JPS6336132A - Measuring instrument for young's modulus and internal stress of thin film - Google Patents

Measuring instrument for young's modulus and internal stress of thin film

Info

Publication number
JPS6336132A
JPS6336132A JP18038186A JP18038186A JPS6336132A JP S6336132 A JPS6336132 A JP S6336132A JP 18038186 A JP18038186 A JP 18038186A JP 18038186 A JP18038186 A JP 18038186A JP S6336132 A JPS6336132 A JP S6336132A
Authority
JP
Japan
Prior art keywords
test
modulus
young
piece
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18038186A
Other languages
Japanese (ja)
Inventor
Yuji Tsukamoto
塚本 雄二
Masahiro Yanagisawa
雅広 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18038186A priority Critical patent/JPS6336132A/en
Publication of JPS6336132A publication Critical patent/JPS6336132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To measure the Young's modulus and internal stress of a test-piece by one testing machine at the same time by using a load transducer which detects the load of the test-piece, a driver which puts a load, and a displacement gauge which measures the quantity of deflection of the test-piece due to the loading. CONSTITUTION:The test-piece 1 formed by coating a substrate with a thin film is placed on the test pan 3 of an electronic scale 2. An indenter 4 made of quenched steel so that its tip is hemispherical deforms the test-piece fitted atop of a piezoelectric actuator 5. Light 8 from a photonic probe 7 is reflected by a mirror 6 on a sample pan 3 to return the probe 7 and variation in the distance between the probe 7 and mirror 6, i.e. the quantity of deflection of the test-piece 1 is measured from variation in the intensity of the reflected light. The load placed on the test-piece 1 is measured by the electronic balance 2. Piezoelectric actuators 9 and 10 are drivers for moving a piezoelectric actuator 5 on a horizontal plane in an X and a Y direction, and position the indenter 4 accurately in the center between fulcrums.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、薄膜のヤング率及び内部応力の測定装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for measuring Young's modulus and internal stress of a thin film.

(従来の技術) 近年、電子工学等の幅広い産業分野にわたり、しかもL
SIを始めとする数多くの部品に薄膜材料が使用される
に及んで、それらが最終製品となる以前に品質管理を行
い、歩留まり向上を図りたいという要求が生じてきた。
(Conventional technology) In recent years, L
As thin film materials are used in a large number of parts including SI, there has been a demand for quality control to improve yields before they become final products.

すなわち、薄膜を成膜した段階でその成膜状態や膜質を
定量的かつ簡便に把握する必要に迫られている。本発明
が係わるヤング率と内部応力は、前者が薄膜の結晶構造
やその配向性を忠実に反映し、後者は薄膜と基板との結
合状態や剥離の傾向を指示することから、従来よりそれ
ら二つの性質を測定する方法あるいは装置がいくつか報
告されている。例えば、薄膜ハンドブック耐氷学術振興
会第131委員会編、オーム社刊(1983))のpp
333からpp348にそれらの測定法や測定装置が網
羅的に解説されている。
In other words, there is a need to quantitatively and easily grasp the state and quality of a thin film at the stage of its formation. Young's modulus and internal stress, which are relevant to the present invention, have been conventionally used because the former faithfully reflects the crystal structure and orientation of the thin film, and the latter indicates the bonding state between the thin film and the substrate and the tendency for peeling. Several methods or devices have been reported for measuring these properties. For example, pp.
333 to pp. 348 provide a comprehensive explanation of these measuring methods and measuring devices.

ヤング率に関しては、振動リード法、超音波パルス法、
引張試験法、バルジ法が前記ハンドブック中に紹介され
ている。それぞれの測定方法を簡単に記述すると、振動
リード法は、短冊形の基板に薄膜を被覆した試験片に強
制振動を加えることによって固有振動数を測定し、その
後に、同一の方法で基板のみの固有振動数を測定する。
Regarding Young's modulus, vibration lead method, ultrasonic pulse method,
The tensile test method and bulge method are introduced in the handbook. To briefly describe each measurement method, the vibration lead method measures the natural frequency by applying forced vibration to a test piece made of a rectangular substrate coated with a thin film, and then measures the natural frequency using the same method. Measure the natural frequency.

測定した固有振動数の差より薄膜のヤング率が求められ
る。振動リード法は単独膜の作製を必要としないことか
ら、現在量も一般的に採用されている方法である。
The Young's modulus of the thin film can be determined from the difference in the measured natural frequencies. The vibrating reed method does not require the production of a single membrane, so it is currently a commonly used method.

