JPS6335899B2 - - Google Patents

Info

Publication number
JPS6335899B2
JPS6335899B2 JP7972383A JP7972383A JPS6335899B2 JP S6335899 B2 JPS6335899 B2 JP S6335899B2 JP 7972383 A JP7972383 A JP 7972383A JP 7972383 A JP7972383 A JP 7972383A JP S6335899 B2 JPS6335899 B2 JP S6335899B2
Authority
JP
Japan
Prior art keywords
spray
air
nozzle
duct
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7972383A
Other languages
Japanese (ja)
Other versions
JPS59205535A (en
Inventor
Hiroshi Ikeuchi
Kazuhiro Fukushima
Masaharu Yonezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H Ikeuchi and Co Ltd
Original Assignee
H Ikeuchi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H Ikeuchi and Co Ltd filed Critical H Ikeuchi and Co Ltd
Priority to JP7972383A priority Critical patent/JPS59205535A/en
Publication of JPS59205535A publication Critical patent/JPS59205535A/en
Publication of JPS6335899B2 publication Critical patent/JPS6335899B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Humidification (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の技術分野 本発明はビル建物の空調に好適な加湿装置に関
する。 従来技術 従来、ビル建物の空調において、加湿の問題は
今日まで兎角等閑視され勝ちであつた。然るに昨
今、最新医学では健康と湿度との深い相関関係が
指摘され、過小湿度の環境下で、健全な生活は営
み難いとしており、ビル建築基準法令でも夙に最
低湿度の保持を規定してはいるが、今日まで技術
的にも経済的にも適切な加湿装置がなかつたため
に建築業界では一向に遵守されず、未だに野放し
の現状である。 一般に、ビル加湿装置としては以下のような方
式があつたが、いずれも大きな欠陥を有してい
た。すなわち、 (1) ボイラー蒸気による方式は、設備に多大の投
資を要するから大形ビルしか採用できず、また
石油価格高騰が蒸気のトン当り価格を狂騰さ
せ、運転コストを我慢の限界に近づけた。公害
防止の点からも付帯設備が必要となり、さらに
配管の腐蝕・ボイラーのスケールなど保守への
留意とコストがかかるものであつた。 (2) 水スプレー方式は、設備費用が安く最も普及
しているが、1流体式ノズルのため噴霧の粒子
が粗く、実効加湿率は20〜25%を越えないか
ら、申訳に設備されているに過ぎないものであ
り、また多量の水が浪費され、ドレンになつて
排水されるものであつた。 (3) 電熱蒸発方式は、いわゆるパン形加湿器で代
表されるよう、運転コストが高く小形ビル用で
あり、かつ水中の塩分が析出して機器に付着累
積し、数年を経ずして廃却されるケースが多
く、また加湿が即効的でないものであつた。 最近に至り特に高層ビルや超高層ビルが出現し
はじめると、問題は一段と深刻になつてきた。こ
れら在来の加湿方式をもつてしては、徒らに巨額
の設備投資や高い運転コストを浪費するのみで、
規定の湿度レベルをクリアすることはほとんど不
可能に近い。 また大形電算機の普及にともなう電算室、エレ
クトロニクス産業における作業室などでの静電発
生防止上、あるいはバイオケミカル産業における
培養室、医学実験用の動物飼育室などでの比較的
高湿度保持上、在来の加湿方式での対応が困難に
なり、これらに代わる比較的に安価な設備で、経
済的な運転が可能で、何よりも効率が遥かに高
い、漸新な新加湿方式の出現が待たれていた。 発明の目的 本発明は、この要望に答えるべく、上記3方式
を検討した結果、ボイラー蒸気方式や電熱蒸発方
式はエネルギー多消費形として致命的な欠陥を持
つために対象から外し、残る水スプレー方式の改
善を追及して新規な加湿装置を提供せんとするも
のである。 従来の水スプレー方式においては第1図に示す
ように1流体式ノズル1に水圧源2から10Kg/cm2
程度までの圧力をかけた水をエアハンドリングユ
ニツト室3内で噴霧させており、噴霧の最大粒子
径は100ミクロン以上数100ミクロン程度に及ぶか
ら、ノズル1の前面にデミスター4を設け、霧が
直接送風機5に吸い込まれてダクトに運ばれ、こ
れら周辺を濡らして漏水事故を起こさぬよう、1
度噴霧をデミスター4で受け止めるように構成し
ていた。この種のデミスター4はヘチマ繊維類似
の合成繊維で数センチメートル厚の板状に作られ
て、適度の保水性を通気性を有するから、受け止
められた噴霧は、デミスター4の繊維表面を濡ら
しながら、高速で通過する換気中に蒸発して給気
の湿度を高めることになる。この水スプレー方式
によると、水分が空気に移乗するのは、そのほと
んどがデミスター4上においてであるから、スプ
レーノズルの働きは水を微粒化して直接空気湿度
を高めるのではなく、単にデミスター4上に撒水
するに過ぎない。単位面積当りのデミスター上の
水の蒸発量には自から制限があるから、大量の加
湿を必要とする高層ビルなどにあつては、計算通
りの総計面積のデミスター4を装着しようとする
と到底許容し難いような巨大エアハンドリングユ
ニツト室3を設けなければならないから、法規で
定められた湿度は兎角無視され勝ちになつている
わけである。 事実、今日の空調設備計算においても、デミス
ター4による水の蒸発量は、総ノズル噴霧水量の
僅か20〜25%に過ぎないものとして機器類設計が
行なわれている。このような極端に低効率の機器
が今日もなお現用されているというのは誠に驚く
べきことである。また、噴霧された水量の75〜8
%はエアハンドリングユニツト室内を濡らし、ド
レンとなつて屋外に排水されるから、機器類の腐
蝕が著しい上に上水の無駄がある。さらに、デミ
スターは換気の流れに抵抗するから送風機はサイ
ズアツプを強要されている。このような多くの欠
陥を持つ水スプレー方式を改善するには、まつた
く新しいコンセプトを原点として発明しなければ
ならない。また、空気調和において漏水による事
故は大きなトラブルを惹起するから厳禁とされ、
防水対策が十分に施されたエアハンドリングユニ
ツト室の外、例えばダクト内などで結露を生じた
り濡れを引き起こすことは許されない。 然しながら、本発明は噴霧粒子を次第に小さく
して行くならばある限界を越えると結露も濡れも
生じることなく、水分を直接空気中へ蒸発拡散で
きるであろう点に着眼し、もしもそれが可能の暁
には、エアハンドリングユニツト室内で加湿噴霧
を行なうに際してデミスターが不要になろうし、
さらに1歩を進め、ダクト内における噴霧加湿も
可能になろうから、20〜25%という前時代的な加
湿効率は一挙に100%近くまで引き上げられ、ま
た前述のような水スプレー方式にまつわる諸欠点
も完全に氷解できるであろうと考えてこれを実証
したものである。 本発明は、上記の如く目的を達成すべく、空調
用加湿装置として、空気を5m/sec以上の速度
で一方向へ通過させる管状の送風用ダクト内に、
該ダクト内壁より130m/m以上離れたほぼダク
ト中央の位置に、水圧源より供給される水を気圧
源より送られる空気によつて微粒化して噴霧する
2流体式ノズルを1個以上設け、これらノズルを
互いに等しい間隔をおいて対向して配置し、それ
ら対向するノズルの軸線がなす角度を70〜160゜の
範囲内に設定すると共に各ノズルの先端より他の
ノズルの軸線の交点までの距離を3〜15mmの範囲
内に設定し、最大水滴粒径大略50ミクロン以下の
噴霧を噴霧量3/hr以上で、送風用ダクト内に
送給される空気中に、該空気の流れの方向に沿つ
て噴射するようにし、かつ、少なくとも、該2流
体式ノズルより噴射される噴霧が空気の流れ方向
前方2m以内では何物にも遮ぎられることがない
構成としたことを特徴とするものを新規に創作し
たものである。 実施例 以下、本発明を図面に示す実施例について詳細
に説明する。 第2図において、11は送風用ダクト、12は
該ダクトの中央に設けた2流体式噴霧ノズルであ
る。ダクト11は断面積が大略均一な管状のもの
で、送風機13によりダクトの取入口11aから
他側の吹出口11bへ空気が送られる。ノズル1
2は水圧源14より供給される水を気圧源15よ
り送られる空気によつて微粒化し噴霧として前方
へ噴射させる。ダクト11内には空気を5m/
sec以上の速度で、一方向へ通過させる一方、ノ
ズル12はダクト11内壁より130m/m以上離
れた中央の位置に設けて、噴射する噴霧を上記空
気の流れの方向に沿つて、少なくとも前方2m以
内は何物にも遮ぎられることのない状態で、最大
水滴粒径大略50ミクロン以下の噴霧を、噴霧量3
/hr以上噴霧するようにする。 ノズル12は、水圧源から供給される水を圧搾
