JPS6336846B2 - - Google Patents

Info

Publication number
JPS6336846B2
JPS6336846B2 JP57137807A JP13780782A JPS6336846B2 JP S6336846 B2 JPS6336846 B2 JP S6336846B2 JP 57137807 A JP57137807 A JP 57137807A JP 13780782 A JP13780782 A JP 13780782A JP S6336846 B2 JPS6336846 B2 JP S6336846B2
Authority
JP
Japan
Prior art keywords
shape
flow rate
roll
coolant
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57137807A
Other languages
Japanese (ja)
Other versions
JPS5927708A (en
Inventor
Ichiro Kokubo
Tokuo Mizuta
Kyohiro Tani
Shigeharu Ito
Toshio Kajiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57137807A priority Critical patent/JPS5927708A/en
Publication of JPS5927708A publication Critical patent/JPS5927708A/en
Publication of JPS6336846B2 publication Critical patent/JPS6336846B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/44Control of flatness or profile during rolling of strip, sheets or plates using heating, lubricating or water-spray cooling of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明は、薄板の形状制御方法の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for controlling the shape of a thin plate.

従来、薄板製品の板幅方向の形状を制御する手
段として、ワークロールベンダー、6段ミルにお
ける中間ロール移動、VCロールのように油圧に
よりロールバレル中心近傍のクラウンを変化させ
る方法、ワークロールのメカニカルクラウンなど
の機械的制御手段と、クーラント制御などのよう
な熱的制御手段とが実用化されている。
Conventionally, methods for controlling the shape of thin sheet products in the width direction include work roll benders, intermediate roll movement in six-stage mills, methods of changing the crown near the center of the roll barrel using hydraulic pressure as in the case of VC rolls, and mechanical work rolls. Mechanical control means such as crowns and thermal control means such as coolant control have been put into practical use.

ところで、機械的制御手段は、単純な中伸び、
耳波などの形状修正に大きな効果を持つが、複合
形状や局部伸びなどには余り効果がなく、鋼圧延
において、この複合形状や局部伸びなどの形状修
正に関して、熱的制御手段の可能性が注目されて
きている。
By the way, the mechanical control means are simple medium elongation,
Although it is very effective in modifying shapes such as ear waves, it is not very effective in modifying composite shapes and local elongation.Therefore, thermal control means have little effect on modifying shapes such as composite shapes and local elongation in steel rolling. It is attracting attention.

この熱的制御手段、特にクーラント制御は、一
般にアルミ薄板圧延では実用化されているが、特
に鋼圧延においては上述の形状修正の効果や応答
性などの問題があり、今だ普及していないのが現
状である。
This thermal control means, especially coolant control, has generally been put to practical use in aluminum thin plate rolling, but it has not yet become widespread, especially in steel rolling, due to problems such as the shape modification effect and responsiveness mentioned above. is the current situation.

本発明は、かかる問題点に鑑みてなされたもの
で、鋼圧延において複合形状や局部伸びなどの形
状修正の効果が大きくて応答性にも優れたクーラ
ント制御による薄板の形状制御方法を新規に提供
するものである。
The present invention has been made in view of these problems, and provides a new method for controlling the shape of a thin plate using coolant control, which is highly effective in modifying shapes such as complex shapes and local elongation in steel rolling, and has excellent responsiveness. It is something to do.

このため、本発明は、ロール入側に、潤滑用若
しくは潤滑・クーラント用ノズル群が設けられ、 ロール入側あるいはロール出側に、各分割領域
で流量制御が可能なクーラント用ノズル群がロー
ルバレル方向に分割して設けられ、 ロール出側に、板幅方向の形状を検出する形状
検出器が設けられた薄板冷間圧延機において、 上記形状検出器による検出形状と予じめ設定さ
れた目標形状との差を求め、板幅方向の各位置で
その差の絶対値が最小となるように各機械的操作
量を計算する一方、計算された機械的操作量によ
り修正された後の形状を予測し、この予測形状に
対して基準値を設定し、この基準値と予測形状と
の交点を計算して、一方の板端から順次に、各交
点間で予測形状が基準値より大きい領域を求め、
各領域において予測形状と基準値との差が最大の
値となる位置に対応するノズル流量を最大にし、
それ以下の値となる位置に対応するノズル流量
は、形状の量に応じて最大流量に1以下の係数を
掛けて流量制御するようにしたことを特徴とする
ものである。
Therefore, in the present invention, a nozzle group for lubrication or lubrication/coolant is provided on the roll entry side, and a group of coolant nozzles whose flow rate can be controlled in each divided region is provided on the roll entry side or roll exit side. In a thin plate cold rolling mill, which is divided into two parts in each direction, and a shape detector is installed on the roll exit side to detect the shape in the sheet width direction, the shape detected by the shape detector and the preset target are The difference from the shape is calculated, and each mechanical operation amount is calculated so that the absolute value of the difference is the minimum at each position in the board width direction, while the shape after being corrected by the calculated mechanical operation amount is calculated. predict, set a reference value for this predicted shape, calculate the intersections between this reference value and the predicted shape, and sequentially from one board edge, calculate the area where the predicted shape is larger than the reference value between each intersection. seek,
Maximize the nozzle flow rate corresponding to the position where the difference between the predicted shape and the reference value is the maximum value in each region,
The nozzle flow rate corresponding to a position where the value is less than that is controlled by multiplying the maximum flow rate by a coefficient of 1 or less depending on the amount of shape.