次に、超音波パルス法は、超音波振動子上に薄膜を固定
し、薄膜中の超音波の伝達速度からヤング率を測定する
ものである。また、引張り試験法は、通常バルク材料の
材料試験機に用いる引張り試験機よりもはるかに低荷重
用(数グラム程度)のマイクロ引張り試験機に薄膜を取
り付け、その応力−歪曲線からヤング率を測定する方法
である。さらに、バルジ法は、小さな穴の開いた基板上
に薄膜を張るか、もしくは薄膜を被覆した基板に水流ジ
ェットなどにより穴を開け、膜の表裏に圧力差を与え、
膜の膨らみから膜内の応力と歪を求め、応力と歪の関係
からヤング率を測定する方法である。
Next, in the ultrasonic pulse method, a thin film is fixed on an ultrasonic transducer, and Young's modulus is measured from the transmission speed of ultrasonic waves in the thin film. In addition, in the tensile testing method, a thin film is attached to a micro tensile testing machine that has a much lower load (about a few grams) than the tensile testing machine normally used for testing bulk materials, and the Young's modulus is determined from the stress-strain curve. It is a method of measurement. Furthermore, in the bulge method, a thin film is spread on a substrate with small holes, or a hole is made in a substrate coated with a thin film using a water jet, etc., and a pressure difference is applied between the front and back sides of the film.
This method determines the stress and strain within the film from the bulge of the film, and measures Young's modulus from the relationship between stress and strain.

薄膜の内部応力の測定法は、結晶格子の歪を測定する方
法と、基板の曲りを測定する方法の2種類の方法に大別
される。前者は、X線回折或は電子線回折により薄膜結
晶の格子定数もしくは面間隔を測定し、正常値のずれか
ら歪を求め、内部応力を算出するものである。また、曲
がりを測定する方法は、基板上に薄膜を成膜するとその
内部応力の大きさによって基板のそり量が変化すること
を利用したものである。基板には測定精度を高めるため
に、薄く平滑な円形酸は、短冊形のものがもちいられ、
成膜後の基板の曲がり量はニュートンリング法、光切断
顕微鏡法、触針法、単スリット回折法等によって測定さ
れる。
Methods for measuring internal stress in thin films can be roughly divided into two types: methods for measuring strain in a crystal lattice, and methods for measuring curvature of a substrate. The former method measures the lattice constant or interplanar spacing of a thin film crystal using X-ray diffraction or electron beam diffraction, determines strain from the deviation from normal values, and calculates internal stress. The method for measuring bending utilizes the fact that when a thin film is formed on a substrate, the amount of warpage of the substrate changes depending on the magnitude of its internal stress. In order to improve measurement accuracy, a thin and smooth circular acid is used as a rectangular substrate.
The amount of bending of the substrate after film formation is measured by the Newton ring method, light section microscopy, stylus method, single slit diffraction method, or the like.

