JPS6336092B2 - - Google Patents

Info

Publication number
JPS6336092B2
JPS6336092B2 JP7661583A JP7661583A JPS6336092B2 JP S6336092 B2 JPS6336092 B2 JP S6336092B2 JP 7661583 A JP7661583 A JP 7661583A JP 7661583 A JP7661583 A JP 7661583A JP S6336092 B2 JPS6336092 B2 JP S6336092B2
Authority
JP
Japan
Prior art keywords
weight
amount
range
less
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7661583A
Other languages
Japanese (ja)
Other versions
JPS59201331A (en
Inventor
Mitsuhiro Okumura
Eizo Naya
Michinosuke Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7661583A priority Critical patent/JPS59201331A/en
Priority to US06/547,218 priority patent/US4517033A/en
Priority to EP83110920A priority patent/EP0110176B1/en
Priority to DE8383110920T priority patent/DE3378088D1/en
Publication of JPS59201331A publication Critical patent/JPS59201331A/en
Publication of JPS6336092B2 publication Critical patent/JPS6336092B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 この発明は、大電流しや断性能に優れ、かつ耐
電圧性能の良好な真空しや断器用接点材料に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a contact material for a vacuum shield which has excellent large current breaking performance and good withstand voltage performance.

真空しや断器は、その無保守、無公害性、優れ
たしや断性能等の利点を持つため、適用範囲が急
速に拡大して来ている。また、それに伴い、より
大きなしや断容量や高い耐電圧が要求されてい
る。一方、真空しや断器の性能は真空容器内の接
点材料によつて決定される要素がきわめて大であ
る。
Vacuum sheath breakers have advantages such as maintenance-free, non-polluting properties, and excellent sheath breaker performance, so the scope of their application is rapidly expanding. In addition, along with this, a larger shearing capacity and a higher withstand voltage are required. On the other hand, the performance of a vacuum shield breaker is determined to a large extent by the contact material inside the vacuum container.

真空しや断器用接点材料の満足すべき特性とし
て、(1)しや断容量が大きいこと、(2)耐電圧が高い
こと、(3)接触抵抗が小さいこと、(4)溶着力が小さ
いこと、(5)接点消耗量が小さいこと、(6)さい断電
流値が小さいこと、(7)加工性が良いこと、(8)十分
な機械的強度を有すること、等がある。
Satisfactory characteristics of contact materials for vacuum shield disconnectors include (1) large shield breaking capacity, (2) high withstand voltage, (3) low contact resistance, and (4) low welding force. (5) low contact wear, (6) low cutting current, (7) good workability, and (8) sufficient mechanical strength.

実際の接点材料では、これらの特性を全て満足
させることは、かなり困難であつて、一般には用
途に応じて特に重要な特性を満足させ、他の特性
をある程度犠牲にした材料を使用しているのが実
状である。
In actual contact materials, it is quite difficult to satisfy all of these properties, and in general, materials are used that satisfy particularly important properties depending on the application, sacrificing other properties to some extent. This is the actual situation.