以下、本発明の実施例を添付図面について詳細
に説明する。
Embodiments of the invention will now be described in detail with reference to the accompanying drawings.

第1図に4段圧延機の例を示す。図において、
薄板1を冷間圧延するコールドストリツプミル2
のロール入側に、潤滑用若しくは潤滑・クーラン
ト用ノズル群3を設け、ロール入側あるいはロー
ル出側に、クーラント用ノズル群4を設ける。
(本図ではクーラント用ノズル群は出側に設けて
ある)。
Figure 1 shows an example of a four-high rolling mill. In the figure,
Cold strip mill 2 for cold rolling thin plate 1
A nozzle group 3 for lubrication or lubrication/coolant is provided on the roll entry side, and a coolant nozzle group 4 is provided on the roll entry side or roll exit side.
(In this figure, the coolant nozzle group is provided on the outlet side).

クーラント用ノズル群4は、第2図に示すよう
にロールバレル方向に分割して設けられ、各分割
領域で流量制御が可能に流量制御手段が併設され
る。
As shown in FIG. 2, the coolant nozzle group 4 is provided divided in the roll barrel direction, and a flow rate control means is provided to enable flow rate control in each divided area.

ロール出側には、薄板1の板幅方向の形状を検
出する形状検出器5を設ける。
A shape detector 5 for detecting the shape of the thin sheet 1 in the sheet width direction is provided on the roll exit side.

制御方法は以下の通りである。 The control method is as follows.

形状検出器5で検出された検出形状をε(x)
とし(x:板幅方向座標)、予じめ設定された目
標形状εm(x)との差△ε(x)=ε(x)−εm
(x)を求める。
The detected shape detected by the shape detector 5 is ε(x)
(x: board width direction coordinate), and the difference from the preset target shape εm(x) = ε(x) - εm
Find (x).

つぎに、機械的操作量△qi(i:個数)を変化
せしめた後の予測形状δε(x)=△ε(x)+ot fi
(x)△qiを計算し、δε(x)の絶対値の最大値が
最小となるように最適機械的操作量△qipを求め、
その時の予測形状をδε(x)pとする。
Next, the predicted shape after changing the mechanical operation amount △qi (i: number of pieces) = △ε(x) + ot fi
(x) △qi is calculated, and the optimal mechanical operation amount △qip is determined so that the maximum absolute value of δε(x) is the minimum,
The predicted shape at that time is assumed to be δε(x)p.

このように、機械的操作量後の形状を予測する
のは、検出形状からクーラメント制御させると時
間的に遅れができるため、予測形状を元にしてク
ーラント制御をできるだけ速く応答させるためで
ある。
The reason why the shape after the mechanical operation amount is predicted in this way is to make the coolant control respond as quickly as possible based on the predicted shape, since cooling control based on the detected shape causes a time delay.

上記予測形状δε(x)pに対して基準値εBを設
定し、この基準値εBと予測形状δε(x)pとの交
点を計算して、第3図に示すように、一方の板端
から順次に、各交点間で順次に、各交点間で予測
形状δε(x)pが基準値δBより大きい領域〜
を求め、各領域において予測形状δε(x)pと基
準値δBとの差δε′(x)pが最大の値となる位置を
求める。
A reference value ε B is set for the predicted shape δε(x)p, and the intersection between this reference value ε B and the predicted shape δε(x)p is calculated, and as shown in FIG. Sequentially from the plate edge, sequentially between each intersection, the area where the predicted shape δε(x)p is larger than the reference value δB between each intersection ~
, and find the position where the difference δε'(x)p between the predicted shape δε(x)p and the reference value δ B has the maximum value in each region.

