JPS6336903A - Production of composite material - Google Patents

Production of composite material

Info

Publication number
JPS6336903A
JPS6336903A JP18163586A JP18163586A JPS6336903A JP S6336903 A JPS6336903 A JP S6336903A JP 18163586 A JP18163586 A JP 18163586A JP 18163586 A JP18163586 A JP 18163586A JP S6336903 A JPS6336903 A JP S6336903A
Authority
JP
Japan
Prior art keywords
outer layer
core material
layer material
fitting
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18163586A
Other languages
Japanese (ja)
Other versions
JPH0763723B2 (en
Inventor
Kazuyuki Nakasuji
中筋 和行
Chihiro Hayashi
千博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61181635A priority Critical patent/JPH0763723B2/en
Priority to US07/079,143 priority patent/US5004143A/en
Priority to EP87306748A priority patent/EP0255382B1/en
Priority to DE8787306748T priority patent/DE3763930D1/en
Priority to CA000543584A priority patent/CA1300931C/en
Priority to AU76333/87A priority patent/AU591573B2/en
Publication of JPS6336903A publication Critical patent/JPS6336903A/en
Publication of JPH0763723B2 publication Critical patent/JPH0763723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/20Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a non-continuous process,(e.g. skew rolling, i.e. planetary cross rolling)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/042Manufacture of coated wire or bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/383Cladded or coated products

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To obviate the exfoliation of the boundary face between a core material and outside layer material in spite of the execution of hot rolling by heating a fitting material onto which the cylindrical outside layer material having the deformation resistance larger than the deformation resistance of the core material, then elongating and rolling the material at >=30% reduction of area per pass by a cross helical rolling mill. CONSTITUTION:The fitting material 10 is formed by degreasing and cleaning the outside surface of the core material 11 having a circular section and the inside surface of the cylindrical outside layer material 12 to remove the oil, etc., hindering diffusion, then fitting the two materials. The material having the deformation resistance larger than the deformation resistance of the core material 11 is used for the outside layer material 12. After this material 10 is heated to the temp. lower than the respective m.p. of the core material 11, the outside layer material 12 and the intermetallic compd. thereof, the material is hot rolled by the cross helical rolling mill. The cross helical rolling mill having >=3 pieces of conical rolls is used and the material 10 is subjected to the high-draft rolling at >=30% reduction of area per pass. The diffusion is thus accelerated by the working heat generated in the material 10 heated to the low temp. and the composite material having excellent joinability is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、芯材の外側に外層材を被嵌してなる丸棒状の
複合材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a round bar-shaped composite material in which an outer layer material is fitted on the outside of a core material.

〔従来技術〕[Prior art]

複合材としては、例えば良導電性ばね材料の耐食性を改
善するため、その外表面に耐食性の優れた材料を被覆し
たものがある。つまり、良導電性ばね材料がAll、A
1合金である場合には、これを腐食環境下でそのまま使
用すると腐食するため、その外表面に耐食性にすぐれた
Tt、 Tt金合金からなる層を被覆するのである。
As a composite material, for example, there is a material whose outer surface is coated with a material having excellent corrosion resistance in order to improve the corrosion resistance of a highly conductive spring material. In other words, the highly conductive spring materials are All, A
1 alloy will corrode if it is used as is in a corrosive environment, so its outer surface is coated with a layer of Tt or Tt gold alloy, which has excellent corrosion resistance.

ところで、丸棒状の複合材を製造する場合、その製造方
法としては種々提案されており、その1つに特開昭54
−160551号の方法がある。この方法は、断面円形
の芯材の外側に筒状の外層材を嵌合し、これを冷間にて
ダイス伸線或いは静水圧押出を行って縮径加工し、然る
後、焼鈍して芯材と外層材との界面を拡散により接合す
る方法である。
By the way, when manufacturing round bar-shaped composite materials, various manufacturing methods have been proposed, one of which is Japanese Patent Application Laid-Open No. 54
There is a method of No.-160551. In this method, a cylindrical outer layer material is fitted onto the outside of a core material with a circular cross section, and the material is reduced in diameter by cold wire drawing with a die or hydrostatic extrusion, and then annealed. This is a method of bonding the interface between the core material and the outer layer material by diffusion.

しかしながら、拡散が生じると界面に両金属からなる脆
弱な金属間化合物が生成するため、接合強度が低いとい
う問題がある。
However, when diffusion occurs, a weak intermetallic compound consisting of both metals is formed at the interface, resulting in a problem of low bonding strength.

この問題を解決して複合材を製造する方法としては特開
昭59−110486号の方法が提案されている。
As a method for manufacturing composite materials that solves this problem, a method has been proposed in Japanese Patent Application Laid-Open No. 110486/1986.

この方法は所定形状の異種金属を嵌合し、これを冷間で
絞り加工を行ったのちその両端に外層材と同材質の円形
板材を摩擦圧接により溶接して両金属間の隙間を密封し
、後工程の加熱の際の酸化を防止し、これを加熱して熟
間圧延或いは熱間押出により縮径加工し、異種金属同士
を密着させ、然る後、最終製品にまで加工すべく酸洗、
冷間線引を施す方法であり、縮径加工と加熱との順序が
上記方法とは逆である。
This method involves fitting dissimilar metals of a predetermined shape, cold drawing them, and then welding circular plates made of the same material as the outer layer material to both ends by friction welding to seal the gap between the two metals. , to prevent oxidation during heating in the post-process, reduce the diameter by heating and deep rolling or hot extrusion, and make the dissimilar metals stick together, and then add acid to process it into the final product. Wash,
This is a method of applying cold drawing, and the order of diameter reduction and heating is reversed from the above method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この方法により製造した複合材は、先に拡散を行ったの
ち縮径加工するので金属間化合物層の厚さが薄くなって
接合強度が増加する傾向にある。
Since the composite material manufactured by this method is first diffused and then subjected to diameter reduction processing, the thickness of the intermetallic compound layer becomes thinner and the bonding strength tends to increase.