従来、この種の接点材料として銅―ビスマス
(以下Cu―Biと表示する。他の元素および元素の
組み合せからなる材料についても同様に元素記号
で表示する)、Cu―Cr―Bi,Cu―Co―Bi,Cu―
Cr等が使用されていた。しかし、Cu―Bi等の低
融点金属を含有する接点では排気工程中の高温加
熱により、その一部が接点内から拡散、蒸発し、
真空容器内の金属シールドや絶縁容器に付着す
る。これが真空しや断器の耐電圧を劣化させる大
きな因子の一つになつている。また、負荷開閉や
大電流しや断時にも低融点金属の蒸発、飛散が生
じて耐電圧の劣化、しや断性能の低下が見られ
る。上記の欠点を除くために真空耐電圧に優れた
Cr,Coなどを添加したCu―Cr―Biなどにおいて
も低融点金属による上記の欠点は根本的に解決さ
れず、高電圧、大電流には対応できない。一方、
Cu―Crなどのように真空耐電圧に優れた金属
(Cr,Coなど)と電気伝導度に優れたCuとの組
み合せからなる材料は耐溶着性能に関しては低融
点金属を含有する接点材料に比較して、やや劣る
が、しや断性能や耐電圧性能が優れているため、
高電圧、大電流域ではよく使用されている。さら
に、Cu―Crなどにおいても、しや断性能には限
界があるために接点の形状を工夫し、接点部の電
流経路を操作することで、磁場を発生させ、この
力で大電流アークを強制駆動して、しや断性能を
上げる努力がなされていた。
Conventionally, this type of contact material has been copper-bismuth (hereinafter referred to as Cu-Bi. Materials consisting of other elements and combinations of elements are also indicated by element symbols), Cu-Cr-Bi, Cu-Co. ―Bi, Cu―
Cr etc. were used. However, in contacts containing low melting point metals such as Cu-Bi, some of them diffuse and evaporate from within the contacts due to high temperature heating during the exhaust process.
Adheres to metal shields and insulating containers inside vacuum containers. This is one of the major factors that degrades the withstand voltage of vacuum shields and disconnectors. In addition, low-melting point metals evaporate and scatter when a load is switched on and off or when a large current is interrupted, resulting in deterioration of withstand voltage and deterioration of shearing performance. Excellent vacuum withstand voltage to eliminate the above drawbacks
Even with Cu-Cr-Bi added with Cr, Co, etc., the above-mentioned drawbacks due to low melting point metals are not fundamentally solved, and they cannot handle high voltages and large currents. on the other hand,
Materials made of a combination of metals with excellent vacuum withstand voltage (Cr, Co, etc.) such as Cu-Cr and Cu with excellent electrical conductivity are compared to contact materials containing low melting point metals in terms of welding resistance. Although it is slightly inferior, it has excellent shearing performance and withstand voltage performance,
Often used in high voltage and large current areas. Furthermore, since there is a limit to the shearing performance of materials such as Cu-Cr, by devising the shape of the contact and manipulating the current path of the contact, a magnetic field is generated, and this force is used to generate a large current arc. Efforts have been made to improve shearing performance by force driving.

しかし、大電流化、高電圧化への要求はさらに
きびしく、従来の接点材料では要求性能を十分満
足させることが困難となつている。又、真空しや
断器の小型化に対しても同様に従来の接点性能で
は十分でなく、より優れた性能を持つ接点材料が
求められていた。
However, the demands for larger currents and higher voltages have become even more demanding, and it has become difficult to fully satisfy the required performance with conventional contact materials. Furthermore, in order to reduce the size of vacuum shields and disconnectors, conventional contact performance is not sufficient, and there is a need for contact materials with even superior performance.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、大電流しや断性能
に優れ、かつ耐電圧性能の良好な真空しや断器用
接点材料を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional products as described above, and its purpose is to provide a contact material for vacuum shields and disconnectors that has excellent large current breaking performance and good withstand voltage performance. It is said that

発明者等はCuに種々の金属、合金、金属間化
合物を添加した接点材料を試作し、真空スイツチ
管に組み込んで種々の実験を行なつた。これまで
に、先行技術(特願昭57−192785号明細書)とし
て、Cu、Cr、Taから構成されている材料のしや
断性能が従来品(Cu―25重量%Cr合金)に比較
して非常に優れていることを見出しているが、従
来品のしや断容量に対して1.5倍のしや断容量を
得るためにはTaを5〜25重量%の範囲添加させ
なければならなかつた。
The inventors prototyped a contact material by adding various metals, alloys, and intermetallic compounds to Cu, incorporated it into a vacuum switch tube, and conducted various experiments. As a prior art (Japanese Patent Application No. 192785/1985), it has been reported that the shearing performance of a material composed of Cu, Cr, and Ta is compared to that of a conventional product (Cu-25 wt% Cr alloy). However, in order to obtain a shearing capacity 1.5 times that of conventional products, it is necessary to add Ta in the range of 5 to 25% by weight. Ta.

