JPS6335825B2 - - Google Patents

Info

Publication number
JPS6335825B2
JPS6335825B2 JP55147352A JP14735280A JPS6335825B2 JP S6335825 B2 JPS6335825 B2 JP S6335825B2 JP 55147352 A JP55147352 A JP 55147352A JP 14735280 A JP14735280 A JP 14735280A JP S6335825 B2 JPS6335825 B2 JP S6335825B2
Authority
JP
Japan
Prior art keywords
air
signal
fuel ratio
correction amount
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55147352A
Other languages
Japanese (ja)
Other versions
JPS5770934A (en
Inventor
Toshio Kondo
Shigenori Isomura
Akio Kobayashi
Katsuhiko Kigami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP55147352A priority Critical patent/JPS5770934A/en
Priority to US06/312,076 priority patent/US4430976A/en
Priority to DE19813141595 priority patent/DE3141595C2/en
Publication of JPS5770934A publication Critical patent/JPS5770934A/en
Publication of JPS6335825B2 publication Critical patent/JPS6335825B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/263Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor the program execution being modifiable by physical parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Description

【発明の詳細な説明】 本発明は自動車用等エンジンの排気ガス成分に
よつて空燃比を検出し、この検出信号によつてエ
ンジンに供給する混合気の空燃比を所定空燃比に
帰還制御する空燃比制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention detects the air-fuel ratio based on the exhaust gas components of an automobile engine, etc., and feedback-controls the air-fuel ratio of the air-fuel mixture supplied to the engine to a predetermined air-fuel ratio based on this detection signal. This invention relates to an air-fuel ratio control method.

従来の空燃比制御方法は、空燃比センサの出力
による単なる積分制御であつた。このためエンジ
ンの運転の過渡時において、基本空燃比の変動が
前記積分制御の補正速度より速いと補正が追い着
かない。また空燃比センサが不活性な場合におい
ては、空燃比の帰還制御ができない等、充分な空
燃比制御ができず排気ガスの悪化がもたらされて
いた。
The conventional air-fuel ratio control method has been simple integral control based on the output of an air-fuel ratio sensor. Therefore, during transient operation of the engine, if the basic air-fuel ratio changes faster than the correction speed of the integral control, the correction cannot catch up. Further, when the air-fuel ratio sensor is inactive, feedback control of the air-fuel ratio cannot be performed, and sufficient air-fuel ratio control cannot be performed, resulting in deterioration of exhaust gas.

まず、本発明は上記点に鑑みてなされたもの
で、空燃比センサからの信号を積分処理し、この
積分処理にて得た積分補正量を基にエンジン状態
補正量を算出し、この算出されたエンジン状態補
正量を記憶手段に記憶されているエンジン状態補
正量と書き換えるようにし、そして記憶手段に記
憶されているエンジン状態補正量とそのときの積
分補正量とで空燃比を帰還制御することにより、
エンジンの過渡時においても応答遅れがなく素早
く所定空燃比に制御できると共に、エンジンの低
温時における空燃比センサが不活性なとき等帰還
制御ができないときでも、記憶手段に記憶したエ
ンジン状態補正量に基づいて空燃比を精度よく制
御できるようにすることを目的としている。
First, the present invention has been made in view of the above points, and it integrates the signal from the air-fuel ratio sensor, calculates the engine condition correction amount based on the integral correction amount obtained by this integration processing, and calculates the engine condition correction amount based on the integral correction amount obtained by this integration processing. The engine state correction amount stored in the storage means is rewritten with the engine state correction amount stored in the storage means, and the air-fuel ratio is feedback-controlled using the engine state correction amount stored in the storage means and the integral correction amount at that time. According to
Even during engine transients, the air-fuel ratio can be quickly controlled to a predetermined air-fuel ratio with no response delay, and even when feedback control is not possible, such as when the air-fuel ratio sensor is inactive when the engine is at low temperature, the engine condition correction amount stored in the storage means can be adjusted. The purpose is to enable accurate control of the air-fuel ratio based on the

ところで、上記エンジン状態補正量は帰還制御
ができないときでも、空燃比を精度よく制御する
ために用いられるものであることから、当然エン
ジンの経時変化に起因する誤差分を補償するよう
な値でなくてはならない。従つて、このような経
時変化のみによる積分補正量の変化に基づいてエ
ンジン状態補正量は求められなければならない。
By the way, since the above engine condition correction amount is used to accurately control the air-fuel ratio even when feedback control is not possible, it is naturally not a value that compensates for errors caused by changes in the engine over time. must not. Therefore, the engine condition correction amount must be determined based on changes in the integral correction amount due only to such changes over time.

しかしながら、空燃比センサ又はその信号伝達
系統等に異常が生じた時や、エンジンの加速時等
の過渡運転時には経時変化以外の要因により積分
補正量が変化するため、適正なエンジン状態補正
量が算出できなくなつてしまう。
However, when an abnormality occurs in the air-fuel ratio sensor or its signal transmission system, or during transient operation such as during engine acceleration, the integral correction amount changes due to factors other than changes over time, so the appropriate engine condition correction amount is calculated. I end up not being able to do it anymore.

従つて、本発明は上記点にも鑑みてなされたも
ので、さらに空燃比センサからの信号から空燃比
センサの信号がリツチ信号からリーン信号又はリ
ーン信号からリツチ信号へと変化した変化点、又
は空燃比センサの信号のリツチ信号からリーン信
号又はリーン信号からリツチ信号への変化に対応
して変更される積分処理による積分補正量の減少
から増加又は増加から減少への変化点を判断し、
この変化点からの時間又はこの変化点からエンジ
ンが回転した回数が所定値を越えたと判断したと
き、前記積分補正量の算出を継続して記憶手段に
記憶されているエンジン状態補正量の書き換えの
みを禁止することにより、空燃比センサ又はその
信号伝達系統に異常が生じても、又、過渡運転状
態に移行したとしても、エンジン状態補正量が誤
修正されることを抑制できるようにすることも目
的としている。
Therefore, the present invention has been made in view of the above points, and further includes a change point at which the signal from the air-fuel ratio sensor changes from a rich signal to a lean signal, or from a lean signal to a rich signal, or Determining the point at which the integral correction amount changes from decrease to increase or from increase to decrease by integral processing that is changed in response to a change in the signal of the air-fuel ratio sensor from a rich signal to a lean signal or from a lean signal to a rich signal,
When it is determined that the time from this change point or the number of times the engine has rotated from this change point exceeds a predetermined value, the calculation of the integral correction amount is continued and the engine condition correction amount stored in the storage means is only rewritten. By prohibiting this, even if an abnormality occurs in the air-fuel ratio sensor or its signal transmission system, or even if there is a transition to a transient operating state, it is possible to prevent the engine state correction amount from being incorrectly corrected. The purpose is