(発明が解決しようとする問題点) 以上述べてきたように、薄膜のヤング率と内部応力の測
定に関して数多くの方法が提案されているが、いくつか
の問題点も指摘されている。従来のヤング率測定方法に
対して指摘されている第一の問題点は、単独膜の作製を
必要とするので測定用の試料の作製に熟練性を要するな
どの試料作製が繁雑で時間がかかるという点にある。こ
のために、従来のヤング率測定装置は研究が主で現場の
薄膜作製状態に関して迅速な情報提供を望んでいる操業
ラインの品質管理の手段としては、はとんど使用されて
いないのが実状である。その他にも、安定した測定精度
が得にくいこと、膜厚数10nm程度の薄膜について測
定不可能であるなどの問題点もあるが、現在薄膜のヤン
グ率測定装置に要求されていることは、基板上に形成さ
れた状態で薄膜のヤング率測定が可能で、試料作製に特
殊な技術を必要とせず迅速かつ簡便なりフグ率測定が可
能であるという点に集約される。X線あるいは電子線回
折により格子ひずみを測定する方法は、無応力の基準と
して用いる格子定数のデータが不足していること、選択
した格子面間隔によって内部応力の誤差が大きいこと、
スパッタ膜の多くが非晶質状態に近く回折線がブロード
であるために格子ひずみが測定し難たいことから、内部
応力の測定に関しては基板の曲りを測定する方法が一般
に採用されている。光学的手段により測定した基板の曲
り量から内部応力を求める方法は高精度の測定が可能で
あるものの、非常に真直度の高い基板が必要であること
と、装置が一般に高価であることが欠点として挙げられ
る。しかし、ヤング率と内部応力が機械的性質という同
一の範ちゅうに含まれることを考えれば、できれば一台
の試験機によってヤング率と内部応力を同時に測定でき
ることが望ましく、本発明は後述する作用に基づいてヤ
ング率と内部応力の同時測定が可能な試験機を提供する
ものである。
(Problems to be Solved by the Invention) As described above, many methods have been proposed for measuring the Young's modulus and internal stress of thin films, but some problems have also been pointed out. The first problem that has been pointed out with the conventional Young's modulus measurement method is that it requires the preparation of a single film, which requires skill to prepare the sample for measurement, making sample preparation complicated and time-consuming. That's the point. For this reason, conventional Young's modulus measuring devices are rarely used as a means of quality control in operational lines where research is the main focus and quick information regarding the on-site thin film production status is desired. It is. There are other problems, such as the difficulty in obtaining stable measurement accuracy and the inability to measure thin films with a thickness of about 10 nm, but the current requirements for thin film Young's modulus measurement devices are The Young's modulus of the thin film can be measured in the state formed on top of the thin film, and the Fugu's modulus can be measured quickly and easily without requiring special techniques for sample preparation. The method of measuring lattice strain using X-ray or electron beam diffraction has two drawbacks: the lack of data on the lattice constant used as a stress-free standard, and the large error in internal stress depending on the selected lattice spacing.
Since most sputtered films are in an almost amorphous state and the diffraction lines are broad, it is difficult to measure lattice strain, so a method of measuring the bending of the substrate is generally used to measure internal stress. Although the method of determining internal stress from the amount of bending of a substrate measured by optical means allows for highly accurate measurement, the disadvantages are that it requires a very straight substrate and the equipment is generally expensive. It is mentioned as. However, considering that Young's modulus and internal stress are included in the same category of mechanical properties, it is desirable to be able to measure Young's modulus and internal stress at the same time using a single testing machine. The present invention provides a testing machine that can simultaneously measure Young's modulus and internal stress.

(問題点を解決するための手段) 本発明は薄膜のヤング率と内部応力の測定装置であり、
試験片に負荷される荷重を検出する荷重変換器と、試験
片に荷重を負加するための駆動器と、該駆動器を水平面
内で移動するための二個の駆動器と、荷重負荷による試
験片のたわみ量を測定する変位計とを備えたことを特徴
としている。
(Means for solving the problems) The present invention is a device for measuring Young's modulus and internal stress of a thin film,
A load converter that detects the load applied to the test piece, a driver that applies the load to the test piece, two drivers that move the driver in a horizontal plane, and a load converter that detects the load applied to the test piece. It is characterized by being equipped with a displacement meter that measures the amount of deflection of the test piece.

(作用) 基板上に薄膜が形成されている短冊形の試験片は一般に
合成梁と呼ばれ、その代表例としてバイメタルを挙げる
ことができる。いま、スパン長での両端支持梁の中央に
荷重Pを負荷した時の合成梁の荷重点におけるたわみ量
δを考える。合成梁のヤング率をE、断面2次モーメン
トを工とすると、たわみ量δは、 δ=Pζ3/48EI     (1)である。合成梁
のヤング率と断面2次モーメントの積EIは EIDE山 で与えられ、Elは合成梁を構成する部材iのヤング率
、■1は合成梁の中立軸に対する断面2次モーメントで
ある。短冊形の基板1の上に薄膜2を設けた梁試験片の
たわみ量δ1+2は δ1+2 = P?3/48(EI II + E2I
2)   (2)で与えられ、あらかじめ基板のヤング
率E1本発明の試験機により測定しておけば、工、は基
板の板厚と板幅によって、工2は薄膜の膜厚によって定
まるから、(2)式より薄膜のヤング率E2を求めるこ
とができる。
(Function) A rectangular test piece in which a thin film is formed on a substrate is generally called a composite beam, and a bimetal can be cited as a typical example thereof. Now, consider the amount of deflection δ at the load point of the composite beam when a load P is applied to the center of the beam supported at both ends at the span length. If the Young's modulus of the composite beam is E and the second moment of area is E, the amount of deflection δ is δ=Pζ3/48EI (1). The product EI of the Young's modulus and the second moment of area of the composite beam is given by the EIDE peak, El is the Young's modulus of the member i that constitutes the composite beam, and 1 is the second moment of area of the composite beam with respect to the neutral axis. The amount of deflection δ1+2 of the beam test piece in which the thin film 2 is provided on the rectangular substrate 1 is δ1+2 = P? 3/48 (EI II + E2I
2) Given by (2), if the Young's modulus E1 of the substrate is measured in advance using the tester of the present invention, 〈〉 is determined by the thickness and width of the substrate, and 〈〉〉 is determined by the thickness of the thin film. The Young's modulus E2 of the thin film can be determined from equation (2).