そこで、この一般に高価な材料であるTaの添
加量をできるだけ少なくして、有効にしや断性能
を向上させるために種々の実験を行なつた。この
結果、Cu,Cr,Taを主成分として、Tiを少量添
加した場合にTa量を少なくしても非常にしや断
性能が優れ、耐電圧性能が良好であることがわか
つた。さらに、少量のTi添加によつてTa量のあ
る範囲でTiを添加しない場合に比べて著しく、
しや断性能が向上することも見出した。この発明
の真空しや断器用接点材料は、Cu含有すると共
に、他の成分としてCrが10〜35重量%、及びTa
が20重量%以下、Tiが5重量%以下の範囲含有
することを特徴としている。
Therefore, various experiments were conducted in order to reduce the amount of Ta, which is generally an expensive material, added as much as possible to improve the cutting performance. As a result, it was found that when the main components are Cu, Cr, and Ta, and a small amount of Ti is added, even if the amount of Ta is reduced, the blistering performance is excellent and the withstand voltage performance is good. Furthermore, by adding a small amount of Ti, the amount of Ta within a certain range is significantly lower than when no Ti is added.
It was also found that the shear cutting performance was improved. The contact material for a vacuum shield and breaker of the present invention contains Cu and also contains 10 to 35% by weight of Cr and Ta.
It is characterized by containing Ti in a range of 20% by weight or less and Ti in a range of 5% by weight or less.

以下、この発明の一実施例を図について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は真空スイツチ管の構造図で、真空絶縁
容器1とこの真空絶縁容器1の両端を閉塞する端
板2および3とにより形成された容器内部に電極
4および5が、それぞれ電極棒6および7の一端
に、お互いが対向するよう配置されている。前記
電極7は、ベローズ8を介して前記端板3に気密
を損うことなく軸方向の動作が可能なように接合
されている。シールド9および10がアークによ
り発生する蒸気で汚染されることがないよう、そ
れぞれ前記真空絶縁容器1の内面および前記ベロ
ーズ8を覆つている。電極5は第2図のように、
その背面で電極棒7にろう材51を介挿してろう
付されている。前記電極4,5はこの発明のCu
―Cr―Ta―Ti系接点材料から成つている。
FIG. 1 is a structural diagram of a vacuum switch tube, in which electrodes 4 and 5 are installed inside a container formed by a vacuum insulating container 1 and end plates 2 and 3 that close both ends of the vacuum insulating container 1, and an electrode rod 6, respectively. and 7 are arranged to face each other at one end. The electrode 7 is joined to the end plate 3 via a bellows 8 so as to be movable in the axial direction without compromising airtightness. The shields 9 and 10 cover the inner surface of the vacuum insulating container 1 and the bellows 8, respectively, so that they are not contaminated by vapor generated by the arc. The electrode 5 is as shown in FIG.
A brazing material 51 is inserted and brazed to the electrode rod 7 on the back side thereof. The electrodes 4 and 5 are made of Cu according to the present invention.
- Made of Cr-Ta-Ti contact material.