しかしながら、縮径加工を熱間押出により行った場合に
は、十分な接合強度が得られず、これを解決するために
熱間静水圧押出を行う方法を適用することが試みられて
いる(特公昭54−8188号、特開昭61−4241
6号)、一方、$1径加工を孔型ロールによる熱間圧延
にて行った場合には後に説明するように孔型ロールによ
り圧延されて圧縮を受けた部分が圧下方向が90°異な
る次の孔型ロールにによる圧延時に接合界面で径方向に
引張応力を受けるために芯材と外層材との界面で剥離が
生じ、接合強度が低くなるという問題点があった。
However, when the diameter reduction process is performed by hot extrusion, sufficient joint strength cannot be obtained, and to solve this problem, attempts have been made to apply a method of hot isostatic extrusion (especially Publication No. 54-8188, Japanese Patent Application Publication No. 61-4241
On the other hand, when $1 diameter processing is carried out by hot rolling with grooved rolls, as will be explained later, the part rolled and compressed by the grooved rolls has a rolling direction that differs by 90 degrees. During rolling with grooved rolls, the joint interface receives tensile stress in the radial direction, which causes peeling at the interface between the core material and the outer layer material, resulting in a reduction in joint strength.

本発明は斯かる事情に鑑みてなされたものであり、接合
強度が高い丸棒状の複合材を熱間圧延法により製造する
方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a round bar-shaped composite material with high bonding strength by a hot rolling method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は嵌合材をそのまま又はダイスにて冷間絞り加工
したのち加熱し、これを接合界面で径方向に引張応力が
作用せず、また径方向の高圧下を加え得る熱間圧延法に
より圧延する。
The present invention heats the fitting material as it is or after cold drawing with a die, and then applies a hot rolling method that does not apply tensile stress in the radial direction at the joint interface and can apply a high pressure reduction in the radial direction. Roll.

即ち、本発明に係る複合材の製造方法は、断面円形の芯
材の外側に外層材を被嵌した丸棒状の複合材を製造する
方法において、芯材よりも変形抵抗が大きい材質の円筒
状の外層材を用い、芯材の外表面及び外層材の内表面を
脱脂清浄して嵌合せしめ、次いでこの嵌合材を芯材、外
層材及びこれらの金属間化合物層々の融点より低い温度
に加熱し、3個以上のコーン型ロールを有する傾斜圧延
機により1バス当たり30%以上の減面率で延伸圧延す
ることを特徴とし、また前記嵌合材をダイスにて冷間絞
り加工を行ったのち、前同様に加熱して延伸圧延するこ
とを特徴とする。
That is, the method for manufacturing a composite material according to the present invention is a method for manufacturing a round bar-shaped composite material in which an outer layer material is fitted on the outside of a core material having a circular cross section. Using the outer layer material, the outer surface of the core material and the inner surface of the outer layer material are degreased and cleaned and fitted together, and then this fitting material is heated to a temperature lower than the melting point of the core material, the outer layer material, and their intermetallic compound layers. It is characterized by heating and elongation-rolling using an inclined rolling mill having three or more cone-shaped rolls at an area reduction rate of 30% or more per bath, and cold-drawing the fitting material with a die. After that, it is characterized by heating and elongation rolling as before.

〔作用〕[Effect]

本発明にあっては、加熱したのち傾斜圧延機により高圧
下で熱間圧延するから金属間化合物が生成してもその層
厚さが薄(なり、また変形抵抗を考慮して材質を定め、
また被圧延材の接合界面で引張応力が作用しないから熱
間圧延を行っても芯材と外層材との界面が剥離せず、接
合強度が増加する。
In the present invention, since the material is heated and then hot-rolled under high pressure using an inclined rolling mill, even if an intermetallic compound is generated, the layer thickness is thin (the thickness of the layer is small), and the material is determined in consideration of deformation resistance.
Further, since no tensile stress acts on the joint interface of the rolled material, the interface between the core material and the outer layer material does not peel off even if hot rolling is performed, and the joint strength increases.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明に使用する嵌合材の正面断面図、第2図
はその側面図であり、図中10は嵌合材を示す。嵌合材
10は断面円形の芯材11の外側に筒状の外層材12を
嵌合させた丸棒状のものであり、図示しない加熱炉にて
加熱された後、加熱炉の下流側に設けられた高圧下圧延
が可能な傾斜圧延機へ送給される。
FIG. 1 is a front sectional view of a fitting material used in the present invention, and FIG. 2 is a side view thereof, where 10 indicates the fitting material. The fitting material 10 is a round bar-shaped material in which a cylindrical outer layer material 12 is fitted onto the outside of a core material 11 having a circular cross section, and after being heated in a heating furnace (not shown), it is installed on the downstream side of the heating furnace. It is then fed to an inclined rolling mill that is capable of high-reduction rolling.

第3図は本発明に使用する傾斜圧延機4を示す模式図(
図中ロール1.2は第4図のnr −m線による断面図
としている)、第4図は第3図の■−■線による正面図
、第5図は(頃斜角βを示す側面図である。傾斜圧延機
4はパスライン周りに臨んで3個のコーン形ロール1,
2.3を有し、3fl!1のロール1,2.3は嵌合材
10の出側端部にゴージ部1a、 2a、 3aを備え
、ゴージ部を境にして嵌合材100入側は軸端に向けて
漸次直径を縮小され、また出側は拡大されて円錐台形を
なす入口面1b。
FIG. 3 is a schematic diagram showing the inclined rolling mill 4 used in the present invention (
In the figure, the roll 1.2 is a cross-sectional view taken along the line nr-m in FIG. 4), FIG. 4 is a front view taken along the line ■-■ in FIG. 3, and FIG. FIG.
Has 2.3 and 3fl! The rolls 1, 2.3 of No. 1 have gorge parts 1a, 2a, and 3a at the exit end of the fitting material 10, and the diameter of the fitting material 100 on the inlet side gradually decreases in diameter from the gorge part as a border toward the shaft end. The inlet surface 1b is reduced in size and the outlet side is enlarged to form a truncated conical shape.

2b、 3b及び出口面1c、 2c、 3cを備えて
おり、出口面1c、 2c、 3cはパスラインとの距
離をゴージ部とパスラインとの距離に一致させている。
2b, 3b and exit surfaces 1c, 2c, 3c, and the distances of the exit surfaces 1c, 2c, 3c from the pass line are made to match the distance between the gorge portion and the pass line.