また、薄膜中の内部応力によって基板が湾曲した試験片
では曲り梁の解析に基づいて薄膜のヤング率と内部応力
を測定することができる。内部応力による基板の曲りの
曲率半径をpeとし、曲率半径が大きくなる方向に荷重
を負荷した場合のたわみ量をδや、曲率が小さくなる方
向のそれを8−とすれば δ+ =Pc3/48EI −e2/8p6δ−=Pe
3148E工+e2/8pθとなる。したがって、(δ
や+δ−)/2 : Pe3/48EIは(1)式の真
直梁の場合に一致し、(δ−−δ+)/2:?2/8P
θより初期の曲率半径peを求めることができる。内部
応力0はpを用いて cr=E1h42/(1−v)h2p6で表されるから
、内部応力も同時に測定することができる。但し、E□
:基板のヤング率、hl、h2:基板板厚及び薄膜の膜
厚、V:基板のポアソン比である。
Furthermore, in a test piece where the substrate is curved due to internal stress in the thin film, the Young's modulus and internal stress of the thin film can be measured based on curved beam analysis. Let pe be the radius of curvature of the board bent due to internal stress, let δ be the amount of deflection when a load is applied in the direction where the radius of curvature increases, and let 8- be the amount of deflection in the direction where the curvature decreases, then δ+ = Pc3/48EI −e2/8p6δ−=Pe
3148E engineering+e2/8pθ. Therefore, (δ
or +δ-)/2: Pe3/48EI matches the case of a straight beam in equation (1), and (δ--δ+)/2:? 2/8P
The initial radius of curvature pe can be determined from θ. Since internal stress 0 is expressed by cr=E1h42/(1-v)h2p6 using p, internal stress can also be measured at the same time. However, E□
: Young's modulus of the substrate, hl, h2: substrate thickness and thin film thickness, V: Poisson's ratio of the substrate.

(実施例) 次に図面を参照して本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す図で、基板上に薄膜を
被覆し7た短冊形の試験片1は荷重変換器として用いら
れる電子天秤2の試料皿3の上に乗せられている。なお
、試料皿3には試験片を支持する支点が設けられている
。先端を半径5Rの半球状に仕上げた焼入鋼製の圧子4
は荷重負荷用の駆動器である圧電アクチュエーター5の
先端に取り付けられており、試験片に変形を与える。圧
子4に取り付けられたフォトニックプローブ7からの光
8は試料皿3に乗せられた鏡6に反射してフォトニック
プローブ7に戻り、その反射光の強度変化によってフォ
トニックプローブ7と鏡6との距離の変化、すなわち試
験gi″1のたわみ量を測定する。試験片1に加わる荷
重は電子天秤2によって測定される。試料皿3は、その
上に設けられた支点間距離(スパン長)を1〜4cmの
間で変化せたものを用意した。圧電アクチュエータ9と
10は圧電アクチュエーター5を水平面内のX。
FIG. 1 is a diagram showing an embodiment of the present invention, in which a rectangular test piece 1 with a thin film coated on a substrate 7 is placed on a sample plate 3 of an electronic balance 2 used as a load converter. There is. Note that the sample plate 3 is provided with a fulcrum that supports the test piece. Hardened steel indenter 4 with a hemispherical tip with a radius of 5R
is attached to the tip of a piezoelectric actuator 5, which is a driver for applying a load, and deforms the test piece. Light 8 from the photonic probe 7 attached to the indenter 4 is reflected by the mirror 6 placed on the sample plate 3 and returns to the photonic probe 7, and due to the change in the intensity of the reflected light, the photonic probe 7 and mirror 6 are separated. The change in the distance of , that is, the amount of deflection of the test gi''1 is measured. The load applied to the test piece 1 is measured by the electronic balance 2. The piezoelectric actuators 9 and 10 are arranged so that the piezoelectric actuator 5 is placed at an angle of X in the horizontal plane.

Y方向に移動させるための駆動器であり、圧子4を支点
間の中心に正確に位置決めするためのものである。
This is a driver for moving in the Y direction, and is for accurately positioning the indenter 4 at the center between the supporting points.