そして、この位置に対応するノズル流量を最大
にし、それ以下の値となるノズル流量は、形状の
量に応じて最大流量に1以下の係数を掛けて流量
制御する。
Then, the nozzle flow rate corresponding to this position is maximized, and the nozzle flow rate that is less than that is controlled by multiplying the maximum flow rate by a coefficient of 1 or less depending on the amount of shape.

上記基準値εBに関して補足すると、本制御方法
は、ロール冷却のみを考えているので、理論的に
言えば、δε(x)=Oの位置に対応するノズル流量
はゼロに設定すべきであるが、ノズルの拡がり角
度、ロールバレル方向のノズル分割幅、ロールバ
レル方向熱伝導などを考慮すると、流量をゼロに
する領域に適当な幅を持たせる必要があるためεB
を設定した。また、形状検出器5の検出精度を考
えると、制御精度を余り細かくすると流量のハン
テイング現象が起こるためεBのデツドバンドを設
定した。
As a supplementary note regarding the above reference value ε B , since this control method considers only roll cooling, theoretically speaking, the nozzle flow rate corresponding to the position δε(x) = O should be set to zero. However, considering the nozzle expansion angle, nozzle division width in the roll barrel direction, heat conduction in the roll barrel direction, etc., it is necessary to have an appropriate width in the area where the flow rate is zero, so ε B
It was set. Furthermore, considering the detection accuracy of the shape detector 5, if the control accuracy is too fine, a hunting phenomenon of flow rate will occur, so a dead band of ε B was set.

なお、各領域でのδε(x)pの最大値に対応す
るノズル流量を最大にするのは、板幅方向形状の
凹凸をできるだけ速く修正するためである。
Note that the reason why the nozzle flow rate corresponding to the maximum value of δε(x)p in each region is maximized is to correct irregularities in the shape in the width direction of the plate as quickly as possible.

つぎに、板が接しない領域のノズル流量は、板
端のノズル流量と同一にする。何故なら、一般に
板端近傍の形状分布は急峻であるため、この急峻
さを速く修正するためには板幅以外のノズルを板
端のノズルと同じ流量にするのが好ましいからで
ある。
Next, the nozzle flow rate in the area where the plates do not touch is made the same as the nozzle flow rate at the edge of the plate. This is because the shape distribution near the edge of the plate is generally steep, so in order to quickly correct this steepness, it is preferable to make the nozzles other than the width of the plate have the same flow rate as the nozzles at the edge of the plate.

また、板端近傍の予測形状の勾配の量に応じ
て、ロール入側の潤滑・クーラント用ノズル群の
全流量を変化させる。何故なら、第4図aのよう
な形状の時は板端近傍の形状の急峻さを速く修正
するためには、ワークロールのサーマルクラウン
を大きくした方が良く、そのために潤滑・クーラ
ント用ノズル群全体の流量を下げて、冷却効果を
小さくしてサーマルクラウンを大きくする。逆に
第4図bのような形状の時は、サーマルクラウン
を小さくした方が良いため、潤滑・クーラント用
ノズル群全体の流量を大きくする。
Furthermore, the total flow rate of the lubrication/coolant nozzle group on the roll entry side is changed depending on the amount of slope of the predicted shape near the plate end. This is because when the shape is as shown in Figure 4a, in order to quickly correct the steepness of the shape near the edge of the plate, it is better to increase the thermal crown of the work roll, and for this purpose, the lubrication/coolant nozzle group Lower the overall flow rate to reduce the cooling effect and increase the thermal crown. On the other hand, when the shape is as shown in FIG. 4b, it is better to make the thermal crown small, so the flow rate of the entire lubricant/coolant nozzle group is increased.

なお、本実施例では、潤滑・クーラント用ノズ
ル群3と別系統のクーラント用ノズル群4を設け
たが、その理由は、ノズル群3のみで領域の形状
の量に応じて流量制御すると、形状修正の効果や
応答性を高めようとすれば大幅な流量制御範囲を
必要とし、装置コストが高くなる欠点があり、検
討の結果、流量もさることながらクーラント温度
を低下させる事、冷却面積を増加せしめる事が大
きな効果につながることを見い出し、潤滑用とロ
ールクーラントとを併用しているものでは圧延時
の潤滑性の問題からそれほどクーラント温度を低
下させることができないからである。
In this embodiment, the lubrication/coolant nozzle group 3 and the coolant nozzle group 4, which are separate from each other, are provided. In order to improve the effectiveness and responsiveness of corrections, a large flow rate control range is required, which has the disadvantage of increasing equipment costs.As a result of consideration, we decided to lower the coolant temperature and increase the cooling area in addition to the flow rate. This is because it has been found that reducing the temperature of the roll leads to a great effect, and in the case of using both lubrication and roll coolant, it is not possible to lower the coolant temperature that much due to problems with lubricity during rolling.