このようなコーン形のロール1,2.3はいずれもその
入口面1b、 2b、 3bを嵌合材10の移動方向上
流側に位置させた状態とし、また軸心線Y −Yと、ゴ
ージ部1a、 2a、 3aを含む平面との交点O(以
下ロール設定中心という)を、嵌合材10のパスライン
X−Xと直交する同一平面上にてバスラインX−X周り
に略等間隔に位置せしめるべく配設されている。そして
各ロール1,2.3の軸心線Y−Yはロール設定中心面
りに、嵌合材10のパスラインX−Xとの関係において
第3図に示すように前方の軸端がパスラインX−Xに向
けて接近するよう交叉角γだけ交叉(W4斜)せしめら
れ、且つ第4図、第5図に示すように前方の軸端が嵌合
材100周方向の同じ側に向けて傾斜角βだけ傾斜せし
められている。ロール1,2.3は図示しない駆動源に
連繋されており、第4図に矢符で示す如く同方向に回転
駆動され、これらのロール間に噛み込まれた熱間の嵌合
材10はその軸心線面りに回転駆動されつつ軸長方向に
移動される、即ち螺進移動せしめられる。
Each of these cone-shaped rolls 1, 2.3 has its entrance surfaces 1b, 2b, 3b located upstream in the direction of movement of the mating material 10, and has an axis Y-Y and a gorge. The intersection point O (hereinafter referred to as the roll setting center) with the plane including parts 1a, 2a, and 3a is placed at approximately equal intervals around the bus line XX on the same plane orthogonal to the pass line XX of the fitting material 10. It is arranged to be located at. The axial center line Y-Y of each roll 1, 2.3 is aligned with the roll setting center plane, and the front shaft end is in the path as shown in FIG. They are crossed by an intersecting angle γ (W4 diagonal) so as to approach the line and is inclined by an angle of inclination β. The rolls 1, 2.3 are connected to a drive source (not shown) and are driven to rotate in the same direction as shown by arrows in FIG. 4, and the hot fitting material 10 caught between these rolls is It is moved in the axial direction while being rotationally driven along its axial center line, that is, it is caused to spirally move.

嵌合材10はロール間を螺進移動せしめられる間に、第
3図に示す如くロールバイト部Aにて外径を絞られて、
例えば最大減面率が80〜90%の高圧下を受け、嵌合
材10の圧下面Bが円錐台形状に成形された後、ゴージ
部、出口面にて所定の外径の丸棒状の複合材13となる
While the fitting material 10 is being spirally moved between rolls, its outer diameter is narrowed at the roll bit part A as shown in FIG.
For example, after being subjected to high pressure with a maximum area reduction rate of 80 to 90%, the rolled surface B of the fitting material 10 is formed into a truncated conical shape, and then a round bar-shaped composite with a predetermined outer diameter is formed at the gorge and exit surface. It becomes material 13.

次に、上記嵌合材を斯かる装置にて圧延する本発明に係
る複合材の製造方法を説明する。
Next, a method for manufacturing a composite material according to the present invention will be described in which the above-mentioned fitting material is rolled using such an apparatus.

嵌合材10は断面円形の芯材11の外表面と、芯材11
の外径寸法と同一の内径を有する筒状の外層材12の内
表面とを脱脂、清浄して拡散を阻害する油等を除去し、
次いでこれらを嵌合して形成させたものであり、上記外
層材12は芯材11よりも変形抵抗が大きい材質を使用
する。
The fitting material 10 has an outer surface of a core material 11 having a circular cross section, and a core material 11 that has a circular cross section.
The inner surface of the cylindrical outer layer material 12 having the same inner diameter as the outer diameter is degreased and cleaned to remove oil etc. that inhibit diffusion,
These are then fitted and formed, and the outer layer material 12 is made of a material with higher deformation resistance than the core material 11.

斯かる材質を使用する理由について詳述する。The reason for using such a material will be explained in detail.

例えば逆に芯材11よりも変形抵抗が小さい材質を外層
材として使用した場合には、第6図に示す如く傾斜圧延
ta4にて熱間圧延するときに芯材11の変形よりも外
層材12aの方が大きく変形して減肉される。この減肉
により周長さが長くなり、長くなった部分がロールとロ
ールとの間で張り出す現象、所謂フレアリングが生じ、
芯材11と外層材12aとの間に隙間Cが発生する。つ
まり加熱により既に形成されている両金属の拡散層で剥
離が生じる。
For example, if a material with lower deformation resistance than the core material 11 is used as the outer layer material, as shown in FIG. is deformed and thinned to a greater extent. This thinning causes the circumferential length to become longer, causing a phenomenon in which the longer part protrudes between the rolls, so-called flaring.
A gap C is generated between the core material 11 and the outer layer material 12a. That is, heating causes separation of the already formed diffusion layers of both metals.

この剥離が生じるのを防止するために、本発明では芯材
11よりも変形抵抗が大きい材料を外層材12として使
用するのである。
In order to prevent this peeling from occurring, in the present invention, a material having higher deformation resistance than the core material 11 is used as the outer layer material 12.

次に、上述のような材料を使用して嵌合せしめた嵌合材
10の上記界面に拡散層を形成させて接合すべく嵌合材
10を加熱する。加熱温度については、芯材11.外層
材12及びこれらの金属間化合物の各融点よりも低い温
度とする。これは芯材11.外層材■2のうち1つでも
溶融すると凝固の際にその部分に割れが生じて接合強度
が低下するからである。
Next, the fitting material 10 is heated to form a diffusion layer at the interface of the fitting material 10, which is made of the above-described material, and to join the fitting material 10. Regarding the heating temperature, see core material 11. The temperature is lower than the respective melting points of the outer layer material 12 and these intermetallic compounds. This is core material 11. This is because if even one of the outer layer materials (2) melts, cracks will occur in that part during solidification, reducing the joint strength.

なお、この加熱温度は高圧下による加工熱発生量を考慮
して定める。
Note that this heating temperature is determined in consideration of the amount of processing heat generated under high pressure.