以下本発明を図に示す一実施例につき説明す
る。第1図は第1実施例を示すもので、エンジン
1は自動車に積載される公知の4サイクル火花点
火式エンジンで、燃焼用空気をエアクリーナ2、
吸気管3、スロツトル弁4を経て吸収する。また
燃料は図示しない燃料系から各気筒に対応して設
けられた電磁式燃料噴射弁5を介して供給され
る。燃焼後の排気ガスは排気マニホールド6、排
気管7、三元触媒コンバータ8等を経て大気に放
出される。吸気管3にはエンジン1に吸入される
吸気量を検出し、吸気量に応じたアナログ電圧を
出力するポテンシヨメータ式吸気量センサ11及
びエンジン1に吸入される空気の温度を検出し、
吸気温に応じたアナログ電圧(アナログ検出信
号)を出力するサーミスタ式吸気温センサ12が
設置されている。また、エンジン1には冷却水温
を検出し、冷却水温に応じたアナログ電圧(アナ
ログ検出信号)を出力するサーミスタ式水温セン
サ13が設置されており、さらに排気マニホール
ド6には排気ガス中の酸素濃度から空燃比を検出
し、空燃比が理論空燃比より小さい(リツチ)と
1ボルト程度(高レベル)、理論空燃比より大き
い(リーン)と0.1ボルト程度(低レベル)の電
圧を出力する空燃比センサ14が設置されてい
る。回転速度(数)センサ15は、エンジン1の
クランク軸の回転速度を検出し、回転速度に応じ
た周波数のパルス信号を出力する。この回転速度
(数)センサ15としては例えば点火装置の点火
コイルを用いればよく、点火コイルの一次側端子
からの点火パルス信号を回転速度信号とすればよ
い。制御回路20は、各センサ11〜15の検出
信号に基づいて燃料噴射量を演算する回路で、電
磁式燃料噴射弁5の開弁時間を制御することによ
り燃料噴射量を調整する。
The present invention will be described below with reference to an embodiment shown in the drawings. FIG. 1 shows a first embodiment, in which an engine 1 is a known four-stroke spark ignition engine installed in an automobile, and combustion air is supplied to an air cleaner 2,
It is absorbed through the intake pipe 3 and throttle valve 4. Further, fuel is supplied from a fuel system (not shown) through electromagnetic fuel injection valves 5 provided corresponding to each cylinder. The exhaust gas after combustion is released into the atmosphere through an exhaust manifold 6, an exhaust pipe 7, a three-way catalytic converter 8, and the like. The intake pipe 3 includes a potentiometer-type intake air amount sensor 11 that detects the amount of intake air taken into the engine 1 and outputs an analog voltage according to the amount of intake air, and a potentiometer-type intake air amount sensor 11 that detects the temperature of the air taken into the engine 1.
A thermistor-type intake temperature sensor 12 is installed that outputs an analog voltage (analog detection signal) according to the intake temperature. Furthermore, the engine 1 is equipped with a thermistor-type water temperature sensor 13 that detects the coolant temperature and outputs an analog voltage (analog detection signal) according to the coolant temperature, and the exhaust manifold 6 is equipped with an oxygen concentration sensor 13 in the exhaust gas. Detects the air-fuel ratio from the air-fuel ratio, and outputs a voltage of about 1 volt (high level) when the air-fuel ratio is smaller than the stoichiometric air-fuel ratio (rich), and about 0.1 volt (low level) when it is larger than the stoichiometric air-fuel ratio (lean). A sensor 14 is installed. The rotational speed (number) sensor 15 detects the rotational speed of the crankshaft of the engine 1 and outputs a pulse signal with a frequency corresponding to the rotational speed. For example, an ignition coil of an ignition device may be used as the rotation speed (number) sensor 15, and an ignition pulse signal from the primary terminal of the ignition coil may be used as the rotation speed signal. The control circuit 20 is a circuit that calculates the fuel injection amount based on the detection signals of the sensors 11 to 15, and adjusts the fuel injection amount by controlling the opening time of the electromagnetic fuel injection valve 5.