第2図は本発明の一実施例を示すブロック図で、パソナ
ルコンピュータ11からの制御用信号をデジタルlアナ
ログ変換512、定電圧電源13及び電圧増幅器14を
介して圧電アクチュエーター5,9及び10に印加する
ことにより駆動側4卸を行うことができる。圧電アクチ
ュエーターの駆動速度はIOA/seeから0.1pm
/seeの間で変化させることができる。試験片に加わ
る荷重は電子天秤2からデジタル信号としてパソナルコ
ンピュータ9を介してX−Yプロッタ15のY軸か、デ
ジタル/アナログ変換器16を通してX−Yレコーダ1
7のY軸に出力される。試験片のたわみ量はフォトニッ
クプローブ7からの光を7オトニツクセンター18(商
品名、米国7オトニクス社製)で電圧変化に変換して測
定した。その電圧信号はアナログ信号としてX−Yレコ
ーダ17のX軸か、アナログ/デジタル変換器19及び
パソナルコンピュータ11を通してX−Yプロッタ15
のX軸に出力される。
FIG. 2 is a block diagram showing an embodiment of the present invention, in which a control signal from a personal computer 11 is transmitted to piezoelectric actuators 5, 9, and 10 via a digital/analog conversion 512, a constant voltage power supply 13, and a voltage amplifier 14. By applying the voltage to 4, it is possible to carry out the fourth discharge on the drive side. Drive speed of piezoelectric actuator is 0.1 pm from IOA/see
/see. The load applied to the test piece is transmitted as a digital signal from the electronic balance 2 to the Y-axis of the X-Y plotter 15 via the personal computer 9 or to the X-Y recorder 1 via the digital/analog converter 16.
It is output to the Y axis of 7. The amount of deflection of the test piece was measured by converting the light from the photonic probe 7 into a voltage change using a 7otonic center 18 (trade name, manufactured by 7otonics, Inc., USA). The voltage signal is sent as an analog signal to the X-axis of the X-Y recorder 17 or to the X-Y plotter 15 through the analog/digital converter 19 and personal computer 11.
is output on the X axis.

本実施例で使用した電子天秤2の検出感度は0.111
gである。また、フォトニックプローブ7と7オトニツ
クセンター18は、鏡6に反射率が高く、経時変化の少
ない金、白金、パラジウムを被覆したガラス板を用いる
ことにより、40人の感度でたわみ量を測定することが
できる。たわみ量が1〜1100pの領域では40人の
精度で読取ることはできないが、有効数字4桁でたわみ
量を測定することができる。
The detection sensitivity of the electronic balance 2 used in this example is 0.111
It is g. In addition, the photonic probes 7 and 7 optical center 18 measure the amount of deflection with a sensitivity of 40 people by using a glass plate coated with gold, platinum, or palladium, which has a high reflectance and has little change over time, for the mirror 6. can do. In the range of deflection from 1 to 1100 p, it is impossible to read with the accuracy of 40 people, but the deflection can be measured with 4 significant figures.

試験片に荷重を負荷する圧子4には、先端を半径5Rの
半球状に加工した焼入れ鋼を使用した。その他にサファ
イア製のナイフエッヂも圧子として使用することができ
る。また、ダイヤモンド製の五角錐圧子を取りつけるこ
とにより本発明の測定装置はそのまま微小押込み硬度計
として使用することができる。試料を支持する支点部に
は試験片と支点との摩擦をできるだけ小さくし、荷重と
たわみ量との比例関係が50mg以下の低荷重域でも成
立するように設計した。精密円筒ころ軸受を用いた支点
、テフロン製のナイフエッヂ、テフロンコーティングし
た焼入れ鋼製のナイフエッヂなどを用いることができる
が、10mg以上の荷重域で直線関係を得るためにはテ
フロン製のナイフエッヂで十分であることが分かった。
The indenter 4 that applies a load to the test piece was made of hardened steel whose tip was shaped into a hemispherical shape with a radius of 5R. Additionally, a sapphire knife edge can also be used as an indenter. Further, by attaching a pentagonal pyramid indenter made of diamond, the measuring device of the present invention can be used as it is as a micro-indentation hardness tester. The fulcrum part that supports the sample was designed to minimize the friction between the test piece and the fulcrum, and to maintain a proportional relationship between the load and the amount of deflection even in a low load range of 50 mg or less. A fulcrum using a precision cylindrical roller bearing, a Teflon knife edge, a Teflon-coated hardened steel knife edge, etc. can be used, but in order to obtain a linear relationship in a load range of 10 mg or more, a Teflon knife edge is recommended. was found to be sufficient.