このようにして加熱まで行われた嵌合材10を傾斜圧延
機4にて熱間圧延する。1頃斜圧延機4を使用する理由
は、従来の花形圧延による場合には不Jlていた接合強
度を増大させる為であり、次にこれを具体的に説明する
。例えば花形圧延による場合は、2個1対の花形ロール
をパスラインに沿って圧下方向を相互に90度異ならせ
て複数対設けであるので、1対のロールによる圧延では
嵌合材10においてはロールにより拘束されている部分
と、拘束されていない部分とが存在する。
The fitting material 10 that has been heated in this manner is hot-rolled in an inclined rolling mill 4. The reason why the oblique rolling mill 4 is used is to increase the joint strength, which was insufficient when conventional flower rolling was used, and this will be specifically explained next. For example, in the case of flower-shaped rolling, a plurality of pairs of flower-shaped rolls are provided along the pass line with their rolling directions different by 90 degrees from each other. There are parts that are restrained by the roll and parts that are not restrained.

ここで、拘束されていない部分について、圧延による芯
材11の延伸方向の歪をεZl+延伸方向に垂直な方向
(径方向)の歪をεr1とし、また外層材12の2つの
歪を夫々εZ2+  εr2とする。芯材の方が外層材
12よりも変形抵抗が小さいので、圧延により同時に圧
下を受けるとεZ、>εz2となる。
Here, for the unrestricted portion, the strain in the stretching direction of the core material 11 due to rolling is εZl + the strain in the direction perpendicular to the stretching direction (radial direction) is εr1, and the two strains of the outer layer material 12 are εZ2 + εr2, respectively. shall be. Since the core material has a lower deformation resistance than the outer layer material 12, if it is simultaneously subjected to reduction by rolling, εZ, >εz2.

ところで、圧下を受けて変形しても体積は一定であるの
でεz1+εo1+εr1=0(εo1:芯材の周方同
士)、εz2+εo2+εr2−0(εo2:外層材の
周方同士)を満足し、このときεQ、=80□とすると
ε「1くεr2となる。即ち、外層材12の方が延伸方
向に垂直な方向(径方向)の歪が大きくなリ、外層材1
2と芯材11との界面で径方向の引張応力が生じること
になる。つまり、成るロール対の圧延で圧縮した部分は
、圧下方向が90°異なる次ロール対による圧延時に非
拘束部となって上記引張応力が作用するため、剥離が生
じやすい。
By the way, since the volume remains constant even if it is deformed by rolling, εz1+εo1+εr1=0 (εo1: between the circumferential sides of the core material), εz2+εo2+εr2-0 (εo2: between the circumferential sides of the outer layer material), and in this case, εQ , = 80□, then ε'1 × εr2.In other words, the strain in the direction perpendicular to the stretching direction (radial direction) is greater in the outer layer material 12.
A tensile stress in the radial direction is generated at the interface between the core material 11 and the core material 11. In other words, the portion compressed by the rolling of the pair of rolls becomes an unrestricted portion and is subjected to the above-mentioned tensile stress during rolling by the next pair of rolls whose rolling directions are different by 90°, and therefore peeling is likely to occur.

また、孔型圧延された複合材の断面は、第7図に示す如
く芯材11の周方向4等配の位置で突起部Eが形成され
、外層材12の肉厚はその部分で薄くなり不均一となる
In addition, in the cross section of the groove-rolled composite material, as shown in FIG. 7, protrusions E are formed at four equally spaced positions in the circumferential direction of the core material 11, and the wall thickness of the outer layer material 12 becomes thinner at these locations. Becomes non-uniform.

これに対して傾斜圧延機を用いる場合は、第3゜4.6
図より明らかなように嵌合材の同一周部分には拘束され
ている部分と拘束されていない部分とがあるが、嵌合材
10がロール間を螺旋状に進行していくので、圧縮圧力
を受けた部分に引張応力の作用がない。
On the other hand, when using an inclined rolling mill,
As is clear from the figure, there are restrained and unrestricted parts on the same circumference of the mating material, but as the mating material 10 progresses spirally between the rolls, the compression pressure There is no effect of tensile stress on the affected part.

従づて、傾斜圧延機による場合には前記孔型圧延で生じ
る引張応力の発生がなく、界面の接合に対しては有利で
ある。また傾斜圧延機による場合は、その減面率が下記
(11式にて表わされ、1パス当たりに最大80〜90
%の減面率で延伸圧延が可能である。
Therefore, when using an inclined rolling mill, there is no generation of tensile stress caused by the groove rolling, which is advantageous for bonding the interface. In addition, when using an inclined rolling mill, the area reduction rate is as follows (expressed by equation 11, maximum 80 to 90 per pass)
Stretch rolling is possible with an area reduction rate of %.

従って、本発明は従来の孔型圧延で不足していた接合強
度を十分な強度まで高め得るように、後に説明する如く
1パス当たり30%以上のの減面率で嵌合材10を高圧
下圧延する。これにより、前述の低い温度に加熱した嵌
合材10に加工熱が発生し、拡散が促進される。また、
金属間化合物が生成しても高圧下圧延により金属間化合
物層の厚みを薄肉化でき、接合性に優れた複合材11を
製造できる。
Therefore, in order to increase the bonding strength which was insufficient in conventional groove rolling to a sufficient strength, the present invention applies the fitting material 10 under high pressure with an area reduction rate of 30% or more per pass, as will be explained later. Roll. As a result, processing heat is generated in the fitting material 10 heated to the aforementioned low temperature, and diffusion is promoted. Also,
Even if an intermetallic compound is generated, the thickness of the intermetallic compound layer can be reduced by rolling under high pressure, and a composite material 11 with excellent bondability can be manufactured.

3(11以上のコーン型ロールを有する傾斜圧延機を用
いるのは、2個のロールを有する傾斜圧延機においては
、被圧延機中央部にいわゆるマンネスマン破壊による内
部割れが発生するので、これを回避するために3個以上
のロールを有する傾斜圧延機を採用するのである。
3 (The reason why an inclined rolling mill with 11 or more cone-shaped rolls is used is to avoid internal cracking caused by so-called Mannesmann fracture, which occurs in the center of the rolling mill in an inclined rolling mill with two rolls. In order to do this, an inclined rolling mill with three or more rolls is used.

次に減面率と加熱温度と接合部の剪断強さとの関係等に
つき実施例に基づいて説明する。
Next, the relationship among the area reduction rate, heating temperature, and shear strength of the joint will be explained based on examples.