第2図により制御回路20について説明する。
100は燃料噴射量を演算するマイクロプロセツ
サ(CPU)である。101は回転数カウンタで
回転速度(数)センサ15からの信号よりエンジ
ン回転数をカウントする回転数カウンタである。
またこの回転数カウンタ101はエンジン回転に
同期して割り込み制御部102に割り込み指令信
号を送る。割り込み制御部102はこの信号を受
けると、コモンパス150を通じてマイクロプロ
セツサ100に割り込み信号を出力する。103
はデジタル入力ポートで空燃比センサ14の出力
を所定比較レベルと比較する比較器の出力信号や
図示しないスタータの作動をオンオフするスター
タスイツチ16からのスタータ信号等のデジタル
信号をマイクロプロセツサ100に伝達する。1
04はアナログマルチプレクサとA―D変換器か
ら成るアナログ入力ポートで吸気量センサ11、
吸気温センサ12、冷却水温13からの各信号を
A―D変換して順次マイクロプロセツサ100に
読み込ませる機能を持つ。これら各ユニツト10
1,102,103,104の出力情報はコモン
バス150を通してマイクロプロセツサ100に
伝達される。105は電源回路で後述するRAM
107に電源を供給する。17はバツテリ、18
はキースイツチであるが電源回路105はキース
イツチ18を通さず直接、バツテリー17に接続
されている。よつて後述するRAM107はキー
スイツチ18に関係無く常時電源が印加されてい
る。
The control circuit 20 will be explained with reference to FIG.
100 is a microprocessor (CPU) that calculates the fuel injection amount. Reference numeral 101 is a rotation number counter that counts the engine rotation number based on a signal from the rotation speed (number) sensor 15.
Further, this rotation number counter 101 sends an interrupt command signal to the interrupt control section 102 in synchronization with the engine rotation. When interrupt control section 102 receives this signal, it outputs an interrupt signal to microprocessor 100 through common path 150. 103
is a digital input port that transmits to the microprocessor 100 digital signals such as an output signal from a comparator that compares the output of the air-fuel ratio sensor 14 with a predetermined comparison level and a starter signal from a starter switch 16 that turns on and off the operation of a starter (not shown). do. 1
04 is an analog input port consisting of an analog multiplexer and an A-D converter, and an intake air amount sensor 11,
It has a function of converting each signal from the intake air temperature sensor 12 and cooling water temperature 13 from analog to digital and sequentially reading it into the microprocessor 100. Each of these units 10
The output information of 1, 102, 103, and 104 is transmitted to the microprocessor 100 through the common bus 150. 105 is a power supply circuit and a RAM which will be described later.
107 is supplied with power. 17 is batsuteri, 18
is a key switch, but the power supply circuit 105 is directly connected to the battery 17 without passing through the key switch 18. Therefore, power is always applied to the RAM 107, which will be described later, regardless of the key switch 18.

106も電源回路であるがキースイツチ18を
通して、バツテリ17に接続されている。電源回
路106は後述するRAM107以外の部分に電
源を供給する。107はプログラム動作中一時使
用される一時記憶ユニツト(RAM)であるが前
述の様にキースイツチ18に関係なく常時電源が
印加されキースイツチ18をCFFにして機関の
運転を停止しても記憶内容が消失しない構成とな
つていて不揮発生メモリをなす。後述するエンジ
ン状態補正量K3もこのRAM107に記憶されて
いる。108はプログラムや各種の定数等を記憶
しておく読み出し専用メモリ(ROM)である。
109はレジスタを含む燃料噴射時間制御用カウ
ンタでダウンカウンタより成り、マイクロプロセ
ツサ(CPU)100で演算された電磁式燃料噴
射弁5の開弁時間つまり燃料噴射量を表すデジタ
ル信号を実際の電磁式燃料噴射弁5の開弁時間を
与えるパルス時間幅のパルス信号に変換する。1
10は電磁式燃料噴射弁5を駆動する電力増幅部
である。111はタイマーで経過時間を測定し
CPU100に伝達する。
106 is also a power supply circuit, which is connected to the battery 17 through the key switch 18. The power supply circuit 106 supplies power to parts other than the RAM 107, which will be described later. Reference numeral 107 is a temporary memory unit (RAM) that is used temporarily during program operation, but as mentioned above, power is always applied regardless of the key switch 18, so even if the key switch 18 is set to CFF and engine operation is stopped, the memory contents will be lost. It has a configuration in which it does not generate data, and forms a non-volatile generation memory. An engine condition correction amount K3 , which will be described later, is also stored in this RAM 107. A read-only memory (ROM) 108 stores programs, various constants, and the like.
Reference numeral 109 is a fuel injection time control counter including a register, which is composed of a down counter, and converts the digital signal representing the opening time of the electromagnetic fuel injection valve 5 calculated by the microprocessor (CPU) 100, that is, the fuel injection amount, to the actual electromagnetic It is converted into a pulse signal with a pulse time width that gives the opening time of the fuel injection valve 5. 1
Reference numeral 10 denotes a power amplification section that drives the electromagnetic fuel injection valve 5. 111 measures the elapsed time with a timer.
The information is transmitted to the CPU 100.

回転数カウンタ101は回転数センサ15の出
力によりエンジン1回転に1回エンジン回転数を
測定し、その測定の終了時に割り込み制御部10
2に割り込み指令信号を供給する。割り込み制御
部102はその信号から割り込み信号を発生し、
マイクロプロセツサ100に燃料噴射量の演算を
行なう割り込み処理ルーチンを実行させる。
The rotational speed counter 101 measures the engine rotational speed once per engine rotation based on the output of the rotational speed sensor 15, and when the measurement is finished, the interrupt control unit 10
An interrupt command signal is supplied to 2. The interrupt control unit 102 generates an interrupt signal from the signal,
The microprocessor 100 is caused to execute an interrupt processing routine for calculating the fuel injection amount.