第3図は合金中のCr量を25重量%に固定し、
さらにTa量を0,1,5,10,15,20,25重量
%に固定した合金に添加したTi量としや断容量
の関係を示したものである。図の縦軸は従来品
(Cu―25Cr品)のしや断容量を1とした場合の比
率を示し、横軸はTiの添加量を示す。図中Aは
従来品(Cu―25Cr品)のしや断容量である。図
からわかるように各Ta量に対して、Tiの添加量
は0.5重量%のとき、しや断容量のピークがあり、
Tiの添加によつてしや断性能の向上が見られる
が、Ta量が20重量%以上になるとTiの効果がな
くなり、むしろ、しや断性能の低下が生じる。ま
た、Ti添加の効果はTa量が少ないほど有効であ
り、Ta量が1重量%に対してTiを0.5重量%加え
た場合は従来品(Cu―25重量%Cr品)の1.5倍の
しや断容量を示す。また、Ta量が10重量%の場
合にはTi量0.5重量%添加することにより、従来
品の1.9倍以上のしや断容量が得られる。即ち、
Ta量の比較的少ない場合にはTiが他の元素と適
度に反応して形成される合金や化合物が均一微細
に分散して、しや断性能を著しく上昇させ、しか
もCu量が十分にあるので電気伝導度や熱伝導度
を低下させることもないので、アークによる熱入
力をすみやかに放散することができる。しかし
Ta量が多くなると、必然的にCu量が低下するの
で、そのCuとTiが反応して形成される化合物そ
のものはしや断性能を上昇させる要素を持つてい
ても電気伝導度や熱伝導度を低下させる悪影響の
ほうが大きくなり、Tiと他の元素の反応で生じ
るしや断性能向上要素を打ち消してトータルとし
てのしや断性能が向上しないためであると思われ
る。又同じTa量ではTiが効果を示す適度な量を
越えて多量になるとやはり電気伝導度や熱伝導度
が著しく低下するので好ましくない。また、各
Ta量に対して、しや断性能から見るとTiは0.5重
量%添加するのが最も好ましい。なお、この実験
に使用したCu―Cr―Ta―Ti合金はCu,Cr,
Ta,Ti粉を各々必要量配合した混合粉を成形、
焼結して得られたものである。
Figure 3 shows that the amount of Cr in the alloy is fixed at 25% by weight.
Furthermore, the graph shows the relationship between the amount of Ti added to the alloys with the amount of Ta fixed at 0, 1, 5, 10, 15, 20, and 25% by weight and the shear shear capacity. The vertical axis of the figure shows the ratio when the shearing capacity of the conventional product (Cu-25Cr product) is set to 1, and the horizontal axis shows the amount of Ti added. A in the figure is the shearing capacity of the conventional product (Cu-25Cr product). As can be seen from the figure, for each Ta amount, when the amount of Ti added is 0.5% by weight, there is a peak in shear shear capacity.
The addition of Ti improves the shearing performance, but when the amount of Ta exceeds 20% by weight, the effect of Ti disappears and, on the contrary, the shearing performance deteriorates. Furthermore, the effect of adding Ti is more effective as the amount of Ta is smaller, and when 0.5% by weight of Ti is added to 1% by weight of Ta, the effect is 1.5 times that of the conventional product (Cu-25% Cr product). and capacity. Further, when the Ta content is 10% by weight, by adding 0.5% by weight of Ti, a shearing capacity 1.9 times or more than that of conventional products can be obtained. That is,
When the amount of Ta is relatively small, the alloys and compounds formed by moderate reaction of Ti with other elements are uniformly and finely dispersed, significantly improving the shearing performance, and the amount of Cu is sufficient. Therefore, there is no reduction in electrical conductivity or thermal conductivity, so the heat input due to the arc can be quickly dissipated. but
As the amount of Ta increases, the amount of Cu inevitably decreases, so even if the compound formed by the reaction of Cu and Ti itself has elements that increase insulation and breaking performance, it has low electrical conductivity and thermal conductivity. This seems to be because the negative effect of lowering Ti is greater, canceling out the element that improves shearing performance caused by the reaction between Ti and other elements, and not improving the shearing performance as a whole. Further, for the same amount of Ta, if the amount of Ti exceeds a moderate amount that exhibits an effect, the electrical conductivity and thermal conductivity will decrease significantly, which is not preferable. Also, each
From the viewpoint of shearing performance, it is most preferable to add 0.5% by weight of Ti to the amount of Ta. The Cu-Cr-Ta-Ti alloy used in this experiment is Cu, Cr,
Molding a mixed powder containing the required amounts of Ta and Ti powder,
It is obtained by sintering.

第4図は、合金中のCr量を25重量%に固定し、
さらに、Ti量を0,0.5,1.0,1.5,3,5重量%
に固定した場合の添加したTa量としや断容量と
の関係を示したものであり、図の縦軸は従来品
(Cu―25Cr品)のしや断容量を1とした場合の比
率を示し、横軸はTaの添加量を示す。第4図か
らわかるように、Ti量が0.5重量%のときTi添加
によるしや断容量増大の効果が見られるのはTa
量が20重量%以下である。一方、Ti添加量はTa
量が非常に少ない場合(1重量%程度)には5重
量%以下の範囲で効果はあるが、3重量%を越え
ると接触抵抗が増大する傾向にあり、使用条件に
よつては3重量%以下が望ましい。また、Ti量
が1.0重量%のとき、効果が見られるのはTa量が
5重量%以下の範囲であり、Ti量が1.5重量%の
ときは、効果が見られるのはTa量が3重量%以
下の範囲である。一方Ti量が2重量%を越える
とTa量が1重量%程度のときのみ、しや断性能
的に効果がある。これらに対し、Ti量が0.5重量
%以下の範囲ではTa量の最も広い範囲、即ち20
重量%以下の範囲に対し、しや断性能向上の効果
がある。
Figure 4 shows that the amount of Cr in the alloy is fixed at 25% by weight,
Furthermore, the amount of Ti is 0, 0.5, 1.0, 1.5, 3, 5% by weight.
The figure shows the relationship between the amount of added Ta and the shear shear capacity when fixed at , the horizontal axis indicates the amount of Ta added. As can be seen from Figure 4, when the amount of Ti is 0.5% by weight, the effect of increasing shear shear capacity due to the addition of Ti can be seen.
The amount is 20% by weight or less. On the other hand, the amount of Ti added is Ta
If the amount is very small (approximately 1% by weight), it is effective in the range of 5% by weight or less, but if it exceeds 3% by weight, the contact resistance tends to increase, and depending on the usage conditions, 3% by weight The following are desirable. Furthermore, when the Ti amount is 1.0% by weight, the effect is seen when the Ta amount is 5% by weight or less, and when the Ti amount is 1.5% by weight, the effect is seen only when the Ta amount is 3% by weight. % or less. On the other hand, if the Ti amount exceeds 2% by weight, it is effective in terms of shearing performance only when the Ta amount is about 1% by weight. On the other hand, in the range where the Ti amount is 0.5% by weight or less, the Ta amount has the widest range, that is, 20
It has the effect of improving shear cutting performance in a range of less than % by weight.