(実施例1) まず、芯材: Al、外層材:Tiの複合材を製造した
場合について述べる。
(Example 1) First, a case will be described in which a composite material of core material: Al and outer layer material: Ti is manufactured.

外l:49mφ(精度: −0,1〜+o、o ms)
 、材質:純Al1(1070)の芯材と、外径;55
1φ、内径=49fiφ(精度二0.0〜+〇、1鶴)
、材質:純Ti(JIS 2種)の外層材とを機械加工
により作成し、これを脱脂、清浄したのち芯材と外層材
とを嵌合した。この嵌合材を400℃、500℃、60
0℃と加熱温度を変更して夫々の温度で1時間加熱し、
これを各温度のものについて減面率を20%、30%。
Outer diameter: 49mφ (accuracy: -0, 1 to +o, o ms)
, Material: core material of pure Al1 (1070), outer diameter: 55
1φ, inner diameter = 49fiφ (accuracy 20.0~+〇, 1 crane)
An outer layer material made of pure Ti (JIS Class 2) was prepared by machining, and after degreasing and cleaning, the core material and outer layer material were fitted. This fitting material was heated at 400°C, 500°C, and 60°C.
Change the heating temperature to 0℃ and heat for 1 hour at each temperature.
The area reduction rate was 20% and 30% for each temperature.

40%、60%、80%と変えて傾斜圧延機により熱間
圧延した。p!4斜圧延圧延機定条件については、交叉
角(γ):5°、傾斜角(β):13°、ロール径=1
20鶴φ、ロール材質: 50M440. ロール回転
数: 100rp+wとした。
Hot rolling was performed using an inclined rolling mill at different rates of 40%, 60%, and 80%. p! 4 Oblique rolling mill constant conditions: Crossing angle (γ): 5°, Inclination angle (β): 13°, Roll diameter = 1
20 crane φ, roll material: 50M440. Roll rotation speed: 100 rp+w.

第8図は横軸に加熱温度(’C)をとり、縦軸に減面率
(%)をと1で、各加熱温度、減面率で製造した複合材
をシャーにて切断し、その切断面における芯材と外層材
との接合状態を観察し、その良否を○、×にて示した図
である。この図より理解される如く、減面率を30%以
上とした場合には、接合性の良好なチタンクラッドアル
ミ複合材を製造できる。
Figure 8 shows the heating temperature ('C) on the horizontal axis and the area reduction rate (%) on the vertical axis.The composite material manufactured at each heating temperature and area reduction rate is cut with a shear, and the It is a figure which observed the joining state of the core material and outer layer material in the cut surface, and showed the quality with ○ and ×. As understood from this figure, when the area reduction rate is 30% or more, a titanium clad aluminum composite material with good bondability can be manufactured.

また、接合界面について、走査型電子顕微鏡(SEM)
観察、電子プローブマイクロアナライザ(HPMA)観
察、超音波探傷を行ったが、夫々の結果としては剥離、
酸化物、欠陥はなかった。
In addition, scanning electron microscopy (SEM) was used to examine the bonding interface.
Observation, electron probe microanalyzer (HPMA) observation, and ultrasonic flaw detection were performed, but the results showed peeling,
There were no oxides or defects.

なお、比較のために孔型圧延によりチタンクラッドアル
ミ複合材を製造した。製造条件としては、前同様の嵌合
材を600℃に加熱し、6パスで外径を55鶴φ−30
鶴φ(1パス当たりの平均減面率は18%)に連続圧延
した。このように孔型圧延を行って製造した複合材は、
シャー切断面を目視観察した結果、芯材と外層材とが剥
離しており、更にこれをSEM観察すると数個所で剥離
が見られた。
For comparison, a titanium clad aluminum composite material was manufactured by groove rolling. As for manufacturing conditions, the same fitting material as before was heated to 600℃, and the outer diameter was reduced to 55mmφ-30mm in 6 passes.
Continuous rolling was performed to a crane diameter (average area reduction rate per pass was 18%). The composite material produced by groove rolling in this way is
As a result of visual observation of the shear cut surface, it was found that the core material and the outer layer material had peeled off, and when this was further observed with an SEM, peeling was observed at several places.

このため、延伸圧延工程では傾斜圧延法を用いて高圧下
圧延を行うのである。
For this reason, in the elongation rolling process, high reduction rolling is performed using an inclined rolling method.

(実施例2) 次いで、芯材が純Cu (タフピッチ鋼(C1100)
)で、外層材が純Ti (JIS 2種) 、 Ti−
6八7!−4V(7)2[類のものであるチタン又はチ
タン合金クラノド鋼材について述べる。
(Example 2) Next, the core material was made of pure Cu (tough pitch steel (C1100)
), the outer layer material is pure Ti (JIS type 2), Ti-
687! -4V(7)2 [This describes titanium or titanium alloy cranoid steel materials.

前同様にして芯材と外層材との嵌合材を作成し、これを
600.700.800℃で各1時間加熱して傾斜圧延
機により前同様にして熱間圧延を行った。またチタンク
ラッド鋼材については、その嵌合材をダイスにて外径で
2fl縮径する絞り加工を施したのち熱間圧延を行った
。即ち、嵌合した材質が異なるものが2種類、製法が異
なるものが1種類、合計3種類製造した。
A fitting material of a core material and an outer layer material was prepared in the same manner as before, heated at 600.700.800.degree. C. for 1 hour each, and hot rolled using an inclined rolling mill in the same manner as before. As for the titanium clad steel material, the fitting material was drawn with a die to reduce the outer diameter by 2 fl, and then hot rolled. That is, a total of three types were manufactured, two types using different fitting materials and one type using a different manufacturing method.