第3図はマイクロプロセツサ100の概略フロ
ーチヤートを示すものでこのフローチヤートに基
づきマイクロプロセツサ100の機能を説明する
と共に構成全体の作動をも説明する。キースイツ
チ18並びにスタータスイツチ16がONしてエ
ンジンが始動されると第1ステツプ1000のス
タートにてメインルーチンの演算処理が開始され
ステツプ1001にて初期化の処理が実行され、
ステツプ1002においてアナログ入力ポート1
04からの冷却水温、吸気温に応じたデジタル値
を読み込む。ステツプ1003ではその結果より
補正量K1を演算し、結果をRAM107に格納す
る。ステツプ1004ではアナログ入力ポートよ
り空燃比センサ14の信号を入力し、タイマー1
11による経過時間の関数として後述の積分補正
量K2を増減しこの補正量K2をRAM107に納格
する。第4図はこの積分補正量K2を増減するつ
まり積分する処理ステツプ1004の詳細なフロ
ーチヤートである。まずステツプ400では空燃
比検出器が活性状態となつているかどうか、また
は冷却水温等から空燃比の帰還制御ができるか否
かを判定し、帰還制御できない時つまりオープン
ループの時はステツプ406に進み補正量K2
K2=1とし、ステツプ405に進む。帰還制御
できる場合はステツプ401に進む。ステツプ4
01では経過時間が単位時間△t1過ぎたか測定
し、過ぎていなければK2の積分処理をせずにこ
の処理ステツプ1004を終了する。時間が△t1
だけ経過しているとステツプ402に進み空燃比
がリツチであつて空燃比センサ14の出力がリツ
チである高レベル信号であればステツプ403に
進み以前のサイクルで求めたK2を△K2だけ減少
させ、ステツプ405に進み、この新しい補正量
K2をRAM107に格納する。ステツプ402に
おいて空燃比がリーンであつて空燃比センサ14
の出力がリーンを示す低レベル信号であればステ
ツプ404に進みK2を△K2だけ増加させステツ
プ405に進む。この様にして補正量K2を増減
させる。第3図のステツプ1005ではエンジン
状態補正量K3を増減演算し、結果をRAM107
に格納する。第5図はこの補正量K3を演算処理
し格納するつまり記憶処理するステツプ1005
の詳細なフローチヤートである。ステツプ501
でセンサ出力がリツチからリーン又はリーンから
リツチに変化した後△t2時間経過したか否かをチ
エツクする。経過していた場合は記憶処理ステツ
プ1005を終了する。ここで、センサ出力の変
化ではなく、センサ出力の変化に応じて変更され
る積分処理による積分補正量の減少から増加又は
増加から減少への変化であつてもよい。又、セン
サ出力が変化してからのチエツクの期間は時間で
はなく該変化が生じてからエンジンが回転した回
数であつてもよい。
FIG. 3 shows a schematic flowchart of the microprocessor 100, and the functions of the microprocessor 100 will be explained based on this flowchart, as well as the operation of the entire configuration. When the key switch 18 and starter switch 16 are turned ON to start the engine, the main routine arithmetic processing is started at the start of the first step 1000, and the initialization processing is executed at step 1001.
In step 1002, analog input port 1
Read the digital values corresponding to the cooling water temperature and intake air temperature from 04. In step 1003, a correction amount K1 is calculated from the result, and the result is stored in the RAM 107. In step 1004, the signal from the air-fuel ratio sensor 14 is input from the analog input port, and timer 1 is activated.
11, an integral correction amount K 2 to be described later is increased or decreased as a function of the elapsed time, and this correction amount K 2 is stored in the RAM 107 . FIG. 4 is a detailed flowchart of processing step 1004 for increasing or decreasing the integral correction amount K2 , that is, integrating it. First, in step 400, it is determined whether the air-fuel ratio detector is in an active state or whether feedback control of the air-fuel ratio can be performed based on the cooling water temperature, etc. If feedback control is not possible, that is, in the case of an open loop, the process proceeds to step 406. Correction amount K 2
Set K 2 =1 and proceed to step 405. If feedback control is possible, proceed to step 401. Step 4
At 01, it is determined whether the elapsed time has passed the unit time Δt 1 , and if it has not passed, this process step 1004 is ended without performing the integral processing of K 2 . Time is △t 1
If the cycle has elapsed, the process proceeds to step 402, and if the air-fuel ratio is rich and the output of the air-fuel ratio sensor 14 is a rich high level signal, the process proceeds to step 403, where the K 2 calculated in the previous cycle is reduced by △K 2 . and proceed to step 405 to set this new correction amount.
K 2 is stored in RAM 107. In step 402, the air-fuel ratio is lean and the air-fuel ratio sensor 14
If the output is a low level signal indicating lean, the process proceeds to step 404, where K2 is increased by ΔK2 , and the process proceeds to step 405. In this way, the correction amount K2 is increased or decreased. In step 1005 of FIG. 3, the engine condition correction amount K3 is increased or decreased, and the result is
Store in. FIG. 5 shows a step 1005 in which this correction amount K3 is processed and stored, that is, it is stored.
This is a detailed flowchart. Step 501
Check whether △t 2 hours have passed since the sensor output changed from rich to lean or from lean to rich. If the time has elapsed, the storage processing step 1005 is ended. Here, instead of a change in the sensor output, the change may be from a decrease to an increase or from an increase to a decrease in the integral correction amount due to an integral process that is changed according to a change in the sensor output. Furthermore, the period of time for checking after the sensor output changes may be the number of times the engine has rotated since the change occurred, instead of the time.

ステツプ502では経過時間が単位時間△t3
ぎたか測定し△t3経過していないときは記憶処理
ステツプ1005を終了し、経過しているとステ
ツプ503に進み上記積分補正量K2の値を判定
する。K2=1ならば何もせずこの処理ステツプ
1005を終了する。なおこのエンジン状態補正
量K3はエンジン状態に対応させて計算し、記憶
するもので、具体的には吸入吸気量Qとエンジン
回転数Nとによつて第6図の様なマツプを形成し
ている。吸気量Qについてm番目、エンジン回転
数Nについてn番目に相当するマツプ上の補正量
K3をKm oと表わしている。本実施例ではこの
RAM107内のマツプはエンジン回転数Nにつ
いては200r.p.mおきに、また吸入吸気量Qについ
てはアイドルからフルスロツトルまでを32分割し
ている。ステツプ503でK2>1のときはステ
ツプ504に進み、K2<1のときはステツプ5
05に進む。ステツプ504,505で、その時
のエンジン状態に対応したRAM107内の番地
のKm oを△K3だけ加減算してステツプ507に進
み、メインルーチンにおけるこの処理ステツプ1
005を終了する。メインルーチンでのステツプ
1005が終了するとステツプ1002へ戻る。
In step 502, it is measured whether the elapsed time has passed the unit time △ t3 , and if △ t3 has not elapsed, the memory processing step 1005 is terminated, and if it has elapsed, the process proceeds to step 503 and the value of the above-mentioned integral correction amount K2 is calculated. judge. If K 2 =1, this processing step 1005 is ended without doing anything. This engine condition correction amount K3 is calculated and stored in accordance with the engine condition, and specifically, a map as shown in Fig. 6 is formed based on the intake air amount Q and the engine speed N. ing. Correction amount on the map corresponding to the mth intake air amount Q and the nth engine rotation speed N
K 3 is expressed as K m o . In this example, this
The map in the RAM 107 divides the engine speed N into every 200 rpm, and the intake air amount Q from idle to full throttle into 32 parts. If K 2 >1 in step 503, proceed to step 504; if K 2 <1, proceed to step 5.
Proceed to 05. At steps 504 and 505, K m o at the address in the RAM 107 corresponding to the engine state at that time is added or subtracted by △K 3 , and the process proceeds to step 507, where this processing step 1 in the main routine is executed.
End 005. When step 1005 in the main routine is completed, the process returns to step 1002.