以上の結果からCu―cr―Taの3元合金に対し
て、Tiを添加することによつて3元合金のしや
断性能をより向上させるためにはTiは0.8重量%
以下、Ta量は3.5〜18重量%の範囲が望ましい。
さらに、Taの添加量をできるだけ低減して、優
れたしや断性能を得る条件としてはTa量が15重
量%以下の範囲が望ましい。
From the above results, in order to further improve the shearing performance of the ternary alloy by adding Ti to the Cu-Cr-Ta ternary alloy, it is necessary to add 0.8% by weight of Ti.
Hereinafter, the Ta amount is preferably in the range of 3.5 to 18% by weight.
Further, as a condition for obtaining excellent shear cutting performance by reducing the amount of Ta added as much as possible, it is desirable that the amount of Ta be in a range of 15% by weight or less.

発明者らは第3図、第4図に示すような実験を
Cr量を種々変化させて行なつたが、Cr量が10〜
35重量%の範囲でTi添加によるしや断性能の向
上が見られたが、Cr量が10重量%より少ない範
囲ではTiを添加しても変化はなく、逆にCr量が
35重量%を越えるとしや断性能の低下も生じる。
The inventors conducted experiments as shown in Figures 3 and 4.
The experiment was carried out by varying the amount of Cr, but when the amount of Cr was 10~
An improvement in shear cutting performance was observed with the addition of Ti in the range of 35% by weight, but there was no change even if Ti was added in the range where the amount of Cr was less than 10% by weight;
If the content exceeds 35% by weight, the shear cutting performance will also decrease.

一方、Cu―Cr―Ta―Ti系合金でCrを10〜35重
量%、Taを20重量%以下、Tiを5重量%以下の
範囲含有する接点材料は従来品(Cu―25Cr品)
と比較して、接触抵抗も劣ることはなく、耐電圧
性能も同等に良好であることを図示しないが種々
の実験で確認している。
On the other hand, contact materials that are Cu-Cr-Ta-Ti alloys containing 10 to 35% by weight of Cr, 20% by weight or less of Ta, and 5% or less of Ti are conventional products (Cu-25Cr products).
It has been confirmed through various experiments (not shown) that the contact resistance is not inferior and the withstand voltage performance is equally good.

また、図示しないが、上記合金にBi,Te,
Sb,Tl,Pb,Se,Ce及びCaのうちの少なくと
も1つの低融点金属、その合金、その金属間化合
物、並びにその酸化物のうち少なくとも1種を20
重量%以下添加した低さい断真空しや断器用接点
においても、前記実施例と同様にしや断性を上昇
させる効果があることを確認している。
Although not shown in the figure, Bi, Te,
At least one low melting point metal selected from Sb, Tl, Pb, Se, Ce, and Ca, its alloy, its intermetallic compound, and its oxide.
It has been confirmed that low sintering vacuum insulation and breaker contacts containing less than % by weight have the same effect of increasing the sintering strength as in the above example.

なお、低融点金属、その合金、その金属間化合
物、並びにその酸化物のうち少なくとも1種を20
重量%以上添加した場合には著しく、しや断性能
が低下した。又、低融点金属がCeあるいはCaの
場合は若干特性が劣る。
In addition, at least one of the low melting point metals, their alloys, their intermetallic compounds, and their oxides is 20%
When more than % by weight was added, the shearing performance decreased significantly. Furthermore, when the low melting point metal is Ce or Ca, the properties are slightly inferior.