空気源から供給される圧搾空気で微粒化して噴射
する2流体式のもので、たとえば第3図及び第4
図に示す如く、夫々先端に噴射孔19を形成した
搭載孔14を有するノズル筐体10と、該搭載孔
14に挿入される、給液孔16と気孔17を備え
たノズルチツプ23よりなり、かつ上記搭載孔1
4とノズルチツプ23の内外周に互に嵌合するテ
ーパ部27を設けて、搭載孔14の外端にノズル
チツプ23を押圧するプラグ18をネジ込んで上
記両テーパ部を嵌合させてノズルチツプ23を搭
載孔14と同芯軸上に組み込んでなる少くとも2
個以上のノズル12を互に等間隔をおいて配置
し、かつそれらの対向するノズル12,12の軸
線Y―Yがなす角度を70〜160゜の範囲内に設定す
ると共に各ノズル12の先端より他のノズル12
の軸線の交点Aまでの距離Hを3〜15mmの範囲内
に設定するようにして、最大水滴粒径大略50ミク
ロン以上の噴霧を噴霧量3/hr以上噴霧できる
ものを採用する。 上記の如き構成よりなる空調用加湿装置におい
て、その加湿効率を確認するために次の4つの実
験を行つた。 実験 1 この推測を実地確認するため第2図に示す如き
実験装置を作り、そこでは可能性の限界を追及す
るため最も苛酷な条件設定を行なつた。すなわ
ち、実用最小の300mm×300mm角のダクト内を気温
20℃の空気が5m/secの低速で通過するように
した。また、ダクトの中心から気流に沿うて噴霧
できるよう、ダクト側壁に孔を設けてノズルの挿
入を可能にし、挿入孔から前方の側壁は透明なア
クリル板で作つて内部の濡れ状態が外から観察で
きるようにした。 当目標を達成するためにはノズルの選択が最も
重要である。液圧式の1流体式ノズルでは、最も
微細な噴霧を発生できるものにあつても最大粒子
径はせいぜい100ミクロン程度であるから到底使
用できない。そこで圧さく空気により霧化を行な
う2流体式ノズル中、噴霧発生装置として第3図
及び第4図に示す如き超微霧を多量発生するノズ
ルを採用した。 このノズルは2流体方式で圧さく空気圧と水圧
とを相関的に変化させ、噴霧量と粒子径とを自在
に変化させることができるもので、前記ダクトの
挿入孔に該ノズルを挿入し、圧さく空気圧を7
Kg/cm2、給水圧を0.5Kg/cm2にまずセツトした。
この条件下ではノズルはまつたく噴霧しないか
ら、第5図に示す如くそこから給水圧を0.5Kg/
cm2に保つたまま、圧さく空気圧を次第に低下させ
た。ノズル1コ当りの噴霧量を増すため給水圧
0.5Kg/cm2以上に保持した。 圧さく空気圧が下がるにつれて噴霧がはじま
り、噴霧量が次第に増えるにつれて粒子径が粗く
なつた。圧さく空気圧が4Kg/cm2程度まで降下す
るとダクト壁のアクリル板が曇りはじめ次第に水
滴に成長して行くことが分かつた。 そこでテストを中断し、ノズルをダクトから取
り出し、同じ噴霧条件、すなわち給水圧0.5Kg/
cm2、圧さく空気圧4Kg/cm2で噴霧して粒子径の計
測を行なつたところ、最大粒子径は60ミクロン程
度であることが判明した。因に噴霧量は6.5/
hr程度であつた。噴霧粒子径の計測法は最も一般
的な液浸法(最適な粘度のシリコンオイルを使
用)により、ノズル噴口からほぼ1mの点で粒子
をガラス板上に捕捉し計測した。 再び、ノズル12をダクト11内に挿入し、給
水圧0.5Kg/cm3、圧さく空気圧4.5Kg/cm2の条件で
長時間噴霧を続けた結果ダクト壁の曇りは一切見
られなかつた。そこで再度ノズルを取り出し、す
べて同じ条件の下で噴霧粒子径を詳細に計測した
結果、第6図に示す如き粒子径の分布表を得た。
該表によれば最大粒子径は40〜50ミクロンの間に
介在し、ザウター平均径は10.7ミクロンで、噴霧
量も実用に足る5.5/hrあることが分かつた。
この結果、水滴を発生させないための以上のよう
な事前テストを経て、空調用噴霧はその限界粒子
径が50ミクロンであることをほぼ確認した。 実験 2 ダクト内壁の濡れを測定するために第3図、お
よび第4図に示す如きノズルをダクト内に取りつ
け、ノズルからダクト内壁までの距離を変化させ
て、内壁の濡れを観察すると共にノズル前方に障
害物を置いて、障害物への水滴付着を観察すると
いつた2種のテストを行なつた。 テスト条件は、使用ノズルとして、第3図及び
第4図に示す如きノズルを用い、これを300角ダ
クト内に1個取りつけ、該ノズルの噴霧仕様は空
気圧=4.5Kg/cm2、水圧=0.5Kg/cm2、噴霧量=5.5
/hr、最大粒径=50μとして、その噴霧方向は
並行流とし、さらに送風条件は温度26℃、湿度40
%RH、風速9m/sec、とした。 上記の如き構成よりなるノズルを用いてダクト
内壁とノズルとの距離を変化させた場合、すな
わち、ノズル位置を対角線上の中心から、徐々に
コーナーへ持つていきダクト前面アクリルおよび
底面に水滴が付着する時のを読みとつた結果、
下表の如き結果を得た。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a humidifying device suitable for air conditioning of buildings. Prior Art Until now, the problem of humidification in air conditioning for buildings has been largely ignored. However, recently, the latest medical science has pointed out the deep correlation between health and humidity, and it is said that it is difficult to live a healthy life in an environment with too little humidity. However, due to the lack of technically and economically appropriate humidifiers, the construction industry has never complied with this law, and the situation remains unchecked. In general, the following systems have been used as building humidifiers, but all of them had major deficiencies. In other words, (1) the method using boiler steam requires a large investment in equipment, so it can only be used in large buildings, and the soaring price of oil has caused the price per ton of steam to skyrocket, bringing operating costs close to the limit. Ta. Ancillary equipment was required to prevent pollution, and maintenance costs such as corrosion of pipes and boiler scale were required. (2) The water spray method has the lowest equipment cost and is the most popular, but because it is a single-fluid nozzle, the spray particles are coarse and the effective humidification rate does not exceed 20 to 25%, so it is unfortunately not installed. Moreover, a large amount of water was wasted and was drained away. (3) Electric thermal evaporation methods, as exemplified by so-called pan-shaped humidifiers, have high operating costs and are used for small buildings.Also, salt in the water precipitates and accumulates on equipment, causing damage within a few years. In many cases, they were discarded, and humidification was not immediately effective. Recently, the problem has become even more serious, especially as high-rise buildings and skyscrapers begin to appear. These conventional humidification methods only waste huge amounts of capital investment and high operating costs.