本発明のヤング率及び内部応力測定装置は駆動系とたわ
み量の検出部が一体となって動き、しかも荷重検出部が
変位計とは独立しているために、駆動系に避けることが
できないヒステリシスの影響を受けない構造となってい
る。また、変位計に光強度形の非接触変位計を用いてい
るため差動トランスや歪ゲージ形の変位計のように荷重
検出への影響はまったくない。さらに、荷重とたわみ量
が連続的測定できることも本測定装置の特徴である。
In the Young's modulus and internal stress measuring device of the present invention, the drive system and the deflection detection unit move together, and the load detection unit is independent from the displacement meter, so hysteresis is inevitable in the drive system. The structure is not affected by Furthermore, since a light intensity type non-contact displacement meter is used as the displacement meter, there is no effect on load detection unlike a differential transformer or strain gauge type displacement meter. Another feature of this measuring device is that it can continuously measure load and deflection.

次に、実際の測定例に基づいて本発明の測定装置を説明
する。
Next, the measuring device of the present invention will be explained based on an actual measurement example.

第3図はRFマグネトロンスパッタ法により成膜したカ
ーボン膜と70Co3ONi膜のヤング率の膜厚依存性
をみた図である。膜は50 X 10 X 0.05m
mの短冊形のガラス基板上に作製した。カーボン、70
CoNiはともに膜厚によって結晶の配向性が変化する
材料として知られており、配向性の変化がヤング率の変
化として明瞭に捉えられていることが分かる。測定可能
な膜厚はカーボン膜で400人、70Co3ONiで6
00人であった。
FIG. 3 is a diagram showing the film thickness dependence of the Young's modulus of a carbon film and a 70Co3ONi film formed by RF magnetron sputtering. The membrane is 50 x 10 x 0.05m
It was fabricated on a rectangular glass substrate of m. carbon, 70
Both CoNi are known as materials whose crystal orientation changes depending on the film thickness, and it can be seen that changes in orientation are clearly understood as changes in Young's modulus. The measurable film thickness is 400 for carbon film and 6 for 70Co3ONi.
There were 00 people.

第4図は前記と同様のガラス基板上に成膜したカーボン
膜と銀膜について測定した内部応力と膜厚の関係である
。前者に圧縮、後者には引張の応力が残留しており、と
もに膜厚の増加に伴って応力が低下していくことが分か
る。また、第1表はカーボン膜のヤング率と内部応力に
及ぼす下地体の影響を調べた結果である。ガラス上に直
接成膜した場合、Ni上に成膜した場合、70Co3O
Ni上に成膜した場合の3種類のカーボン膜でヤング率
は下地体によってほとんど変化しないものの、内部応力
は下地体に太き(依存することが分かる。
FIG. 4 shows the relationship between internal stress and film thickness measured for a carbon film and a silver film formed on the same glass substrate as described above. It can be seen that compressive stress remains in the former and tensile stress remains in the latter, and both stress decreases as the film thickness increases. Table 1 shows the results of investigating the influence of the base on the Young's modulus and internal stress of the carbon film. When deposited directly on glass, when deposited on Ni, 70Co3O
It can be seen that the Young's modulus of the three types of carbon films formed on Ni hardly changes depending on the underlying body, but the internal stress increases (depends on the underlying body).

第1表 次に、ダイヤモンド製の三角錐匡子を用いて、本発明の
測定装置を微小押込み硬度計として使用した場合の測定
結果を示す。第2表はDCプラズマ法によりSi基板上
に成膜した膜厚0.72pmのダイヤモンド状カーボン
膜の押込み硬度とバルク材であるダイアモンド板のそれ
を比較したものである。
Table 1 Next, the measurement results are shown when the measuring device of the present invention is used as a micro-indentation hardness meter using a diamond triangular pyramid box. Table 2 compares the indentation hardness of a diamond-like carbon film with a film thickness of 0.72 pm formed on a Si substrate by the DC plasma method and that of a diamond plate as a bulk material.

DCプラズマ法により作製したダイヤモンド膜が天然ダ
イヤモンドに匹敵する高度を有していることが分かった
It was found that the diamond film produced by the DC plasma method has a height comparable to that of natural diamond.