通常は1002〜1005のメインルーチンの
処理を制御ブログラムに従つてくり返し実行す
る。割り込み制御部102からの燃料噴射量演算
の割り込み信号が入力されると、マイクロプロセ
ツサ100はメインルーチンの処理中であつても
直ちにその処理を中断しステツプ1010の割り
込み処理ルーチンに移る。ステツプ1011では
回転数カウンタ101からのエンジン回転数Nを
表わす信号を取り込み、次にステツプ1012に
てアナログ入力ポート104から吸入空気量(吸
気量)Qを表わす信号を取り込み、次にステツプ
1013では回転数Nと吸気量Qをメインルーチ
ンの演算処理における補正量K3の記憶処理のた
めのパラメータとして使用するためにRAM10
7に格納する。次にステツプ1014にてエンジ
ン回転数Nと吸入空気量Qから決まる基本的な燃
料噴射量(つまり電磁式燃料噴射弁5の噴射時間
幅t)を計算する。計算式はt=F×Q/N(F: 定数)である。次にステツプ1015ではメイン
ルーチンで求めた燃料噴射用の各種の補正量を
RAM107から読し出し空燃比を決定する噴射
量(噴射時間幅)の補正計算を行う。噴射時間幅
Tの計算式はT=t×K1×K2×K3である。次に
ステツプ1016にて補正計算した燃料量噴射量
のデータをカウンタ109にセツトする。次にス
テツプ1017に進みメインルーチンに復帰す
る。メインルーチンに復帰する際は割り込み処理
で中断したときの処理ステツプに戻る。
Normally, the main routine processes 1002 to 1005 are repeatedly executed according to the control program. When the interrupt signal for calculating the fuel injection amount is input from the interrupt control section 102, the microprocessor 100 immediately interrupts the main routine even if it is processing the main routine and moves to the interrupt processing routine at step 1010. In step 1011, a signal representing the engine speed N is fetched from the rotation speed counter 101. Next, in step 1012, a signal representing the intake air amount (intake amount) Q is fetched from the analog input port 104. Next, in step 1013, a signal representing the engine speed N is fetched from the analog input port 104. RAM 10 is used to use the number N and the intake air amount Q as parameters for storing the correction amount K3 in the calculation process of the main routine.
Store in 7. Next, in step 1014, the basic fuel injection amount (that is, the injection time width t of the electromagnetic fuel injection valve 5) determined from the engine speed N and the intake air amount Q is calculated. The calculation formula is t=F×Q/N (F: constant). Next, in step 1015, various correction amounts for fuel injection determined in the main routine are
It reads out from the RAM 107 and performs correction calculation of the injection amount (injection time width) that determines the air-fuel ratio. The formula for calculating the injection time width T is T=t×K 1 ×K 2 ×K 3 . Next, in step 1016, the corrected calculated fuel injection amount data is set in the counter 109. Next, the process advances to step 1017 and returns to the main routine. When returning to the main routine, the process returns to the processing step at which it was interrupted due to interrupt processing.

マイクロプロセツサ100の概略の機能は以上
の通りである。
The general functions of the microprocessor 100 are as described above.

また上記実施例では空燃比の制御を電子制御燃
料噴射における噴射量の補正量を修正することで
行なつたものを示したが、気化器における燃料供
給量或いは気化器をバイパスする空気量、更には
エンジン排気系に供給する2次空気の量の補正量
を修正することで空燃比の制御を行なうものにつ
いても勿論適用できる。
Furthermore, in the above embodiment, the air-fuel ratio was controlled by modifying the correction amount of the injection amount in electronically controlled fuel injection, but the amount of fuel supplied to the carburetor, the amount of air bypassing the carburetor, and Of course, the present invention can also be applied to a system in which the air-fuel ratio is controlled by modifying the correction amount of the amount of secondary air supplied to the engine exhaust system.

また上記実施例では空燃比の制御を電子制御燃
料噴射における噴射量の補正量を修正することで
行なつたものを示したが、帰還制御を行ない、か
つ帰還制御量に応じてエンジン状態補正量を読み
書き可能な不揮発生メモリに記憶させる記憶処理
ステツプを持ち、両者の情報にもとづいてエンジ
ン制御を行なう方法を持つ類似の制御系例えば
EGR率、アイドルスピード等の制御系にも簡単
に応用できる。
Furthermore, in the above embodiment, the air-fuel ratio is controlled by correcting the injection amount correction amount in electronically controlled fuel injection, but feedback control is performed and the engine state correction amount is adjusted according to the feedback control amount. For example, a similar control system has a storage processing step that stores the information in a readable/writable non-volatile memory, and has a method of controlling the engine based on the information from both.
It can also be easily applied to control systems such as EGR rate and idle speed.

以上述べたように本発明によれば、空燃比セン
サからの信号を積分処理して得られる積分補正量
を基にエンジン状態補正量を求め、このエンジン
状態補正量を記憶して、これを用いて空燃比の制
御を行つているので、過渡時において応答良く所
望の空燃比に制御できると共に、空燃比センサ不
活性状態等の帰還制御ができないときでも、充分
な精度をもつて空燃比を制御できるようになる。
As described above, according to the present invention, the engine condition correction amount is determined based on the integral correction amount obtained by integrating the signal from the air-fuel ratio sensor, and this engine condition correction amount is stored and used. Since the air-fuel ratio is controlled by the air-fuel ratio, it is possible to control the air-fuel ratio to the desired air-fuel ratio with good response during transient conditions, and even when feedback control is not possible due to the air-fuel ratio sensor being inactive, the air-fuel ratio can be controlled with sufficient accuracy. become able to.