なお、上記実施例では、この発明をCu―Cr―
Ta―Ti合金により説明したが、上記合金の各元
素が単体、四者、三者もしくは二者の合金、四
者、三者もしくは二者の金属間化合物又はそれら
の複合体として分布している場合にも所期の目的
を達する。
In addition, in the above embodiment, this invention is applied to Cu-Cr-
Although the Ta-Ti alloy has been explained, each element in the above alloy is distributed as a single element, a quaternary, tri- or di-atomic alloy, a quaternary, tri- or di-metallic compound, or a composite thereof. In any case, the intended purpose is achieved.

以上のように、この発明によれば、銅を有する
と共に他の成分としてクロムが10〜35重量%、タ
ンタルが20重量%以下で、かつチタンが5重量%
以下の範囲含有することを特徴とするものである
ので、Ta量を少なくしても、しや断性能に優れ、
かつ良好な耐電圧性能を有する真空しや断器用接
点材料が得られる効果がある。さらに、タンタル
を3.5〜18重量%、チタンを0.8重量%以下の範囲
に限定すると、チタンを添加しない場合よりしや
断性能が向上する。
As described above, according to the present invention, in addition to containing copper, other components include chromium of 10 to 35% by weight, tantalum of 20% by weight or less, and titanium of 5% by weight.
It is characterized by containing the following range, so even if the amount of Ta is reduced, it has excellent shear cutting performance,
Moreover, there is an effect that a contact material for a vacuum shield or disconnection having good withstand voltage performance can be obtained. Furthermore, when tantalum is limited to 3.5 to 18% by weight and titanium is limited to 0.8% by weight or less, the shearing performance is improved compared to the case where titanium is not added.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な真空スイツチ管の構造を示す
断面図、第2図はその第1図の電極部分の拡大断
面図、第3図はこの発明の実施例の接点材料にお
けるCr量を25重量%に固定し、Ta量を0,1,
5,10,15,20,25重量%に固定した合金に対し
てTi添加量を変化させた時のしや断容量の変化
を示す特性図、第4図はこの発明の実施例の接点
材料におけるCr量を25重量%に固定し、Ti量を
0,0.5,1.0,1.5,3,5重量%に固定した合金
に対してTa量を変化させた時のしや断容量の変
化を示す特性図である。 図において1は真空絶縁容器、2,3は端板、
4,5は電極、6,7は電極棒、8はベローズ、
9,10はシールド、51はろう材、Aは従来品
(Cu―25Cr品)のしや断容量である。
Fig. 1 is a sectional view showing the structure of a general vacuum switch tube, Fig. 2 is an enlarged sectional view of the electrode portion of Fig. 1, and Fig. 3 shows the amount of Cr in the contact material of the embodiment of this invention. Fixed weight%, Ta amount 0, 1,
A characteristic diagram showing the change in shear capacity when the amount of Ti added is changed for an alloy fixed at 5, 10, 15, 20, and 25% by weight. Figure 4 is a contact material of an embodiment of this invention. The figure shows the change in shear shear capacity when the Ta content is changed for alloys in which the Cr content is fixed at 25% by weight and the Ti content is fixed at 0, 0.5, 1.0, 1.5, 3, and 5% by weight. It is a characteristic diagram. In the figure, 1 is a vacuum insulated container, 2 and 3 are end plates,
4 and 5 are electrodes, 6 and 7 are electrode rods, 8 is bellows,
9 and 10 are the shields, 51 is the brazing filler metal, and A is the shear capacity of the conventional product (Cu-25Cr product).

Claims (1)