It is almost impossible to meet specified humidity levels. It is also used to prevent static electricity generation in computer rooms and work rooms in the electronics industry due to the spread of large computers, and to maintain relatively high humidity in culture rooms in the biochemical industry and animal breeding rooms for medical experiments. , it has become difficult to cope with conventional humidification methods, and new and innovative humidification methods have emerged that are relatively inexpensive, can be operated economically, and, above all, are far more efficient. It was waiting. Purpose of the Invention In order to meet this demand, the present invention has examined the above three methods, and as a result, boiler steam method and electric heat evaporation method are excluded from the target as they have fatal flaws as they consume a lot of energy, and the water spray method remains. The purpose of the present invention is to provide a new humidifying device by pursuing improvements in the following. In the conventional water spray method, as shown in Fig. 1, 10 kg/cm 2 is applied from a water pressure source 2 to a single fluid type nozzle 1.
The water under a certain degree of pressure is atomized in the air handling unit chamber 3, and the maximum particle size of the spray ranges from 100 microns to several 100 microns, so a demister 4 is installed in front of the nozzle 1 to prevent the mist 1. To prevent water from being sucked directly into the blower 5 and carried to the duct, wetting the area and causing a leakage accident.
It was configured to receive the spray with demister 4. This type of demister 4 is made of synthetic fiber similar to loofah fiber in the form of a plate several centimeters thick, and has moderate water retention and breathability, so the spray that is received wets the fiber surface of the demister 4. , will evaporate during the ventilation passing at high speed and increase the humidity of the supply air. According to this water spray method, most of the moisture is transferred to the air on the demister 4, so the spray nozzle does not atomize the water and directly increase the air humidity, but simply on the demister 4. It's just a matter of sprinkling water. There is a limit to the amount of water that evaporates on a demister per unit area, so if you try to install a demister 4 with the calculated total area in a high-rise building that requires a large amount of humidification, it will not be acceptable. Since it is necessary to install a huge air handling unit chamber 3, which is difficult to install, the humidity stipulated by law is ignored and prevails. In fact, even in today's air conditioning equipment calculations, equipment is designed on the assumption that the amount of water evaporated by the demister 4 is only 20 to 25% of the total amount of water sprayed by the nozzles. It is truly surprising that such extremely low efficiency equipment is still in use today. Also, the amount of water sprayed is 75-8
% wets the interior of the air handling unit and is drained outdoors, resulting in significant corrosion of equipment and waste of water. Additionally, the demister resists the flow of ventilation, forcing blowers to increase in size. In order to improve the water spray system, which has many deficiencies, it is necessary to invent a completely new concept. In addition, accidents caused by water leaks in air conditioning systems are strictly prohibited as they cause major problems.
It is not permissible for condensation or wetting to occur outside the air handling unit room, which has been adequately waterproofed, e.g. in the ducts. However, the present invention focuses on the fact that if the size of the spray particles is gradually reduced, water can be directly evaporated and diffused into the air without condensation or wetting beyond a certain limit. In the future, a demister will no longer be necessary when performing humidifying spray inside the air handling unit room.
Going one step further, it will become possible to spray humidify inside the duct, which will instantly raise the previous era's humidification efficiency of 20-25% to nearly 100%, and also eliminate the drawbacks associated with the water spray method mentioned above. We thought that it would be possible to completely thaw the ice, and we verified this. In order to achieve the object as described above, the present invention is an air conditioning humidifier that includes a tubular ventilation duct that allows air to pass in one direction at a speed of 5 m/sec or more.