以上の説明からも明らかなように、本発明は、
検出形状と目標形状との差の絶対値が最小となる
ように計算した機械的操作量から予測形状を予測
し、基準値とこの予測形状との交点を求め、各交
点間で予測形状が基準値より大きい領域を求め、
その差が最大となる領域のノズル流量を最大と
し、それ以外の領域ノズル流量は最大流量以下で
流力制御するようにしたものであるから、鋼圧延
において複合形状や局部伸びなどの形状修正の効
果が大きく、応答性も優れているので、クーラン
ト制御による薄鋼板の形状制御が実現できるよう
になつた。
As is clear from the above explanation, the present invention
The predicted shape is predicted from the mechanical operation amount calculated so that the absolute value of the difference between the detected shape and the target shape is the minimum, the intersection between the reference value and this predicted shape is found, and the predicted shape is used as the reference between each intersection. Find the area larger than the value,
The nozzle flow rate in the area where the difference is maximum is set to the maximum, and the nozzle flow rate in other areas is controlled by fluid force below the maximum flow rate, so it is effective for shape corrections such as complex shapes and local elongation in steel rolling. Because it is highly effective and has excellent responsiveness, it has become possible to control the shape of thin steel sheets by controlling the coolant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はクーラント制御のプロセススを示す
図、第2図はノズル群の分割状態を示す平面図、
第3図は板幅方向の領域と流量分布を示すグラ
フ、第4図a及び第4図bは板幅方向の形状を示
すグラフである。 1……薄板、2……コールドストリツプミル、
3,4……ノズル群、5……形状検出器。
Fig. 1 is a diagram showing the coolant control process, Fig. 2 is a plan view showing the divided state of the nozzle group,
FIG. 3 is a graph showing the area and flow rate distribution in the board width direction, and FIGS. 4a and 4b are graphs showing the shape in the board width direction. 1... thin plate, 2... cold strip mill,
3, 4... Nozzle group, 5... Shape detector.

Claims (1)

【特許請求の範囲】 1 ロール入側に、潤滑用若しくは潤滑・クーラ
ント用ノズル群が設けられ、 ロール入側あるいはロール出側に、各分割領域
で流量制御が可能なクーラント用ノズル群がロー
ルバレル方向に分割して設けられ、 ロール出側に、板幅方向の形状を検出する形状
検出器が設けられた薄板冷間圧延機において、 上記形状検出器による検出形状と予じめ設定さ
れた目標形状との差を求め、板幅方向の各位置で
その差の絶対値が最小となるように各機械的操作
量を計算する一方、計算された機械的操作量によ
り修正された後の形状を予測し、この予測形状に
対して基準値を設定し、この基準値と予測形状と
の交点を計算して、一方の板端から順次に、各交
点間で予測形状が基準値より大きい領域を求め、
各領域において予測形状と基準値との差が最大の
値となる位置に対応するノズル流量を最大にし、
それ以下の値となる位置に対応するノズル流量
は、形状の量に応じて最大流量に1以下の係数を
掛けてクーラント用ノズル群を流量制御するよう
にしたことを特徴とする薄板の形状制御方法。 2 板が接しないロールバレル領域では、クーラ
ント用ノズル群のノズル流量を、板端のノズル流
量と同一に制御することを特徴とする特許請求の
範囲第1項記載の薄板の形状制御方法。 3 板端近傍の予測形状の勾配の量に応じて、上
記ロール入側の潤滑・クーラント用ノズル群の全
流量を変化させることを特徴とする特許請求の範
囲第1項または第2項のいずれかに記載の薄板の
形状制御方法。
[Claims] 1. A nozzle group for lubrication or lubrication/coolant is provided on the roll entry side, and a group of coolant nozzles whose flow rate can be controlled in each divided area is provided on the roll entry side or roll exit side of the roll barrel. In a thin plate cold rolling mill, which is divided into two parts in each direction, and a shape detector is installed on the roll exit side to detect the shape in the sheet width direction, the shape detected by the shape detector and the preset target are The difference from the shape is calculated, and each mechanical operation amount is calculated so that the absolute value of the difference is the minimum at each position in the board width direction, while the shape after being corrected by the calculated mechanical operation amount is calculated. predict, set a reference value for this predicted shape, calculate the intersections between this reference value and the predicted shape, and sequentially from one board edge, calculate the area where the predicted shape is larger than the reference value between each intersection. seek,
Maximize the nozzle flow rate corresponding to the position where the difference between the predicted shape and the reference value is the maximum value in each region,
Thin plate shape control characterized in that the flow rate of the coolant nozzle group is controlled by multiplying the maximum flow rate by a coefficient of 1 or less according to the amount of shape so that the nozzle flow rate corresponding to a position where the value is less than that is determined. Method. 2. The method for controlling the shape of a thin plate according to claim 1, characterized in that in the roll barrel region where the plates do not touch, the nozzle flow rate of the coolant nozzle group is controlled to be the same as the nozzle flow rate at the plate end. 3. The method according to claim 1 or 2, characterized in that the total flow rate of the group of lubricant/coolant nozzles on the entrance side of the roll is changed depending on the amount of slope of the predicted shape near the plate end. A method for controlling the shape of a thin plate described in .
JP57137807A 1982-08-06 1982-08-06 Method for controlling shape of thin plate Granted JPS5927708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57137807A JPS5927708A (en) 1982-08-06 1982-08-06 Method for controlling shape of thin plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57137807A JPS5927708A (en) 1982-08-06 1982-08-06 Method for controlling shape of thin plate