第2表 第3表 第3表はステアリング酸膜の押込み硬度を測定した結果
である。LB膜は、ラングミュア・プロジェット法と呼
ばれる成膜法によりガラス基板上に作製した膜厚0.1
pmのステアリン酸膜である。塗布膜はクロロホルム液
にステアリン酸を1%溶解しスピンコード法によりガラ
ス基板上に成膜し、その後80°Cで20分間加熱乾燥
したものである。LB膜においてステアリング酸の分子
が基板に対して垂直に配向しているために、無配向性の
分子膜である塗布膜に比較して若干高い値の硬度を示し
ている。
Table 2 Table 3 Table 3 shows the results of measuring the indentation hardness of the steering acid film. The LB film has a film thickness of 0.1 and is produced on a glass substrate using a film formation method called the Langmuir-Prodgett method.
pm stearic acid film. The coating film was prepared by dissolving 1% stearic acid in a chloroform solution, forming a film on a glass substrate by a spin code method, and then heating and drying at 80° C. for 20 minutes. Since the steering acid molecules in the LB film are oriented perpendicularly to the substrate, the LB film exhibits a slightly higher value of hardness than the coating film, which is a non-oriented molecular film.

(発明の効果) 実施例に示したように、本発明の測定装置は基板上の薄
膜について簡便にしかも高精度でヤング率と内部応力を
測定できることが分かる。また、圧子を交換することに
より薄膜の押込み硬度を測定できることも分かった。
(Effects of the Invention) As shown in the examples, it can be seen that the measuring device of the present invention can easily and accurately measure the Young's modulus and internal stress of a thin film on a substrate. It was also found that the indentation hardness of a thin film can be measured by replacing the indenter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のヤング率及び内部応力測定装置の一
実施例の構造を示す図、第2図は、ブロック図の例を示
す図、第3図は、薄膜の膜厚とヤング率の関係を示す図
、第4図は膜厚と内部応力の関係を示す図である。 図において、1.試験片2.電子天秤3.試料皿4.圧
子5.圧電アクチュエータ6、鏡7.フォトニックプロ
ーブ8.光9,10.圧電アクチュエータ11.パンナ
ルコンピュータ12.デジタルlアナログ変換器13.
定電圧電源14.電圧増幅器15.X−Yブロック16
.7’ジタルlアナログ変換器17.X−Yレコーダ1
8.7オトニツクセンサー19.アナログ/デジタル変
換器であオ 1  図 1゜ 72 図 73 図 膜厚(μm) オ 4 図
FIG. 1 is a diagram showing the structure of an embodiment of the Young's modulus and internal stress measuring device of the present invention, FIG. 2 is a diagram showing an example of a block diagram, and FIG. 3 is a diagram showing the thickness and Young's modulus of a thin film. FIG. 4 is a diagram showing the relationship between film thickness and internal stress. In the figure, 1. Test piece 2. Electronic balance 3. Sample plate 4. Indenter 5. Piezoelectric actuator 6, mirror 7. Photonic probe8. Light 9, 10. Piezoelectric actuator 11. Pannal Computer 12. Digital to analog converter 13.
Constant voltage power supply 14. Voltage amplifier 15. X-Y block 16
.. 7' Digital to analog converter 17. X-Y recorder 1
8.7 Otonic sensor 19. Analog/digital converter 1 Figure 1゜72 Figure 73 Figure Film thickness (μm) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 試験片を支持する支点機構を有した荷重変換器と、試験
片に曲げ変形を与える駆動器と、該駆動器と連動し、荷
重負荷に伴う試験片の変形量を測定する変位計と、該駆
動器を水平面内のX、Y2方向に移動させることができ
る駆動器とを備えたことを特徴とする薄膜のヤング率及
び内部応力測定装置。
A load converter having a fulcrum mechanism that supports a test piece, a driver that applies bending deformation to the test piece, a displacement meter that works in conjunction with the driver and measures the amount of deformation of the test piece due to load application, and A device for measuring Young's modulus and internal stress of a thin film, comprising a driver capable of moving the driver in two directions, X and Y in a horizontal plane.
JP18038186A 1986-07-30 1986-07-30 Measuring instrument for young's modulus and internal stress of thin film Pending JPS6336132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18038186A JPS6336132A (en) 1986-07-30 1986-07-30 Measuring instrument for young's modulus and internal stress of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18038186A JPS6336132A (en) 1986-07-30 1986-07-30 Measuring instrument for young's modulus and internal stress of thin film

Publications (1)

Publication Number Publication Date
JPS6336132A true JPS6336132A (en) 1988-02-16

Family

ID=16082239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18038186A Pending JPS6336132A (en) 1986-07-30 1986-07-30 Measuring instrument for young's modulus and internal stress of thin film