One or more two-fluid nozzles are installed approximately at the center of the duct at a distance of 130 m/m or more from the inner wall of the duct, and the water supplied from the water pressure source is atomized and sprayed by air sent from the air pressure source. The nozzles are arranged facing each other at equal intervals, and the angle formed by the axes of the opposing nozzles is set within the range of 70 to 160 degrees, and the distance from the tip of each nozzle to the intersection of the axes of other nozzles. is set within the range of 3 to 15 mm, and a spray with a maximum water droplet size of approximately 50 microns or less is sprayed at a spray rate of 3/hr or more into the air fed into the ventilation duct in the direction of the air flow. and is characterized by a structure in which the spray jetted from the two-fluid nozzle is not obstructed by anything within at least 2 m in front of the air flow direction. This is a new creation. Embodiments Hereinafter, embodiments of the present invention shown in the drawings will be described in detail. In FIG. 2, 11 is a ventilation duct, and 12 is a two-fluid type spray nozzle provided in the center of the duct. The duct 11 is tubular with a substantially uniform cross-sectional area, and a blower 13 sends air from the intake port 11a of the duct to the outlet 11b on the other side. Nozzle 1
2, water supplied from a water pressure source 14 is atomized by air sent from a pressure source 15, and is jetted forward as a spray. Air is kept in the duct 11 for 5m/
The nozzle 12 is installed at a central position 130 m/m or more away from the inner wall of the duct 11, and the spray is directed at least 2 m forward in the direction of the air flow. Spray with a maximum water droplet size of approximately 50 microns or less at a spray volume of 3 without being obstructed by anything.
Make sure to spray at least /hr. The nozzle 12 is of a two-fluid type that atomizes water supplied from a water pressure source with compressed air supplied from a compressed air source and injects the atomized water.
As shown in the figure, it consists of a nozzle housing 10 having a mounting hole 14 with an injection hole 19 formed at the tip thereof, and a nozzle chip 23 having a liquid supply hole 16 and an air hole 17 inserted into the mounting hole 14, and Mounting hole 1 above
4 and the inner and outer peripheries of the nozzle tip 23 are provided with tapered portions 27 that fit with each other, and the plug 18 for pressing the nozzle tip 23 is screwed into the outer end of the mounting hole 14, and the two taper portions are fitted together to mount the nozzle tip 23. At least two parts are assembled on a coaxial shaft with the mounting hole 14.
or more nozzles 12 are arranged at equal intervals, and the angle formed by the axes Y-Y of the opposing nozzles 12, 12 is set within the range of 70 to 160 degrees, and the tip of each nozzle 12 is More nozzles 12
The distance H to the intersection point A of the axes of is set within the range of 3 to 15 mm, and a device capable of spraying a spray with a maximum water droplet diameter of approximately 50 microns or more at a spray rate of 3/hr or more is adopted. The following four experiments were conducted to confirm the humidification efficiency of the air conditioning humidifier configured as described above. Experiment 1 In order to actually confirm this conjecture, we constructed an experimental device as shown in Figure 2, and set the most severe conditions there in order to explore the limits of possibility. In other words, the temperature inside the duct of 300mm x 300mm square, which is the smallest practical