Publications (2)

Publication Number Publication Date
JPS5927708A JPS5927708A (en) 1984-02-14
JPS6336846B2 true JPS6336846B2 (en) 1988-07-21

Family

ID=15207304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57137807A Granted JPS5927708A (en) 1982-08-06 1982-08-06 Method for controlling shape of thin plate

Country Status (1)

Country Link
JP (1) JPS5927708A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020087213A (en) * 2001-05-14 2002-11-22 주식회사 포스코 Method for controlling local shape of ultra-thin steel strip with high strength in cold rolling machine
JP5104381B2 (en) * 2008-02-18 2012-12-19 Jfeスチール株式会社 Rolling method of multi-stage rolling mill
CN102489525B (en) * 2011-12-29 2013-12-25 中冶南方(武汉)自动化有限公司 Cold-rolled plate shape control method based on optimization algorithm
JP6551282B2 (en) * 2016-03-31 2019-07-31 Jfeスチール株式会社 Hot finish rolling method
CN111389912B (en) * 2020-03-16 2021-07-13 武汉钢铁有限公司 Control method for surface pitting defects of medium-carbon low-alloy ultrathin strip steel in short-process rolling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532443A (en) * 1978-08-28 1980-03-07 Hitachi Ltd Stator for vertical rotary electric machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532443A (en) * 1978-08-28 1980-03-07 Hitachi Ltd Stator for vertical rotary electric machine

Also Published As

Publication number Publication date
JPS5927708A (en) 1984-02-14

Similar Documents

Publication Publication Date Title
US4392367A (en) Process and apparatus for the rolling of strip metal
CN101683659A (en) Integrated control method of cold-rolling strip steel flatness and lateral thickness difference
US8511126B2 (en) Cooling device for cooling a metal strip
US5701775A (en) Process and apparatus for applying and removing liquid coolant to control temperature of continuously moving metal strip
JPS6315329B2 (en)
JPS6227882B2 (en)
CA1173138A (en) Working strip material
KR950001805B1 (en) Process for edge drop control in cold rolling
JPS6336846B2 (en)
CN104384204A (en) Method for controlling convexity of hot-rolled aluminum plate based on dynamic sectional cooling technique
US3629015A (en) Method for cooling thick steel plates
JPS62168607A (en) Shape controlling method for sheet rolling
Hasegawa et al. Development of fuzzy set theory-based shape control system for cold strip mill
JPS594201B2 (en) Kouhan no Seizou Hohou
JP2710403B2 (en) Water jacket type cooling method of rolling roll and control method thereof
JPS60238012A (en) Method for shape control of rolling mill
JP2003145208A (en) Rolling mill and rolling method
JPS5964112A (en) Method and device for automatic control of sheet width in continuous hot rolling mill
JPS63171211A (en) Shape control method in plate rolling
JPH0347613A (en) Thickness control device for cold tandem mill
JPH02247004A (en) Method and apparatus for controlling shape in rolling mill
JP2501229B2 (en) Control method of tandem cold rolling mill
JPH02235509A (en) Method and apparatus for controlling shape of cold rolling mill
JPH024373B2 (en)
JPH0433525B2 (en)