さらに本発明では、空燃比センサからの信号か
ら空燃比センサの信号がリツチ信号からリーン信
号又はリーン信号からリツチ信号へと変化した変
化点、又は空燃比センサの信号のリツチ信号から
リーン信号又はリーン信号からリツチ信号への変
化に対応して変更される積分処理による積分補正
量の減少から増加又は減少への変化点を判断し、
この変化点からの時間又はこの変化点からエンジ
ンが回転した回数が所定値を越えたと判断したと
き、積分補正量の算出を継続しつつ記憶手段に記
憶されているエンジン状態補正量の書き換えのみ
を禁止しているので、空燃比センサ等の異常が生
じた場合には空燃比センサの信号が変化せず、又
積分補正量も増加状態又は減少状態を継続し、上
記変化点からの時間又は上記変化点からエンジン
が回転した回数が所定値を越えるようになつて、
エンジン状態補正量の書き換えがそれ以降禁止さ
れるようになり、従つてエンジン状態補正量の空
燃比センサ等の異常による誤修正が抑制できるよ
うになる。
Further, in the present invention, the signal from the air-fuel ratio sensor changes from a rich signal to a lean signal or from a lean signal to a rich signal, or from the rich signal of the air-fuel ratio sensor to a lean signal or a lean signal. Determining the point at which the integral correction amount changes from decreasing to increasing or decreasing due to the integral processing that is changed in response to the change from the signal to the rich signal,
When it is determined that the time from this change point or the number of engine rotations from this change point exceeds a predetermined value, only the engine condition correction amount stored in the storage means is rewritten while continuing to calculate the integral correction amount. Therefore, if an abnormality occurs in the air-fuel ratio sensor, etc., the signal of the air-fuel ratio sensor will not change, and the integral correction amount will continue to increase or decrease, and the time from the above change point or the above When the number of times the engine rotates from the change point exceeds a predetermined value,
From then on, rewriting of the engine state correction amount is prohibited, and therefore erroneous correction of the engine state correction amount due to an abnormality in the air-fuel ratio sensor or the like can be suppressed.

また、本発明では、定常運転時には上記変化点
以降に求められる積分補正量とエンジン状態補正
量とにより空燃比が調節されて、空燃比の調節系
の遅れ、エンジン系の遅れ(吸入、圧縮、爆発、
排気)、排気ガスの空燃比センサまでの到達遅れ
等による所定の遅れ期間を介して定期的に次の変
化点が生じるので、上述の所定値になるまでに次
の変化点が生じ、エンジン状態補正量は継続して
書き換えが行われる。しかしながら、加速時の過
渡時においては経時変化以外の要因による急激な
空燃比の変動により、上記の所定の遅れ時間以上
に先の変化点から次の変化点までの期間が長くな
るが、本発明によれば、このような場合も先の変
化点からの時間又は先の変化点からエンジンが回
転した回数が所定値を越えるようになつて、エン
ジン状態補正量の書き換えが禁止されるようにな
る。すあわち、空燃比センサが正常で、経時変化
以外の要因で空燃比センサの信号の変化が遅れて
いる状態(過渡時)においてもエンジン状態補正
量の書き換えが禁止されるので、経時変化以外の
要因による空燃比変動に伴うエンジン状態補正量
の誤修正も抑止できる。
In addition, in the present invention, during steady operation, the air-fuel ratio is adjusted by the integral correction amount and engine condition correction amount obtained after the above-mentioned change point, so that there is a delay in the air-fuel ratio adjustment system, a delay in the engine system (intake, compression, explosion,
The next change point occurs periodically after a predetermined delay period due to a delay in the arrival of exhaust gas to the air-fuel ratio sensor, etc., so the next change point occurs before the above predetermined value is reached, and the engine condition changes. The correction amount is continuously rewritten. However, during the transient period of acceleration, due to sudden changes in the air-fuel ratio due to factors other than changes over time, the period from the previous change point to the next change point becomes longer than the above-mentioned predetermined delay time. According to , in this case as well, if the time since the previous change point or the number of engine rotations since the previous change point exceeds a predetermined value, rewriting the engine condition correction amount is prohibited. . In other words, rewriting of the engine condition correction amount is prohibited even when the air-fuel ratio sensor is normal and the change in the air-fuel ratio sensor signal is delayed due to factors other than changes over time (transient state). It is also possible to prevent erroneous correction of the engine condition correction amount due to air-fuel ratio fluctuations due to the following factors.

従つて、本発明によれば、空燃比センサ等の異
常によるエンジン状態補正量の誤修正の抑制のみ
ならず、過渡時における経時変化以外の要因によ
るエンジン状態補正量の誤修正も抑制できるよう
になる。
Therefore, according to the present invention, it is possible to suppress not only erroneous correction of the engine condition correction amount due to an abnormality of the air-fuel ratio sensor, etc., but also erroneous correction of the engine condition correction amount due to factors other than changes over time during a transient period. Become.

またさらに本発明では、エンジン状態補正量の
書き換えが禁止されても積分補正量は算出され、
この積分補正量により空燃比が制御されるので、
過渡時における空燃比が適正な状態に維持し得
る。
Furthermore, in the present invention, even if rewriting of the engine condition correction amount is prohibited, the integral correction amount is calculated.
Since the air-fuel ratio is controlled by this integral correction amount,
The air-fuel ratio during transient periods can be maintained in an appropriate state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体構成図、
第2図は第1図に示す制御回路のブロツク図、第
3図は第2図に示すマイクロプロセツサの概略の
フローチヤート、第4図は第3図に示すステツプ
1004の詳細なフローチヤート、第5図は第3
示に示すステツプ1005の詳細なフローチヤー
ト、第6図は第1図の実施例の作動を説明するた
めに用いる補正量K3のマツプである。 1…エンジン、11…吸気量センサ、14…空
燃比センサ、15…回転速度センサ、20…制御
回路、100…マイクロプロセツサ(CPU)、1
07…不揮発性メモリをなす一時記憶ユニツト
(RAM)。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention;
2 is a block diagram of the control circuit shown in FIG. 1, FIG. 3 is a schematic flowchart of the microprocessor shown in FIG. 2, and FIG. 4 is a detailed flowchart of step 1004 shown in FIG. 3. Figure 5 is the third
The detailed flowchart of step 1005 shown in FIG. 6 is a map of the correction amount K3 used to explain the operation of the embodiment of FIG. DESCRIPTION OF SYMBOLS 1...Engine, 11...Intake amount sensor, 14...Air-fuel ratio sensor, 15...Rotational speed sensor, 20...Control circuit, 100...Microprocessor (CPU), 1
07... Temporary storage unit (RAM) that serves as non-volatile memory.