Air at 20°C was allowed to pass through at a low speed of 5 m/sec. In addition, in order to spray along the airflow from the center of the duct, a hole is provided in the side wall of the duct to allow the insertion of the nozzle, and the side wall in front of the insertion hole is made of a transparent acrylic plate so that the internal wet state can be observed from the outside. I made it possible. In order to achieve this goal, nozzle selection is most important. Hydraulic single-fluid nozzles, even those that can generate the finest spray, have a maximum particle size of about 100 microns at most, so they cannot be used at all. Therefore, among the two-fluid nozzles that perform atomization using compressed air, a nozzle that generates a large amount of ultra-fine mist as shown in FIGS. 3 and 4 was adopted as a spray generator. This nozzle uses a two-fluid system to change the compressed air pressure and water pressure in a correlated manner, and can freely change the spray amount and particle diameter.The nozzle is inserted into the insertion hole of the duct, and the pressure is Set the air pressure to 7
Kg/cm 2 and the water supply pressure was first set to 0.5 Kg/cm 2 .
Under these conditions, the nozzle does not spray tightly, so the water supply pressure is increased by 0.5 kg/1 as shown in Figure 5.
The compressing air pressure was gradually decreased while maintaining the pressure at cm 2 . Water supply pressure to increase the amount of spray per nozzle
Maintained at 0.5Kg/cm2 or higher . Spraying started as the crushing air pressure decreased, and as the spray amount gradually increased, the particle size became coarser. It was found that when the compressed air pressure decreased to about 4 kg/cm 2 , the acrylic plate on the duct wall began to become cloudy and gradually grew into water droplets. Then, the test was stopped, the nozzle was removed from the duct, and the spray conditions were the same, i.e., the water supply pressure was 0.5 kg/
When the particle size was measured by spraying at a compressed air pressure of 4 kg/cm 2 , the maximum particle size was found to be about 60 microns. Incidentally, the spray amount is 6.5/
It was about hr. The diameter of the sprayed particles was measured by the most common immersion method (using silicone oil of optimum viscosity) by trapping the particles on a glass plate at a point approximately 1 m from the nozzle orifice. The nozzle 12 was inserted into the duct 11 again, and spraying was continued for a long time under the conditions of a water supply pressure of 0.5 kg/cm 3 and a crushing air pressure of 4.5 kg/cm 2 . As a result, no clouding was observed on the duct wall. Then, the nozzles were taken out again and the spray particle diameters were measured in detail under the same conditions, and as a result, a particle diameter distribution table as shown in FIG. 6 was obtained.
According to the table, it was found that the maximum particle diameter was between 40 and 50 microns, the Sauter average diameter was 10.7 microns, and the spray rate was 5.5/hr, which was sufficient for practical use.
As a result, after conducting the above preliminary tests to prevent the generation of water droplets, it was almost confirmed that the particle size limit for air conditioning spray is 50 microns. Experiment 2 In order to measure the wetting of the inner wall of the duct, a nozzle as shown in Fig. 3 and Fig. 4 was installed in the duct, and the distance from the nozzle to the inner wall of the duct was changed to observe the wetting of the inner wall and the front of the nozzle. Two types of tests were conducted, in which obstacles were placed on the ground and water droplets adhering to the obstacles were observed. The test conditions were as shown in Figures 3 and 4. One nozzle was installed in a 300 square duct, and the spray specifications of the nozzle were: air pressure = 4.5Kg/cm 2 , water pressure = 0.5 Kg/cm 2 , spray amount = 5.5
/hr, the maximum particle size = 50μ, the spray direction is parallel flow, and the air blowing conditions are a temperature of 26℃ and a humidity of 40℃.
%RH, and the wind speed was 9 m/sec. When using a nozzle with the above configuration and changing the distance between the duct inner wall and the nozzle, that is, when the nozzle position is gradually moved from the center on the diagonal line to the corner, water droplets adhere to the front acrylic and bottom of the duct. As a result of understanding when to
The results shown in the table below were obtained.