Country Status (1)

Country Link
JP (1) JPS6336132A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996035105A3 (en) * 1995-05-05 1996-12-12 Wolfgang Hamm Device for detecting forces acting on a measuring head and its use
JP2008116354A (en) * 2006-11-06 2008-05-22 Nec Electronics Corp Warpage measurement system, film formation system, and warpage measurement method
KR100999755B1 (en) * 2005-12-21 2010-12-08 현대중공업 주식회사 Method for Internal Stress Evaluating of Thermosetting Coating Systems
JP2012078294A (en) * 2010-10-05 2012-04-19 Bridgestone Corp Apparatus and method for measuring minim hardness
JP2013088212A (en) * 2011-10-16 2013-05-13 Tokyo Univ Of Agriculture & Technology Indentation testing method and indentation testing apparatus
CN109596290A (en) * 2018-11-05 2019-04-09 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) The method of Young's modulus for the micro- beam material of in situ measurement MEMS
RU2724153C1 (en) * 2019-10-28 2020-06-22 Федеральное государственное бюджетное учреждение науки Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН) Glued joint creep test method at shear and device for its implementation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996035105A3 (en) * 1995-05-05 1996-12-12 Wolfgang Hamm Device for detecting forces acting on a measuring head and its use
KR100999755B1 (en) * 2005-12-21 2010-12-08 현대중공업 주식회사 Method for Internal Stress Evaluating of Thermosetting Coating Systems
JP2008116354A (en) * 2006-11-06 2008-05-22 Nec Electronics Corp Warpage measurement system, film formation system, and warpage measurement method
JP2012078294A (en) * 2010-10-05 2012-04-19 Bridgestone Corp Apparatus and method for measuring minim hardness
JP2013088212A (en) * 2011-10-16 2013-05-13 Tokyo Univ Of Agriculture & Technology Indentation testing method and indentation testing apparatus
CN109596290A (en) * 2018-11-05 2019-04-09 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) The method of Young's modulus for the micro- beam material of in situ measurement MEMS
CN109596290B (en) * 2018-11-05 2020-07-10 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Method for measuring Young modulus of MEMS micro-beam material in situ
RU2724153C1 (en) * 2019-10-28 2020-06-22 Федеральное государственное бюджетное учреждение науки Сибирский федеральный научный центр агробиотехнологий Российской академии наук (СФНЦА РАН) Glued joint creep test method at shear and device for its implementation

Similar Documents

Publication Publication Date Title
Amelio et al. Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy
US7685868B2 (en) Measuring head for nanoindentation instrument and measuring method using same
US5517860A (en) Film testing
Bhushan et al. Contact resonance force microscopy techniques for nanomechanical measurements
US8887584B2 (en) Load measuring apparatus
Kim et al. SI traceability: Current status and future trends for forces below 10 microNewtons
Murayama et al. Fabrication of micro tactile sensor for the measurement of micro-scale local elasticity
IE45575L (en) Scale for calibrating electron beam instruments
KR20200095145A (en) Method for manufacturing crack-based high sensitivity bending sensor
JPS6336132A (en) Measuring instrument for young's modulus and internal stress of thin film
Adachi et al. Integration of a Cr–N thin-film displacement sensor into an XY micro-stage for closed-loop nano-positioning
Grutzik et al. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers
CA1178083A (en) Measuring device using a strain gauge
CN116242512A (en) High-resolution cantilever type micro-force sensor based on Bragg fiber grating
KR100916350B1 (en) A 4-Point Bending Apparatus for X-Ray Diffraction System and Measuring Method for Thin Film Stress-Strain Curve Using the Apparatus
JPS61193047A (en) Microhardness measuring instrument
Kühnel et al. National comparison of spring constant measurements of atomic force microscope cantilevers
JPS6239743A (en) Bending tester for measuring modulus of longitudinal elasticity of membrane
Oppel Photoelastic strain gages: Application of photoelastic principle leads to development of new techniques for strain and stress analysis of structural parts
Sierakowski et al. Piezoresistive cantilever working in a shear force mode for in situ characterization of exposed micro-and nanostructures
JPH11230875A (en) Micro spring constant measuring device and measuring method therefor
Herdier et al. A silicon cantilever beam structure for the evaluation of d 31, d 33 and e 31 piezoelectric coefficients of PZT thin films
JPH0643954B2 (en) Method and apparatus for evaluating adhesion strength of film
JP2803253B2 (en) Adhesion measuring device
Ştefănescu et al. Bent Lamella (Cantilever Beams)