製造した複合材の接合強度を調査すべ(、第9図に示す
如く所定長さの複合材の一端側を一定長さhでそのまま
とし、他端側を芯材の外径よりも小さい外径の円柱部と
した試験片を各調査対象材について2個づつ作成し、芯
材の外径よりも少し大きい直径の円形開口部の縁部に、
試験片の一端側の外層材部分に当接し、その状態で他端
側より押圧力を付与して芯材と外層材とが破断する荷m
Pを測定し、その測定値を下記(2)式に代入し、剪断
強度=P(π・D−h)      ・・・(2)但し
、D=芯材の外径 剪断強度を求めた。
The bonding strength of the manufactured composite material should be investigated. Two test pieces with a cylindrical part were made for each material to be investigated, and a test piece with a diameter slightly larger than the outer diameter of the core material was placed at the edge of a circular opening.
A load that comes into contact with the outer layer material on one end of the test piece and applies a pressing force from the other end in that state, causing the core material and outer layer material to break.
P was measured, and the measured value was substituted into the following equation (2), and shear strength=P(π·D−h) (2) where D=outer diameter shear strength of the core material was determined.

第10図は横軸に加熱温度(’C)をとり、縦軸に剪断
強さくkg r 71m2)をとって、各加熱温度。
In Figure 10, the horizontal axis shows the heating temperature ('C), and the vertical axis shows the shear strength (kg r 71 m2), showing each heating temperature.

減面率で製造した複合材の剪断強さの調査結果をまとめ
たグラフであり、材料、製造法が異なる3種類の複合材
の加熱温度、減面率が同一のものについては剪断強さは
略同値であったので、これを平均したもので表示してい
る0図中の■印2口印。
This is a graph summarizing the results of a survey of the shear strength of composite materials manufactured with different area reduction rates.For three types of composite materials made of different materials and manufacturing methods with the same heating temperature and area reduction rate, the shear strength is Since the values were approximately the same, the average value is shown in the 2nd ■ symbol in the 0 diagram.

ム印、○印、・印は夫々減面率20%、30%、40%
Mu, ○, and ・marks indicate area reduction rates of 20%, 30%, and 40%, respectively.
.

60%、80%を示す、この図より理解される如く、剪
断強さの最低基準値として、銅及び銅合金クラツド鋼で
の剪断強さ基準値(JIS G 3604 )を用いる
とすると10kgf / tm2となっており、この基
準値を満足させるには減面率を30%以上とする必要が
あり、本発明では高圧下で圧延できる傾斜圧延機を用い
るので、剪断強さ、つまり接合強度を満足させ得る。
As can be understood from this figure, which shows 60% and 80%, the minimum standard value of shear strength is 10 kgf / tm2 if the standard value of shear strength for copper and copper alloy clad steel (JIS G 3604) is used. Therefore, in order to satisfy this standard value, the area reduction ratio must be 30% or more, and since the present invention uses an inclined rolling mill that can roll under high pressure, it is possible to satisfy the shear strength, that is, the joint strength. It can be done.

また、接合界面については、32M観察、 EPMA観
察、超音波探傷を行ったが、その結果、夫々剥離。
In addition, 32M observation, EPMA observation, and ultrasonic flaw detection were performed on the bonded interface, but as a result, peeling was detected.

酸化物、欠陥がなかった。There were no oxides or defects.

なお、比較のために実施例1と同様にして作成したチタ
ンクラッド鋼材を800℃に加熱して孔型圧延を行った
。製造した複合材の接合強度を測定した結果6.5 k
gf /vna2であり、基準値を下回っていた。
For comparison, a titanium clad steel material produced in the same manner as in Example 1 was heated to 800° C. and subjected to groove rolling. The result of measuring the bonding strength of the manufactured composite material was 6.5 k.
gf/vna2, which was below the standard value.

第11図は減面率80%で本発明により製造した複合材
の接合界面を32M観察した写真であり、また第12図
は上記比較のために孔型圧延にて製造した複合材の接合
界面を同じ< 32M観察した写真である。これら両図
より理解される如く、比較例の場合には拡散層とCu側
との界面で割れが観察され、接合部で剥離が存在するこ
とが確認された。これに対し、本発明による場合には剥
離が生じていなかった。
Figure 11 is a photograph taken at 32M of the bonded interface of a composite material manufactured according to the present invention with an area reduction rate of 80%, and Figure 12 is a photograph of the bonded interface of a composite material manufactured by groove rolling for the above comparison. This is a photograph taken at the same time of <32M. As can be understood from these two figures, in the case of the comparative example, cracks were observed at the interface between the diffusion layer and the Cu side, and it was confirmed that there was peeling at the joint. In contrast, in the case of the present invention, no peeling occurred.

(実施例3) 更に、芯材が純Cu (タフピンチ銅(CIloo) 
)で外層材が5tlS304のステンレスクラフト鋼材
の場合について述べる。
(Example 3) Furthermore, the core material is pure Cu (tough pinch copper (CIloo)).
), the case where the outer layer material is 5tlS304 stainless craft steel will be described.

実施例1同様にして芯材と外層材との嵌合材を作成し、
これを900.950.1000℃で各1時間加熱して
、傾斜圧延機により実施例1同様に圧延を行った。また
嵌合材をダイスにて外径で211縮径する絞り加工して
土間様にして圧延を行った。そして、製造された各複合
材より第9図に示すような試験片を2個づつ作成し、剪
断強さを測定した。
A fitting material between the core material and the outer layer material was created in the same manner as in Example 1,
This was heated at 900.950.1000° C. for 1 hour each, and rolled in the same manner as in Example 1 using an inclined rolling mill. In addition, the fitting material was drawn using a die to reduce the outer diameter by 211 degrees and rolled into a dirt floor shape. Then, two test pieces as shown in FIG. 9 were prepared from each of the manufactured composite materials, and the shear strength was measured.

第13図は横軸に加熱温度(”C)をとり、縦軸に剪断
強さくkgf 71m2)をとって、各加熱温度。
In Figure 13, the horizontal axis shows the heating temperature ("C), and the vertical axis shows the shear strength (kgf 71m2), and each heating temperature is plotted.

減面率で製造した複合材の剪断強さの測定結果をまとめ
たグラフであり、製法が異なる2種類の複合材の加熱温
度、減面率が同一のものについては剪断強さは略同値で
あったので、これを平均したもので表示している0図中
の表示部は実施例2と同一である。この図より理解され
る如く、前同様剪断強さの最低基準として10kg r
 / ur 2を用いると、減面率を30%以上とする
ことによって剪断強さが基準値以上となり、剪断強さ、
つまり接合強度を満足させ得る。
This is a graph summarizing the measurement results of the shear strength of composite materials manufactured with different area reduction rates.For two types of composite materials manufactured by different manufacturing methods with the same heating temperature and area reduction rate, the shear strengths are approximately the same. Therefore, the display area in Figure 0, which displays the average value, is the same as in Example 2. As can be understood from this figure, as before, the minimum standard for shear strength is 10 kg r.
/ ur 2, the shear strength becomes more than the standard value by setting the area reduction rate to 30% or more, and the shear strength,
In other words, the bonding strength can be satisfied.