【表】【table】

【表】 に生じた。
このことから=130が使用限界と考えられる。
すなわち、ノズルをダクト内あるいは、エアハン
ドリングユニツト内に装着する際、内壁に130
m/mを越えて近づけてはならない、あるいは
130m/m以上、内壁から離して装着するを要す
ことが分つた。 実験 3 ノズル12前方の障害物20への水滴付着を測
定するために実験2と同じノズルを同じ条件で用
いて、第7図に示すようにダクト内でノズル前方
1000〜2750の間に250ピツチでφ14mmのパイプ
(長さ150mm)を8本立てて並べ10分間連続噴霧し
て水滴の付着状態を観察した。結果、下表の如き
結果を得た。
[Table]
From this, =130 is considered to be the usable limit.
In other words, when installing the nozzle inside a duct or air handling unit, 130 mm is attached to the inner wall.
Must not be brought closer than m/m, or
It was found that it was necessary to install it at least 130 m/m away from the inner wall. Experiment 3 In order to measure the adhesion of water droplets to the obstacle 20 in front of the nozzle 12, the same nozzle as in Experiment 2 was used under the same conditions.
Eight φ14 mm pipes (length 150 mm) were lined up at 250 pitches between 1000 and 2750, and sprayed continuously for 10 minutes to observe the adhesion of water droplets. As a result, the results shown in the table below were obtained.