Claims (1)

【特許請求の範囲】 1 エンジンの排気ガス成分により空燃比が理論
空燃比よりリツチであるかリーンであるかを検出
し、各々の状態に応じてリツチ信号又はリーン信
号を出力する空燃比センサを備え、この空燃比セ
ンサの信号によつて空燃比を制御する方法であつ
て、 前記空燃比センサからの信号を積分処理し、こ
の積分処理にて得た積分補正量を基にエンジン状
態補正量を算出し、記憶手段に記憶されているエ
ンジン状態補正量を算出されたエンジン状態補正
量に書き換えると共に、 前記空燃比センサからの信号から、前記空燃比
センサの信号がリツチ信号からリーン信号又はリ
ーン信号からリツチ信号へと変化した変化点、又
は前記空燃比センサの信号のリツチ信号からリー
ン信号又はリーン信号からリツチ信号への変化に
対応して変更される前記積分処理による前記積分
補正量の減少から増加又は増加から減少への変化
点を判断し、この変化点からの時間又はこの変化
点からエンジンが回転した回数が所定値を越えた
と判断したとき、前記積分補正量の算出を継続し
つつ、前記記憶手段に記憶されている前記エンジ
ン状態補正量の書き換えのみを禁止することを特
徴とする空燃比制御方法。
[Claims] 1. An air-fuel ratio sensor that detects whether the air-fuel ratio is richer or leaner than the stoichiometric air-fuel ratio based on engine exhaust gas components and outputs a rich signal or a lean signal depending on each state. A method of controlling the air-fuel ratio using a signal from the air-fuel ratio sensor, the signal from the air-fuel ratio sensor being integrally processed, and an engine condition correction amount based on the integral correction amount obtained by this integration processing. and rewrites the engine condition correction amount stored in the storage means with the calculated engine condition correction amount, and also determines whether the signal from the air-fuel ratio sensor changes from a rich signal to a lean signal or from a lean signal. Decreasing the integral correction amount by the integral processing, which is changed in response to a change point at which the signal changes from a rich signal to a rich signal, or a change from a rich signal to a lean signal, or from a lean signal to a rich signal in the signal of the air-fuel ratio sensor. When it is determined that the time from this change point or the number of times the engine has rotated from this change point exceeds a predetermined value, the integral correction amount is determined while continuing to calculate the integral correction amount. . An air-fuel ratio control method, characterized in that only rewriting of the engine condition correction amount stored in the storage means is prohibited.
JP55147352A 1980-10-20 1980-10-20 Air fuel ratio control method Granted JPS5770934A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP55147352A JPS5770934A (en) 1980-10-20 1980-10-20 Air fuel ratio control method
US06/312,076 US4430976A (en) 1980-10-20 1981-10-16 Method for controlling air/fuel ratio in internal combustion engines
DE19813141595 DE3141595C2 (en) 1980-10-20 1981-10-20 METHOD FOR REGULATING THE FUEL / AIR RATIO FOR AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55147352A JPS5770934A (en) 1980-10-20 1980-10-20 Air fuel ratio control method

Publications (2)

Publication Number Publication Date
JPS5770934A JPS5770934A (en) 1982-05-01
JPS6335825B2 true JPS6335825B2 (en) 1988-07-18

Family

ID=15428238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55147352A Granted JPS5770934A (en) 1980-10-20 1980-10-20 Air fuel ratio control method

Country Status (3)

