In addition, this example has almost the same formaldehyde yield as Comparative Example 1, but the water added to the reaction system (3.3 mol + 1.6 mol = 4.9 mol) was lower than that in Comparative Example 1. (7.8 mol), the conditions were such that a product with a relatively high concentration of formaldehyde could be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 金属触媒にメタノールと空気および水蒸気と
を含有する原料ガスを接触させてホルムアルデヒ
ドを製造する方法において、水もしくはメタノー
ルを含有する水溶液を、メタノールに対する水の
モル比0.01〜1.00の範囲で触媒層入口部に液状の
まま添加することを特徴とするホルムアルデヒド
の製造法。
1 In a method for producing formaldehyde by contacting a metal catalyst with a raw material gas containing methanol, air, and water vapor, water or an aqueous solution containing methanol is added to the inlet of the catalyst layer at a molar ratio of water to methanol in the range of 0.01 to 1.00. A method for producing formaldehyde, which is characterized in that it is added to the liquid in liquid form.
JP11077579A 1979-08-30 1979-08-30 Preparation of formaldehyde Granted JPS5634649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11077579A JPS5634649A (en) 1979-08-30 1979-08-30 Preparation of formaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11077579A JPS5634649A (en) 1979-08-30 1979-08-30 Preparation of formaldehyde

Publications (2)

Publication Number Publication Date
JPS5634649A JPS5634649A (en) 1981-04-06
JPS633853B2 true JPS633853B2 (en) 1988-01-26

Family

ID=14544273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11077579A Granted JPS5634649A (en) 1979-08-30 1979-08-30 Preparation of formaldehyde

Country Status (1)

Country Link
JP (1) JPS5634649A (en)

Also Published As

Publication number Publication date
JPS5634649A (en) 1981-04-06

Similar Documents

Publication Publication Date Title
ITMI20001881A1 (en) PROCESS FOR THE PRODUCTION OF OXYGEN WATER
JP3005647B2 (en) Photocatalyst, method for producing the same, and method for producing hydrogen using the same
US3959383A (en) Two-stage converson of methanol to formaldehyde
CH617170A5 (en)
US4874888A (en) Process for the preparation of a diester of oxalic acid
JP4134761B2 (en) Production method of alkyl nitrite
US3419601A (en) Cyclic process for the production of methyl methacrylate
JP4134777B2 (en) Nitrite ester production method
US4107278A (en) Process for making HCN
JPS633853B2 (en)
JPH075418B2 (en) Apparatus and method for producing nitrogen fertilizer solution from ammonia
KR870001853B1 (en) Preparation of nitrite esters
US4629806A (en) Vapor state formation of diesters of oxalic acid
US2701260A (en) Production of unsaturated nitriles by selective oxidation
JPH06298701A (en) Manufacturing process of methyl formate
JP4306320B2 (en) Process for producing dialkyl carbonate
US4137256A (en) Preparation of peracetic acid by oxidation of acetaldehyde
US2593437A (en) Manufacture of unsaturated aldehydes
JP2894620B2 (en) Method for producing hydrogen cyanide
IL25566A (en) Process for the production of hydrogen cyanide
US3175009A (en) Vapor phase production of amines
US3949061A (en) Process for oxidizing hydrocyanic acid to cyanogen
US2289036A (en) Preparation of benzoic acid
US3145079A (en) Process for the preparation of purified hydrogen bromide gas by the use of activated arbon as catalyst
WO2022270409A1 (en) Method and device for manufacturing carbon monoxide