【表】 このことからノズル前方2000mmが障害物限界距
離と考えられる。すなわち、ノズルの前方2m以
内に噴霧の流れを遮ぎる物体があつてはならない
ことが分る。 実験 4 上記の如くノズルを、上記3つの実験結果で得
た結果に基づいて、拘束し、実際のビルでフイー
ルドテストした。 第1ビルにおいては、エアハンドリングユニツ
ト室内に装備されていた水スプレーノズルとそれ
らの配管、ならびにデミスターを撒去し、その代
りに水スプレーノズルの元の位置に第3図及び第
4図に示す如きノズル7個を装着した(第8図)
(第9図)。計測のため、事前にアスマン温湿度計
を基準として十分精度を確認したデイジタル温湿
度計を6階の空室中央に備えた。 噴霧開始直前、該室内の温湿度はそれぞれ21
℃、38%で一定値を示していた。 噴霧を開始した。送風量は37000m3/hrでその
約30%は取入れ外気であつた。ノズルは圧さく空
気圧4.5Kg/cm2、給水圧0.5Kg/cm2で運転された。 計測記録紙上では、噴霧開始後30分程度まで湿
度はゆるやかに上昇を続けるが、それ以後は一定
値に落ち着くことが分かつた。そのときの室内空
気条件は温度20℃、湿度53%であつた。このとき
の加湿効率は92%と計出された。(第10図)そ
こでエアハンドリングユニツト室内壁、送風機、
その他の部位に濡れがないかどうかを調べるため
に立ち入り調査を慎重に行なつたところ、デミス
ターを撒去したにもかかわらず、どの個所にも全
く濡れがなかつた。ドレンとなつて排出される水
も勿論皆無であつた。(第10図) 第2ビルにおいては、竿頭一歩を進め、送風機
の吹出し口の直上に9個の第3図及び第4図に示
すノズルを装着した。(第11図)(第12図)ノ
ズル噴口から約2m上方のダクト内には防火ダン
パーが設けられていたから、その濡れが懸念され
ていたが、噴霧を開始した。送風量は41500m3
hrでそのうち約30%が取り入れ外気であつた。ノ
ズル駆動条件は第1ビルと同等であつた。噴霧開
始直前の室内温湿度はそれぞれ20℃、34%で一定
していた。噴霧開始後約2時間で温度20℃、湿度
50%に落ち着いた。この時の加湿効率は93%と計
出された。(第13図) その後送風機を停めて立ち入り調査した結果、
最初に最も懸念されていた防火ダンパーにいささ
かの濡れも見られず、ましてや他の壁面や部材は
全然濡れていなかつた。 このフイールドテストにより、最大粒子径が50
ミクロン以下の霧を用いれば、ノズル装着場所が
エアハンドリングユニツト室内であるか、あるい
は直接にダクト内であるかにかかわらず、90%以
上の加湿効率が得られる、送風の抵抗体として働
いていたデミスターも不要となり送風機を小さく
できる、エアハンドリングユニツト室も縮小が可
能になり貴重な床面積をセーブできるし、発錆が
減る、排水ダクトも不要になる、上水の節約がで
きる、など幾多の利益が生まれるが、それにも増
して重要なのは、空調業界において最大のネツク
であつた湿度管理が一挙に解決できる加湿システ
ムが完成したという点(第14図)ならびに、高
層ビルや超高層ビルにおける大規模空調加湿や、
エレクトロニクス工場、電算機室、バイオケミカ
ル作業場、実験用動物飼育室、などで要求される
多湿空調を可能にした点、とにあるであろう。こ
れらはいずれも従来の水スプレー加湿方式によつ
ては実際上不可能とされていたところである。 上記実施例に詳記せる如く、本発明にかかる空
調用加湿装置は、空気を5m/sec以上の速度で
一方向へ通過させるダクト内に、該ダクト内壁よ
り130m/m以上離れた中央の位置で、かつ上記
空気の流れの方向に沿つて、少くとも前方2m以
内は何物にも遮ぎられることなく、最大水滴粒径
大略50ミクロン以下の噴霧を、噴霧量3/hr以
上噴霧する2流体式ノズル1個以上設けてなるこ
とを特徴とするもので、極めて簡単な構成で所期
の目的、すなわち、良好な空調用加湿空気を効果
的に得ることができるものである。
[Table] From this, 2000mm in front of the nozzle is considered to be the obstacle limit distance. That is, it can be seen that there must be no object within 2 m in front of the nozzle that obstructs the flow of the spray. Experiment 4 The nozzle was restrained as described above based on the results obtained in the three experiments described above, and a field test was conducted in an actual building. In Building 1, the water spray nozzles and their piping as well as the demister installed in the air handling unit room were removed and replaced with the water spray nozzles in their original positions as shown in Figures 3 and 4. Seven such nozzles were installed (Figure 8).
(Figure 9). For measurements, a digital thermohygrometer whose accuracy had been confirmed in advance using the Assmann thermohygrometer as a reference was installed in the center of an empty room on the 6th floor. Immediately before starting spraying, the temperature and humidity in the room were 21
℃, it showed a constant value at 38%. Started spraying. The amount of air blown was 37000m 3 /hr, approximately 30% of which was taken in outside air. The nozzle was operated with a compacting air pressure of 4.5 Kg/cm 2 and a water supply pressure of 0.5 Kg/cm 2 . On the measurement record paper, it was found that the humidity continued to rise slowly until about 30 minutes after spraying started, but after that it settled down to a constant value. The indoor air conditions at that time were a temperature of 20°C and a humidity of 53%. The humidification efficiency at this time was calculated to be 92%. (Fig. 10) Therefore, the air handling unit indoor wall, blower,
When we carefully inspected the area to see if there was any moisture in other areas, we found that there was no moisture in any of the areas, even though we had sprayed the demister off. Of course, there was no water being discharged as drain. (Figure 10) In the second building, the pole head was moved one step further and nine nozzles shown in Figures 3 and 4 were installed directly above the blower outlet. (Fig. 11) (Fig. 12) A fire damper was installed in the duct approximately 2 m above the nozzle outlet, so there were concerns that it might get wet, but spraying started. Air volume is 41500m3 /
About 30% of the air was taken in from outside. The nozzle driving conditions were the same as in the first building. Immediately before the start of spraying, the room temperature and humidity were constant at 20°C and 34%, respectively. Approximately 2 hours after starting spraying, the temperature and humidity reached 20℃.
It settled on 50%. The humidification efficiency at this time was calculated to be 93%. (Fig. 13) After that, we stopped the blower and conducted an on-site investigation.
There was no sign of any moisture on the fire damper, which was the first concern, and even less on other walls or components. This field test shows that the maximum particle size is 50
Using sub-micron mist, the nozzle acts as a blow resistor, achieving a humidification efficiency of over 90%, regardless of whether the nozzle is installed inside the air handling unit or directly inside the duct. A demister is no longer needed, making the blower smaller, the air handling unit room can be downsized, saving valuable floor space, rusting is reduced, drainage ducts are no longer needed, water can be saved, and many other benefits. Although profits will be generated, what is even more important is that we have completed a humidification system that can solve humidity control, which was the biggest problem in the air conditioning industry (Figure 14), as well as the fact that scale air conditioning humidification,
This is probably due to the fact that it made possible the humid air conditioning required in electronics factories, computer rooms, biochemical workshops, laboratory animal breeding rooms, etc. All of these have been considered practically impossible with conventional water spray humidification methods. As detailed in the above embodiments, the air conditioning humidifier according to the present invention is installed in a duct through which air passes in one direction at a speed of 5 m/sec or more, at a central location 130 m/m or more away from the inner wall of the duct. And, along the direction of the air flow, spray a spray with a maximum water droplet diameter of approximately 50 microns or more at a spray rate of 3/hr or more without being obstructed by anything within at least 2 m in front.2 This device is characterized by being provided with one or more fluid type nozzles, and can effectively obtain the desired purpose, that is, good humidified air for air conditioning, with an extremely simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空調装置の説明図、第2図は本
発明にかかる空調用加湿テスト装置の説明図、第
3図は第1図の装置に用いるノズルの実物大図、
第4図は第3図の一半の拡大断面図、第5図は空
気圧―噴霧量関係線図、第6図は粒子の数―粒子
径の関係図、第7図はノズルと障害物の関係説明
図、第8図及び第9図は夫々本発明の第1実用化
装置の説明図、第10図は第8図及び第9図の装
置で得た測定データ、第11図及び第12図は
夫々本発明の第2実用化装置の説明図、第13図
は第11図及び第12図の装置で得た測定デー
タ、第14図は上記実用化全体装置の説明図であ
る。 11…送風用ダクト、12…2流体式噴霧ノズ
ル、13…送風機、14…水圧源、15…気圧
源。
FIG. 1 is an explanatory diagram of a conventional air conditioner, FIG. 2 is an explanatory diagram of an air conditioning humidification test device according to the present invention, and FIG. 3 is an actual size diagram of a nozzle used in the device of FIG.
Figure 4 is an enlarged cross-sectional view of one half of Figure 3, Figure 5 is a diagram of the relationship between air pressure and spray amount, Figure 6 is a diagram of the relationship between the number of particles and particle diameter, and Figure 7 is the relationship between nozzles and obstacles. Explanatory diagrams, FIGS. 8 and 9 are explanatory diagrams of the first practical apparatus of the present invention, FIG. 10 is measurement data obtained with the apparatus of FIGS. 8 and 9, and FIGS. 11 and 12. 13 is an explanatory diagram of the second practical device of the present invention, FIG. 13 is an explanatory diagram of measurement data obtained with the devices of FIGS. 11 and 12, and FIG. 14 is an explanatory diagram of the entire practical device. DESCRIPTION OF SYMBOLS 11... Air duct, 12... Two-fluid spray nozzle, 13... Air blower, 14... Water pressure source, 15... Air pressure source.