Country Link
US (1) US4430976A (en)
JP (1) JPS5770934A (en)
DE (1) DE3141595C2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206834A (en) * 1982-05-28 1983-12-02 Honda Motor Co Ltd Method of controlling supply of fuel to internal-combustion engine provided with supercharger
JPS58222941A (en) * 1982-06-18 1983-12-24 Honda Motor Co Ltd Method of compensating signal of pressure in intake pipe for internal combustion engine controller
JPS58217746A (en) * 1982-06-09 1983-12-17 Honda Motor Co Ltd Feedback control method of air-fuel ratio for internal-combustion engine
JPS593136A (en) * 1982-06-29 1984-01-09 Toyota Motor Corp Learning control of air-fuel ratio of internal-combustion engine
JPS5970852A (en) * 1982-10-15 1984-04-21 Nippon Carbureter Co Ltd Air-fuel ratio control for engine
JPS59126047A (en) * 1982-12-30 1984-07-20 Mazda Motor Corp Air-fuel ratio controlling apparatus for engine
DE3303757C1 (en) * 1983-02-04 1984-08-02 Daimler-Benz Ag, 7000 Stuttgart Method for controlling the fuel-air ratio for an internal combustion engine
JPH065047B2 (en) * 1983-06-07 1994-01-19 日本電装株式会社 Air-fuel ratio controller
JPS6026137A (en) * 1983-07-22 1985-02-09 Japan Electronic Control Syst Co Ltd Air-fuel ratio learning control device in electronic control fuel injection type internal-combustion engine
DE3327156A1 (en) * 1983-07-28 1985-02-07 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND DEVICE FOR (LAMBDA) CONTROL OF THE FUEL MIXTURE FOR AN INTERNAL COMBUSTION ENGINE
JPS6035148A (en) * 1983-08-05 1985-02-22 Nippon Denso Co Ltd Air-fuel ratio control device
US4566419A (en) * 1983-08-20 1986-01-28 Nippondenso Co., Ltd. Apparatus and method for controlling air-to-fuel ratio for an internal combustion engine
JPS6045749A (en) * 1983-08-22 1985-03-12 Japan Electronic Control Syst Co Ltd Air-fuel ratio learning controller of electronic fuel injection type internal-combustion engine
JPS6125950A (en) * 1984-07-13 1986-02-05 Fuji Heavy Ind Ltd Electronic control for car engine
JPS6125949A (en) * 1984-07-13 1986-02-05 Fuji Heavy Ind Ltd Electronic control for car engine
JPS6128738A (en) * 1984-07-17 1986-02-08 Fuji Heavy Ind Ltd Electronic control system of car engine
JPS6131639A (en) * 1984-07-20 1986-02-14 Fuji Heavy Ind Ltd Air-fuel ratio control for car engine
JP2554854B2 (en) * 1984-07-27 1996-11-20 富士重工業株式会社 Learning control method for automobile engine
JPS61106938A (en) * 1984-10-30 1986-05-24 Fujitsu Ten Ltd Control device of internal-combustion engine with learning control function
GB2167883A (en) * 1984-11-30 1986-06-04 Suzuki Motor Co Apparatus for controlling an air-fuel ratio in an internal combustion engine
JPS623159A (en) * 1985-06-28 1987-01-09 Honda Motor Co Ltd Intake secondary air supply device for internal-combustion engine
JP2532205B2 (en) * 1985-11-29 1996-09-11 富士重工業株式会社 Engine air-fuel ratio learning control method
JPH0737776B2 (en) * 1986-03-04 1995-04-26 本田技研工業株式会社 Air-fuel ratio control method for internal combustion engine
GB2194359B (en) * 1986-08-02 1990-08-22 Fuji Heavy Ind Ltd Air-fuel ratio control system for an automotive engine
JPH0689690B2 (en) * 1987-03-18 1994-11-09 株式会社ユニシアジェックス Air-fuel ratio learning controller for internal combustion engine
US5001643A (en) * 1989-05-26 1991-03-19 Ford Motor Company Adaptive air flow correction for electronic engine control system
US7140360B2 (en) * 2005-03-03 2006-11-28 Cummins, Inc. System for controlling exhaust emissions produced by an internal combustion engine
JP5265903B2 (en) * 2007-11-12 2013-08-14 株式会社ニッキ Engine air-fuel ratio control method and air-fuel ratio control apparatus therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457029A (en) * 1977-10-17 1979-05-08 Hitachi Ltd Control system for internal combustion engine
JPS54130729A (en) * 1978-03-22 1979-10-11 Bosch Gmbh Robert Method of and apparatus for determining controlled variable of internal combustion engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2551680C2 (en) * 1975-11-18 1986-01-16 Robert Bosch Gmbh, 7000 Stuttgart Method and device for addressing a central memory, in particular in an electronic fuel injection system for internal combustion engines
JPS5281436A (en) * 1975-12-27 1977-07-07 Nissan Motor Co Ltd Air fuel ratio controller
JPS54144525A (en) * 1978-05-01 1979-11-10 Toyota Motor Corp Fuel-air ratio controller for internal combustion engine
DE2846804C2 (en) * 1978-10-27 1982-08-12 Volkswagenwerk Ag, 3180 Wolfsburg Method and arrangement for achieving a correction of a characteristic which is stored in a control device for a fuel metering element of an internal combustion engine
JPS5596339A (en) * 1979-01-13 1980-07-22 Nippon Denso Co Ltd Air-fuel ratio control method
JPS55134728A (en) * 1979-04-04 1980-10-20 Nippon Denso Co Ltd Method for protecting exhaust-gas purifying apparatus from overheat
JPS55134731A (en) * 1979-04-05 1980-10-20 Nippon Denso Co Ltd Controlling method of air-fuel ratio
JPS55146246A (en) * 1979-04-26 1980-11-14 Nippon Denso Co Ltd Method of air fuel ratio feedback controlling
JPS5945826B2 (en) * 1979-05-15 1984-11-08 日産自動車株式会社 Internal combustion engine fuel supply system
JPS562437A (en) * 1979-06-19 1981-01-12 Nippon Denso Co Ltd Air-fuel ratio controller
JPS5654936A (en) * 1979-10-10 1981-05-15 Nippon Denso Co Ltd Control method for air-fuel ratio

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5457029A (en) * 1977-10-17 1979-05-08 Hitachi Ltd Control system for internal combustion engine
JPS54130729A (en) * 1978-03-22 1979-10-11 Bosch Gmbh Robert Method of and apparatus for determining controlled variable of internal combustion engine

Also Published As

Publication number Publication date
US4430976A (en) 1984-02-14
DE3141595C2 (en) 1990-07-12
DE3141595A1 (en) 1982-07-08
JPS5770934A (en) 1982-05-01

Similar Documents

Publication Publication Date Title
JPS6335825B2 (en)
US4348728A (en) Air-fuel ratio controlling method and apparatus therefor
US4345561A (en) Air-fuel ratio control method and its apparatus
US4348727A (en) Air-fuel ratio control apparatus
US4321903A (en) Method of feedback controlling air-fuel ratio
JPS6213499B2 (en)
JPS6228299B2 (en)
JP3868693B2 (en) Air-fuel ratio control device for internal combustion engine
US4492202A (en) Fuel injection control
JPS6212382B2 (en)
US4466410A (en) Air-fuel ratio control for internal combustion engine
US4517948A (en) Method and apparatus for controlling air-fuel ratio in internal combustion engines
JPS6256339B2 (en)
JPS6313014B2 (en)
JPH0217703B2 (en)
US20010022177A1 (en) Monitoring apparatus for fuel feed system
JP3465626B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6313013B2 (en)
JPS6228295B2 (en)
JPH0437260B2 (en)
JPH0214534B2 (en)
JPS63109257A (en) Air-fuel ratio control device of internal combustion engine
JPS6345500B2 (en)
JPS6360217B2 (en)
JPH0248728B2 (en)