また、接合界面についても異常はなかった。Furthermore, there was no abnormality at the bonding interface.

なお、上記説明では2種類の金属を嵌合した材料をその
まま加熱して傾斜圧延機にて延伸圧延を行うか、嵌合し
た材料を冷間絞り加工した後加熱して傾斜圧延機にて延
伸圧延を行っているが、両金属の間に浸炭防止等の目的
で中間材を介在せしめた材料を加熱して傾斜圧延機にて
延伸圧延を行う方法も本発明の方法に属するものである
In addition, in the above explanation, the material in which two types of metals are fitted is heated as it is and stretched and rolled in an inclined rolling mill, or the fitted material is cold-drawn and then heated and stretched in an inclined rolling mill. Although rolling is carried out, a method of heating a material in which an intermediate material is interposed between both metals for the purpose of preventing carburization, etc., and elongation rolling in an inclined rolling mill also belongs to the method of the present invention.

〔効果〕〔effect〕

以上詳述した如く本発明による場合は、加熱したのち傾
斜圧延機により高圧下圧延するので金属間化合物層の厚
みを薄くでき、また変形抵抗を考慮した材料を使用する
のでフレアリングの防止が可能となり、また接合界面に
径方向の引張応力が作用しないので接合強度の増大を図
り得、これにより芯材と外層材との接合強度に優れた丸
棒状の複合材を熱間圧延により製造でき、このため従来
では使用できなかった高い応力が作用する用途等にも適
用可能となり、用途の拡大を図れ、また従来嵌合材の両
端を摩擦圧延により密封していた工程を省略できる。更
に嵌合材をダイスにて冷間絞り加工した場合にはより接
合性を均一化することができる等、本発明は優れた効果
を奏する。
As detailed above, in the case of the present invention, the thickness of the intermetallic compound layer can be reduced because it is heated and then rolled under high pressure using an inclined rolling mill, and flaring can be prevented because a material that takes deformation resistance into consideration is used. In addition, since no radial tensile stress acts on the joint interface, it is possible to increase the joint strength, and as a result, a round bar-shaped composite material with excellent joint strength between the core material and the outer layer material can be manufactured by hot rolling. Therefore, it can be applied to applications where high stress is applied, which could not be used in the past, and the range of applications can be expanded, and the process of conventionally sealing both ends of the fitting material by friction rolling can be omitted. Further, when the fitting material is cold-drawn using a die, the bonding properties can be made more uniform, and the present invention has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する嵌合材の正面断面図、第2図
はその側面図、第3図は本発明に使用する傾斜圧延機を
示す模式図、第4図は第3図の■−■線による正面図、
第5図は傾斜角βを示す側面図、第6図はフレアリング
の発生状況を示す模式図、第7図は孔型圧延により圧延
した複合材の正面断面図、第8図は加熱温度と減面率と
を変更してチタンクラフトアルミ材を製造した場合の接
合良否を示すグラフ、第9図は剪断強さの測定内容説明
図、第10図は減面率を変更して本発明により製造した
チタン又はチタン合金クラ7ド鋼材の場合の加熱温度と
剪断強さとの関係を示すグラフ、第11図は本発明によ
り製造したチタン又はチタン合金クラフト鋼材の芯材と
外層材との界面近傍の組織を示す写真、第12図は孔型
圧延により製造した前同様の複合材の界面近傍の組織を
示す写真、第13図は減面率を変更して本発明により製
造したステンレスクラツド銅材の場合の加熱温度と剪断
強さとの関係を示すグラフである。 1.2.3・・・コーン型ローン  4・・・傾斜圧延
機  10・・・嵌合材  11・・・芯材  12・
・・外層材時 許 出願人  住友金属工業株式会社代
理人 弁理士  河  野  登  夫鴇6図 鴇3図 第4 図 第 5 図 富7図 力n 、卆各 シ団り戸4  (o()猶8図 第9図 〃0集娼、席(0C) 隼碕O図
Fig. 1 is a front sectional view of the fitting material used in the present invention, Fig. 2 is a side view thereof, Fig. 3 is a schematic diagram showing an inclined rolling mill used in the present invention, and Fig. 4 is the same as Fig. 3. Front view by ■-■ line,
Fig. 5 is a side view showing the inclination angle β, Fig. 6 is a schematic diagram showing the occurrence of flaring, Fig. 7 is a front sectional view of the composite material rolled by groove rolling, and Fig. 8 is the heating temperature and A graph showing the quality of bonding when titanium craft aluminum materials are manufactured by changing the area reduction rate. Figure 9 is an explanatory diagram of the measurement content of shear strength. Figure 10 is a graph showing the bonding quality when titanium craft aluminum materials are manufactured by changing the area reduction rate. A graph showing the relationship between heating temperature and shear strength in the case of the manufactured titanium or titanium alloy clad steel material, FIG. 11 is a graph showing the vicinity of the interface between the core material and the outer layer material of the titanium or titanium alloy clad steel material manufactured according to the present invention. FIG. 12 is a photograph showing the structure near the interface of the same composite material as before manufactured by groove rolling. FIG. 13 is a photograph showing the structure of stainless steel clad copper manufactured according to the present invention by changing the area reduction ratio. It is a graph showing the relationship between heating temperature and shear strength in the case of wood. 1.2.3... Cone type lawn 4... Inclined rolling mill 10... Fitting material 11... Core material 12.
...External layer materials Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono Noboru Kono 6 Figure 3 Figure 4 Figure 5 Figure 7 Figure 4 (o()) Figure 8 Figure 9 Collection 0, Seat (0C) Hayasaki O Figure

Claims (1)