Claims (1)

【特許請求の範囲】[Claims] 1 空気を5m/sec以上の速度で一方向へ通過
させる管状の送風用ダクト内に、該ダクト内壁よ
り130m/m以上離れたほぼダクト中央の位置に、
水圧源より供給される水を気圧源より送られる空
気によつて微粒化して噴霧する2流体式ノズルを
1個以上設け、これらノズルを互いに等しい間隔
をおいて対向して配置し、それら対向するノズル
の軸線がなす角度を70〜160゜の範囲内に設定する
と共に各ノズルの先端より他のノズルの軸線の交
点までの距離を3〜15mmの範囲内に設定し、最大
水滴粒径大略50ミクロン以下の噴霧を噴霧量3
/hr以上で、送風用ダクト内に送給される空気
中に、該空気の流れの方向に沿つて噴射するよう
にし、かつ、少なくとも、該2流体式ノズルより
噴射される噴霧が空気の流れ方向前方2m以内で
は何物にも遮ぎられることがない構成としたこと
を特徴とする空調用加湿装置。
1. In a tubular ventilation duct that allows air to pass in one direction at a speed of 5 m/sec or more, at a position approximately at the center of the duct, at least 130 m/m away from the inner wall of the duct,
One or more two-fluid nozzles are provided to atomize and spray water supplied from a water pressure source by air sent from a pressure source, and these nozzles are arranged facing each other at equal intervals; The angle formed by the axes of the nozzles is set within the range of 70 to 160 degrees, and the distance from the tip of each nozzle to the intersection of the axes of other nozzles is set within the range of 3 to 15 mm, and the maximum water droplet size is approximately 50 mm. Spray amount of 3 microns or less
/hr or more, the spray is sprayed into the air fed into the ventilation duct along the direction of the air flow, and at least the spray spray sprayed from the two-fluid nozzle is sprayed along the direction of the air flow. A humidifying device for air conditioning, characterized in that it is configured so that it is not obstructed by anything within 2 meters in front of it.
JP7972383A 1983-05-07 1983-05-07 Moistening apparatus for air conditioning Granted JPS59205535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7972383A JPS59205535A (en) 1983-05-07 1983-05-07 Moistening apparatus for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7972383A JPS59205535A (en) 1983-05-07 1983-05-07 Moistening apparatus for air conditioning

Publications (2)

Publication Number Publication Date
JPS59205535A JPS59205535A (en) 1984-11-21
JPS6335899B2 true JPS6335899B2 (en) 1988-07-18

Family

ID=13698116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7972383A Granted JPS59205535A (en) 1983-05-07 1983-05-07 Moistening apparatus for air conditioning

Country Status (1)

Country Link
JP (1) JPS59205535A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531965A (en) * 2005-02-23 2008-08-14 アイ・ディ・イー・テクノロジーズ・リミテッド Small heat pump using water as refrigerant
JP2007046892A (en) * 2005-07-14 2007-02-22 Matsushita Electric Ind Co Ltd Refrigerator
JP2007032974A (en) * 2005-07-28 2007-02-08 Norihiro Amo Recovery method of contaminated particulate matter
JP2010266140A (en) * 2009-05-15 2010-11-25 Shinnikku Service Kk Fine-mist cooling device
CN102230651B (en) * 2011-06-10 2013-01-09 西安工程大学 High pressure air injection-fluid power type water spraying chamber composite evaporative cooling air-conditioning unit
CN102901163A (en) * 2012-09-14 2013-01-30 安徽宏祥丝绸织造有限公司 Temperature and humidity adjustment mechanism for workshop
CN105588313A (en) * 2016-03-08 2016-05-18 珠海格力电器股份有限公司 Air conditioning equipment

Also Published As

Publication number Publication date
JPS59205535A (en) 1984-11-21

Similar Documents

Publication Publication Date Title
CN101206063B (en) Refrigeration equipment
US8128069B2 (en) System and method for humidifying homes and commercial sites
CN203443010U (en) Spraying and humidifying device, air conditioner indoor unit and air conditioner
CN103645693B (en) A kind of integrated wireless temperature and humidity control device system
JPS6335899B2 (en)
JP5276074B2 (en) Hybrid spray system.
CN201281417Y (en) Humidifying electric fan
CN111780383A (en) Humidifying device for central air-conditioning system
CN2585105Y (en) Condensed water atomizing constant humidity device for air conditioner
JP2011185475A (en) Method of controlling water spray humidification of clean room and humidification control system
CN112728687A (en) Hierarchical type micro-mist filler humidifier
CN208765144U (en) A kind of air-conditioning
CN207299418U (en) The air channel structure of central air conditioner system
CN112178901A (en) Intelligent treatment method and system for cooling water of central air conditioner
CN104516368B (en) A kind of vehicle complete vehicle/sheet material environmental test chamber and control wet method
CN105757951A (en) Air conditioner condensate water utilization device
CN209416093U (en) A kind of water cooling system jet nozzle atomization temperature reduction performance test macro
CN210801431U (en) Warm and humid air conditioner air supply arrangement
CN208566970U (en) Dry air energy Evaporative Cooling Air Conditioning suitable for billboard
CN205279332U (en) Ultrasonic wave air conditioner atomizing device
CN208720424U (en) Temperature and humidity separation control spraying humidifier
CN201391982Y (en) Condensed water processing device for air-conditioning system
CN1632396A (en) Cotton mill air-conditioning dust collection automatic control system
CN206338893U (en) A kind of multi-stage, energy-saving type air-conditioner set
CN220235033U (en) Adjustable device for chemical electrostatic protection