【特許請求の範囲】 1 銅を含有すると共に、他の成分としてクロム
が10〜35重量%、タンタルが20重量%以下で、か
つチタンが5重量%以下の範囲含有することを特
徴とする真空しや断器用接点材料。 2 チタンが3重量%以下の範囲含有することを
特徴とする特許請求の範囲第1項記載の真空しや
断器用接点材料。 3 チタンが0.8重量%以下の範囲含有すること
を特徴とする特許請求の範囲第1項記載の真空し
や断器用接点材料。 4 タンタルが3.5〜18重量%、チタンが0.8重量
%以下の範囲含有することを特徴とする特許請求
の範囲第1項記載の真空しや断器用接点材料。 5 タンタルが3.5〜15重量%、チタンが0.8重量
%以下の範囲含有することを特徴とする特許請求
の範囲第1項記載の真空しや断器用接点材料。 6 ビスマス,テルル,アンチモン,タリウム,
鉛,セレン,セリウム及びカルシウムのうちの少
なくとも1つの低融点金属、その合金その金属間
化合物、並びにその酸化物のうちの少なくとも1
種を20重量%以下含有していることを特徴とする
特許請求の範囲第1項ないし第5項のいずれかに
記載の真空しや断器用接点材料。
[Scope of Claims] 1. A vacuum characterized by containing copper and, as other components, chromium in a range of 10 to 35% by weight, tantalum in a range of 20% by weight or less, and titanium in a range of 5% by weight or less. Contact material for wire breakers. 2. The contact material for a vacuum shield or breaker according to claim 1, characterized in that titanium is contained in a range of 3% by weight or less. 3. The contact material for a vacuum shield or breaker according to claim 1, which contains titanium in a range of 0.8% by weight or less. 4. The contact material for a vacuum shield or breaker according to claim 1, which contains tantalum in a range of 3.5 to 18% by weight and titanium in a range of 0.8% by weight or less. 5. The contact material for a vacuum shield or breaker according to claim 1, which contains tantalum in a range of 3.5 to 15% by weight and titanium in a range of 0.8% by weight or less. 6 Bismuth, tellurium, antimony, thallium,
At least one low melting point metal of lead, selenium, cerium and calcium, its alloy, its intermetallic compound, and at least one of its oxides
The contact material for a vacuum shield or disconnection switch according to any one of claims 1 to 5, characterized in that it contains 20% by weight or less of seeds.
JP7661583A 1982-11-01 1983-04-28 Contact material for vacuum breaker Granted JPS59201331A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7661583A JPS59201331A (en) 1983-04-28 1983-04-28 Contact material for vacuum breaker
US06/547,218 US4517033A (en) 1982-11-01 1983-10-31 Contact material for vacuum circuit breaker
EP83110920A EP0110176B1 (en) 1982-11-01 1983-11-02 Contact material for vacuum circuit breaker
DE8383110920T DE3378088D1 (en) 1982-11-01 1983-11-02 Contact material for vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7661583A JPS59201331A (en) 1983-04-28 1983-04-28 Contact material for vacuum breaker

Publications (2)

Publication Number Publication Date
JPS59201331A JPS59201331A (en) 1984-11-14
JPS6336092B2 true JPS6336092B2 (en) 1988-07-19

Family

ID=13610248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7661583A Granted JPS59201331A (en) 1982-11-01 1983-04-28 Contact material for vacuum breaker

Country Status (1)

Country Link
JP (1) JPS59201331A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766441B2 (en) * 1993-02-02 1998-06-18 株式会社東芝 Contact material for vacuum valve

Also Published As

Publication number Publication date
JPS59201331A (en) 1984-11-14

Similar Documents

Publication Publication Date Title
US3246979A (en) Vacuum circuit interrupter contacts
EP0083245B1 (en) A sintered contact material for a vacuum circuit breaker
EP0083200B1 (en) Electrode composition for vacuum switch
EP0110176B1 (en) Contact material for vacuum circuit breaker
JPH0156490B2 (en)
EP0109088B1 (en) Contact material for vacuum circuit breaker
EP0126347B1 (en) Contact material for vacuum circuit interrupter, contact member of such material, a vacuum circuit interrupter and the use of such material
JPS6336092B2 (en)
US4129760A (en) Vacuum circuit breaker
JPS6336090B2 (en)
JPH0449733B2 (en)
JPH0449734B2 (en)
JPH0133011B2 (en)
JPS59201334A (en) Contact material for vacuum breaker
JPS6336089B2 (en)
JPS59201335A (en) Contact material for vacuum breaker
JPH0612649B2 (en) Contact material for vacuum circuit breaker
JPS59201336A (en) Contact material for vacuum breaker
JPS60170122A (en) Contact material for vacuum breaker
JPH0133012B2 (en)
GB2105910A (en) A contact member for vacuum isolating switches
JPS59167925A (en) Contact material for vacuum breaker
JPS59214121A (en) Contact material for vacuum breaker
JPS59169012A (en) Contact material for vacuum breaker
JPS60170123A (en) Contact material for vacuum breaker