【特許請求の範囲】 1、断面円形の芯材の外側に外層材を被嵌した丸棒状の
複合材を製造する方法において、 芯材よりも変形抵抗が大きい材質の円筒状 の外層材を用い、芯材の外表面及び外層材の内表面を脱
脂清浄して嵌合せしめ、次いでこの嵌合材を芯材、外層
材及びこれらの金属間化合物夫々の融点より低い温度に
加熱し、3個以上のコーン型ロールを有する傾斜圧延機
により1パス当たり30%以上の減面率で延伸圧延する
ことを特徴とする複合材の製造方法。 2、断面円形の芯材の外側に外層材を被嵌した丸棒状の
複合材を製造する方法において、 芯材よりも変形抵抗が大きい材質の円筒状 の外層材を用い、芯材の外表面及び外層材の内表面を脱
脂、清浄して嵌合せしめ、次いでこの嵌合材をダイスに
て冷間絞り加工を行ったのち、心材、外層材及びこれら
の金属間化合物夫々の融点より低い温度に加熱し、3個
以上のコーン型ロールを有する傾斜圧延機により1パス
当たり30%以上の減面率で延伸圧延することを特徴と
する複合材の製造方法。
[Claims] 1. A method for manufacturing a round bar-shaped composite material in which an outer layer material is fitted on the outside of a core material having a circular cross section, using a cylindrical outer layer material made of a material with higher deformation resistance than the core material. , the outer surface of the core material and the inner surface of the outer layer material are degreased and cleaned and fitted together, and then this fitted material is heated to a temperature lower than the respective melting points of the core material, the outer layer material and their intermetallic compounds, and three pieces A method for producing a composite material, which comprises stretching and rolling at an area reduction rate of 30% or more per pass using an inclined rolling mill having the above cone-shaped rolls. 2. In the method of manufacturing a round bar-shaped composite material in which an outer layer material is fitted on the outside of a core material with a circular cross section, a cylindrical outer layer material made of a material with higher deformation resistance than the core material is used, and the outer surface of the core material is After degreasing and cleaning the inner surfaces of the outer layer material and fitting them together, the fitting material is then cold-drawn using a die, and then heated to a temperature lower than the respective melting points of the core material, outer layer material, and their intermetallic compounds. 1. A method for producing a composite material, which comprises heating the composite material to 30% and elongating it at an area reduction rate of 30% or more per pass using an inclined rolling mill having three or more cone-shaped rolls.
JP61181635A 1986-07-31 1986-07-31 Composite manufacturing method Expired - Fee Related JPH0763723B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61181635A JPH0763723B2 (en) 1986-07-31 1986-07-31 Composite manufacturing method
US07/079,143 US5004143A (en) 1986-07-31 1987-07-28 Method of manufacturing clad bar
EP87306748A EP0255382B1 (en) 1986-07-31 1987-07-30 A method of manufacturing a clad bar
DE8787306748T DE3763930D1 (en) 1986-07-31 1987-07-30 METHOD FOR PRODUCING PLATED BARS BY ROLLING.
CA000543584A CA1300931C (en) 1986-07-31 1987-07-31 Method of manufacturing clad bar
AU76333/87A AU591573B2 (en) 1986-07-31 1987-07-31 Method of manufacturing clad bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61181635A JPH0763723B2 (en) 1986-07-31 1986-07-31 Composite manufacturing method

Publications (2)

Publication Number Publication Date
JPS6336903A true JPS6336903A (en) 1988-02-17
JPH0763723B2 JPH0763723B2 (en) 1995-07-12

Family

ID=16104209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61181635A Expired - Fee Related JPH0763723B2 (en) 1986-07-31 1986-07-31 Composite manufacturing method

Country Status (1)

Country Link
JP (1) JPH0763723B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842721A1 (en) * 1996-10-31 1998-05-20 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for processing a rotor used for a super charger and the like
CN112139237A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Manufacturing method of metal composite long material and metal composite long material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594902A (en) * 1982-06-30 1984-01-11 Sumitomo Metal Ind Ltd Production of metallic material having circular section
JPS59110486A (en) * 1982-12-16 1984-06-26 Sumitomo Special Metals Co Ltd Production of ti clad wire rod

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594902A (en) * 1982-06-30 1984-01-11 Sumitomo Metal Ind Ltd Production of metallic material having circular section
JPS59110486A (en) * 1982-12-16 1984-06-26 Sumitomo Special Metals Co Ltd Production of ti clad wire rod

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842721A1 (en) * 1996-10-31 1998-05-20 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for processing a rotor used for a super charger and the like
US5970611A (en) * 1996-10-31 1999-10-26 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for processing a rotor used for a super charger
CN112139237A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Manufacturing method of metal composite long material and metal composite long material

Also Published As

Publication number Publication date
JPH0763723B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
EP2269726A2 (en) Method of making an fluid conducting parts via welding and parts obtained thereby
US3463620A (en) Cylindrical or rod-like composite article
Zhang et al. Fabrication of steel/aluminum clad tube by spin bonding and annealing treatment
EP0695598B1 (en) Method of manufacturing dissimilar metal transition pipe joint
US20190314877A1 (en) Connection tube and its method of manufacturing
JPS6336903A (en) Production of composite material
US5004143A (en) Method of manufacturing clad bar
JPH0857533A (en) Clad bar and its manufacture
JP2885057B2 (en) Evaluation method for bonding strength of clad steel sheet
JP2504118B2 (en) Clad steel bar manufacturing method
JPH04111981A (en) Production of noble metal clad titanium wire
JPS63126602A (en) Production of stainless steel clad copper bar
JP4998086B2 (en) Billet for clad tube and method for producing clad tube
JPH07115214B2 (en) Method for manufacturing multi-core composite material
JPS6343719A (en) Manufacture for composite material
EP3960316B1 (en) Rolling-straightening machine and method for manufacturing pipe or bar using rolling-straightening machine
JPH0530524B2 (en)
JPH02112886A (en) Production of clad titanium wire rod
JPH08174051A (en) Production of double pipe having excellent boundary joinability
JPS6284883A (en) Production of clad material of ti metal and ni metal
JP2783170B2 (en) Method for producing clad plate of aluminum and stainless steel
JPH04182023A (en) Manufacture of clad metallic tube
JPH0890257A (en) Manufacture of titanium and aluminum clad foil
JPH02169191A (en) Manufacture of different material joint
JPH02104404A (en) Manufacture of titanium seamless tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees