JPS6335712B2 - - Google Patents

Info

Publication number
JPS6335712B2
JPS6335712B2 JP12068781A JP12068781A JPS6335712B2 JP S6335712 B2 JPS6335712 B2 JP S6335712B2 JP 12068781 A JP12068781 A JP 12068781A JP 12068781 A JP12068781 A JP 12068781A JP S6335712 B2 JPS6335712 B2 JP S6335712B2
Authority
JP
Japan
Prior art keywords
treatment
steel plate
steel sheet
galvanized steel
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12068781A
Other languages
Japanese (ja)
Other versions
JPS5822383A (en
Inventor
Kenji Koshiishi
Takao Tomosue
Takenori Deguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP12068781A priority Critical patent/JPS5822383A/en
Publication of JPS5822383A publication Critical patent/JPS5822383A/en
Publication of JPS6335712B2 publication Critical patent/JPS6335712B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/30Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメツキ鋼板の表面に耐食性、加工性、
塗装密着性を有するクロメート皮膜を形成させる
ためのメツキ鋼板のクロメート処理方法に関する
ものである。 従来から亜鉛或いはアルミニウムなどのメツキ
が施されたメツキ鋼板は、未塗装のまま或いは塗
装して更には之等の両者が組み合わされて使用さ
れている。そこで之等の用途に応じて防錆及び塗
装後の塗膜の密着性、耐食性の向上を目的とし
て、主としてクロム酸系処理またはリン酸塩系処
理が行なわれている。クロメート皮膜を形成させ
るためのクロム酸系処理としては、鋼板表面と処
理液とのエツチング反応を伴う化学反応によるも
の、6価クロムの一部を還元剤により3価クロム
に還元させて6価クロム及び3価クロムが共存す
る処理液を鋼板表面に塗布するもの、及び電解処
理法によるものなどに区分出来る。この中で金属
表面との化学反応によつてクロメート皮膜を形成
させる方法では、母材表面の金属(Zn、Alなど)
が金属イオンとなり同時に処理液中の水素イオン
が消費される。その結果、被処理母材の処理量に
応じて液中の遊離酸濃度が減少し、遂には適正な
クロメート皮膜が形成されなくなり、その処理液
は廃液処分にして新しい処理液に更新しなければ
ならない。 しかしながら、ここで廃液処分にするクロメー
ト処理液中には公害規制物質である多量の6価ク
ロム及び3価クロムを含んでいるので何等かの方
法でクロムを除去する無公害化の処理を行なわな
ければならないが、この廃液処理は非常に厄介で
あるばかりでなく多額の処理費を要する。 こうした廃液処理上の問題から最近では廃クロ
ム酸を生じない塗布型クロメート処理液の開発が
盛んに行なわれている。塗布型クロメート処理液
は6価クロムと還元剤によつて6価クロムが還元
された結果生ずる3価クロムを含み、或いは更に
造膜剤としてシリカゾル、アルミナゾル、アルキ
ルシリケートなどの無機高分子またはポリビニル
アルコール、ポリアクリル酸、ポリアクリル酸エ
ステルなどの水溶性高分子を添加したものを用い
て耐食性の向上を図つているのが一般的である。 また、6価クロムを3価クロムに還元させる還
元剤としては、一般に有機系還元剤として、エチ
レングリコール、プロピレングリコール、ポリプ
ロピレングリコールなどのグリコール類;メタノ
ール、エタノールなどの1価アルコール類;及び
ピロガロール、ブドウ糖、サツカロース、メチル
セルロース、マンニトールなどの多価アルコール
類;無機系還元剤として過酸化水素などがある。
こうした従来の還元剤では処理液の6価クロムと
3価クロムが一定の比率を保ち且つ水酸化クロム
などの沈殿或いは液のゲル化などを生ずることな
く安定な処理浴として維持するのが困難であつた
り、或いは処理浴が或る程度維持出来てもその反
面被処理板の耐食性、加工性、塗膜密着性などの
性能の点で充分でなかつたことなどが挙げられ
る。 本発明者等は上記問題点を解決すべく鋭意研究
の結果、シランカツプリング剤を還元剤として用
いることにより従来の公知技術では得られない優
れた処理浴の安定性、耐食性、加工性、塗膜密着
性を示すこと、及び亜鉛メツキ鋼板のみならず、
アルミニウムなど他の金属をメツキ金属として用
いたメツキ鋼板にも適用可能であることを見出し
本発明を完成するに到つた。 即ち、本発明は無水クロム酸(CrO3)溶液に
シランカツプリング剤を添加して無水クロム酸の
一部を還元させて得られた液の組成を無水クロム
酸0.1〜1mol/、3価クロムと6価クロムとの
モル比(Cr+3/Cr+6)を0.05〜0.7とした処理液
でメツキ鋼板を表面処理することを特徴とするメ
ツキ鋼板のクロメート処理方法に関するものであ
る。 以下、本発明を更に詳細に説明する。 本発明に用いる無水クロム酸は従来鋼板の表面
処理に用いられているもので充分である。 またシランカツプリング剤は一般式YRSiX3
表わされ、Xはケイ素原子に結合している加水分
解性の基を表わし、アルコキシ基及びアセトキシ
基などがある。またYは有機官能基を示し、ビニ
ル基、メタクリロキシ基、ウレイド基、環状エポ
キシ基、グリシドキシ基、メルカプト基、アミノ
基、ジアミノ基などが挙げられる。シランカツプ
リング剤による6価クロムの還元機構は次の通り
である。 シランカツプリング剤をクロム酸水溶液中に添
加すると之等の基または原子は加水分解を受けて
下式の様にシラノール及びHXを生ずる。 YRSiX3+H2O→YRSi(OH)3+3HX 例えばYがメトキシ基及びエトキシ基の時、
HXはそれぞれメタノール、エタノールとなり、
この副生されたアルコールによつて6価クロムは
3価クロムに還元される。 本発明に用いる処理液は処理液1当り無水ク
ロム酸0.1〜1mol/を含み且つシランカツプリ
ング剤によつて還元された3価クロムを3価クロ
ムと6価クロムのモル比(Cr+3/Cr+6)で0.05〜
0.7含む様に調整する。処理液の組成をこの様に
限定するのは次の理由による。即ち、無水クロム
酸の濃度が0.1mol/未満では工業的生産工程
で行なわれている3〜7秒間程度の短時間処理で
は耐食性の優れた皮膜が形成されず、1mol/
を越えると皮膜が黄味を呈し外観が損われるので
好ましくない。 また3価クロムと6価クロムのモル比が0.05未
満では耐食性、加工性などの性能向上が期待され
ず、0.7を越えると3価クロムの含有率が非常に
高くなるので逆に耐食性が却つて低下するからで
ある。 本発明において処理対象とするメツキ鋼板とし
ては亜鉛アルミニウムなどの溶融メツキまたは電
気メツキを鋼板に施したメツキ鋼板が用いられ、
また亜鉛メツキ鋼板としては単に亜鉛をメツキし
ただけのメツキ鋼板の他に、亜鉛メツキ後更に高
温加熱して合金化処理を施したメツキ鋼板も用い
られる(本発明においては上記処理対象の各鋼板
をメツキ鋼板と総称する)。 かかるメツキ鋼板を本発明において用いる処理
液によつて表面処理する方法は通常実施されてい
る方法に従い、メツキ鋼板を必要に応じて脱脂
後、水洗して表面を清浄にした後に、浸漬法、ス
プレー法、ロールコーター法、ロール絞り法、エ
アーナイフ絞り法などの方法により処理液を鋼板
表面に塗布する。 乾燥は水分を蒸発する程度で良く、望ましくは
板温として70〜100℃が好ましい。 シランカツプリング剤を還元剤として用いると
従来の還元剤では得られない数々の優れた性能を
得ることが出来る。 之等の性能としては先ず第一に処理浴の安定性
が挙げられる。一般に3価クロムを含有するクロ
メート処理液はPHが3を越えると沈殿物が生じた
りゲル化する傾向がある。しかし、シランカツプ
リング剤を還元剤として使用した場合にはPHは
5.0程度でも何等液の安定性に問題はない。 次に第二の特徴として、メツキ鋼板の耐食性、
加工性も極めて優れている。これはシランカツプ
リング剤の本来の機能である加水分解によつて生
成されるシラノール基が金属表面に吸着されると
共にCrO4 -、Cr(OH)3などとの間で架橋反応など
の化学反応を起こして強固なクロメート皮膜を形
成することが考えられる。また一方、シランカツ
プリング剤は有機官能基をも有しているのでアル
キド、アクリル、エポキシ塗料などの塗膜密着性
にも優れている。 本発明のクロメート処理方法は、それによつて
処理されたメツキ鋼板の耐食性、加工性、塗膜密
着性を大幅に向上させるものであり、また本発明
のクロメート処理方法は塗布型であるため処理液
の老化もなく、従つて廃液処理の必要性もないこ
とと相俟つて産業上非常に価値の高いものであ
る。 以下、実施例、比較例によつて本発明を更に説
明する。 実施例 各種金属メツキ鋼板の表面に本発明方法による
クロメート処理液を塗布して熱風乾燥してクロメ
ート処理鋼板を得た。メツキ鋼板の種類、処理液
の調整方法及びその組成、PH、塗布方法、処理方
法、皮膜量(クロム付着量)、乾燥温度(板温)
などの詳細な条件を第1表に示す。
The present invention provides corrosion resistance, workability, and
The present invention relates to a method for chromate treatment of galvanized steel sheets to form a chromate film with paint adhesion. Conventionally, galvanized steel sheets plated with zinc or aluminum have been used uncoated, coated, or in combination. Therefore, depending on the intended use, chromic acid treatment or phosphate treatment is mainly carried out for the purpose of preventing rust and improving the adhesion and corrosion resistance of the coated film after painting. Chromate-based treatments for forming chromate films include chemical reactions involving etching reactions between the steel plate surface and the treatment solution, and hexavalent chromium by reducing a portion of hexavalent chromium to trivalent chromium using a reducing agent. It can be divided into two types: one in which a treatment solution containing trivalent chromium is applied to the surface of the steel plate, and one in which an electrolytic treatment method is used. Among these, in the method of forming a chromate film through a chemical reaction with the metal surface, the metal (Zn, Al, etc.) on the surface of the base material
becomes metal ions, and at the same time hydrogen ions in the processing solution are consumed. As a result, the free acid concentration in the solution decreases according to the amount of treated base material, and eventually an appropriate chromate film is no longer formed, and the treatment solution must be disposed of as waste and replaced with a new treatment solution. No. However, since the chromate treatment liquid to be disposed of as waste liquid contains a large amount of hexavalent chromium and trivalent chromium, which are pollution control substances, it is necessary to perform a pollution-free treatment to remove chromium by some method. However, this waste liquid treatment is not only very troublesome but also requires a large amount of treatment cost. Due to these problems in waste liquid treatment, there has recently been much effort to develop coating-type chromate treatment liquids that do not generate waste chromic acid. The coating type chromate treatment solution contains hexavalent chromium and trivalent chromium produced as a result of reduction of hexavalent chromium with a reducing agent, or further contains inorganic polymers such as silica sol, alumina sol, alkyl silicate, or polyvinyl alcohol as a film forming agent. It is common to use a material to which water-soluble polymers such as polyacrylic acid, polyacrylic acid ester, etc. are added to improve corrosion resistance. In addition, as reducing agents for reducing hexavalent chromium to trivalent chromium, organic reducing agents generally include glycols such as ethylene glycol, propylene glycol, and polypropylene glycol; monohydric alcohols such as methanol and ethanol; and pyrogallol, Polyhydric alcohols such as glucose, sutucarose, methyl cellulose, and mannitol; hydrogen peroxide as an inorganic reducing agent.
With these conventional reducing agents, it is difficult to maintain a stable processing bath in which the hexavalent chromium and trivalent chromium in the processing solution maintain a constant ratio and do not cause precipitation of chromium hydroxide or gelation of the solution. For example, the temperature may be too high, or even if the treatment bath can be maintained to a certain extent, the performance of the plate to be treated, such as corrosion resistance, workability, and coating adhesion, may not be sufficient. As a result of intensive research to solve the above-mentioned problems, the present inventors have found that by using a silane coupling agent as a reducing agent, excellent processing bath stability, corrosion resistance, processability, and coating properties that could not be obtained with conventionally known techniques. In addition to showing film adhesion and galvanized steel sheets,
We have completed the present invention by discovering that it is also applicable to plated steel plates using other metals such as aluminum as the plated metal. That is, in the present invention, a silane coupling agent is added to a chromic anhydride (CrO 3 ) solution to reduce a part of the chromic anhydride, and the composition of the resulting solution is changed to 0.1 to 1 mol of chromic anhydride/trivalent chromium. The present invention relates to a chromate treatment method for a galvanized steel sheet, characterized in that the surface of the galvanized steel sheet is treated with a treatment liquid having a molar ratio (Cr +3 /Cr +6 ) of chromium and hexavalent chromium of 0.05 to 0.7. The present invention will be explained in more detail below. As the chromic anhydride used in the present invention, those conventionally used for surface treatment of steel plates are sufficient. The silane coupling agent is represented by the general formula YRSiX 3 , where X represents a hydrolyzable group bonded to a silicon atom, such as an alkoxy group and an acetoxy group. Further, Y represents an organic functional group, and examples thereof include a vinyl group, a methacryloxy group, a ureido group, a cyclic epoxy group, a glycidoxy group, a mercapto group, an amino group, and a diamino group. The reduction mechanism of hexavalent chromium by the silane coupling agent is as follows. When a silane coupling agent is added to an aqueous chromic acid solution, these groups or atoms undergo hydrolysis to produce silanol and HX as shown in the following formula. YRSiX 3 +H 2 O→YRSi(OH) 3 +3HX For example, when Y is a methoxy group or an ethoxy group,
HX becomes methanol and ethanol respectively,
Hexavalent chromium is reduced to trivalent chromium by this by-produced alcohol. The treatment solution used in the present invention contains 0.1 to 1 mol of chromic anhydride per treatment solution, and converts trivalent chromium reduced by a silane coupling agent into a molar ratio of trivalent chromium to hexavalent chromium (Cr +3 / Cr +6 ) from 0.05
Adjust to include 0.7. The reason why the composition of the processing liquid is limited in this way is as follows. In other words, if the concentration of chromic anhydride is less than 0.1 mol/mol, a film with excellent corrosion resistance will not be formed in the short-time treatment of about 3 to 7 seconds, which is carried out in industrial production processes, and if the concentration of chromic acid anhydride is less than 1 mol/mol/
Exceeding this is not preferable because the film will take on a yellowish tinge and the appearance will be impaired. Furthermore, if the molar ratio of trivalent chromium to hexavalent chromium is less than 0.05, no improvement in performance such as corrosion resistance or workability can be expected, and if it exceeds 0.7, the content of trivalent chromium will become extremely high, and on the contrary, corrosion resistance will deteriorate. This is because it decreases. The plated steel plate to be treated in the present invention is a plated steel plate in which a steel plate is subjected to hot-dip plating or electroplating with zinc aluminum, etc.
In addition to galvanized steel plates that are simply plated with zinc, galvanized steel plates that are further heated at high temperatures and alloyed after galvanization are also used (in the present invention, each steel plate to be treated is (collectively called "metsuki steel sheet"). The method for surface-treating such a plated steel plate with the treatment liquid used in the present invention is according to a commonly practiced method. After degreasing the plated steel plate as necessary and cleaning the surface by washing with water, the plated steel plate is subjected to a dipping method, a spraying method, etc. The treatment liquid is applied to the surface of the steel plate by a method such as a method, a roll coater method, a roll drawing method, or an air knife drawing method. Drying is sufficient to evaporate moisture, and the plate temperature is preferably 70 to 100°C. When a silane coupling agent is used as a reducing agent, it is possible to obtain a number of excellent performances that cannot be obtained with conventional reducing agents. The first consideration of such performance is the stability of the processing bath. In general, chromate treatment solutions containing trivalent chromium tend to form precipitates or gel when the pH exceeds 3. However, when a silane coupling agent is used as a reducing agent, the pH is
Even if it is around 5.0, there is no problem with the stability of the liquid. The second feature is the corrosion resistance of plated steel sheets.
It also has excellent workability. This is because the silanol groups generated through hydrolysis, which is the original function of the silane coupling agent, are adsorbed onto the metal surface and also undergo chemical reactions such as crosslinking reactions with CrO 4 - , Cr(OH) 3 , etc. It is thought that this causes the formation of a strong chromate film. On the other hand, since the silane coupling agent also has an organic functional group, it has excellent adhesion to coatings such as alkyd, acrylic, and epoxy paints. The chromate treatment method of the present invention significantly improves the corrosion resistance, workability, and coating adhesion of the plated steel sheet treated with it, and since the chromate treatment method of the present invention is a coating type, it requires no treatment liquid. This combination of the fact that there is no aging and therefore no need for waste liquid treatment makes it extremely valuable industrially. The present invention will be further explained below with reference to Examples and Comparative Examples. EXAMPLE A chromate treatment solution according to the method of the present invention was applied to the surface of various metal-plated steel plates and dried with hot air to obtain chromate-treated steel plates. Types of galvanized steel sheets, treatment liquid adjustment method and its composition, PH, coating method, treatment method, film amount (chromium adhesion amount), drying temperature (plate temperature)
The detailed conditions are shown in Table 1.

【表】【table】

【表】【table】

【表】 この第1表に示す条件によつて得られたクロメ
ート処理鋼板より試験片を採取し、性能評価とし
て平面部、加工部としてエリクセン部、折曲部の
各部についての耐塩水噴霧性を、また塗膜密着性
としてはゴバン目試験、デユポン衝撃試験、エリ
クセン押出試験よる試験を行なつた。その試験結
果を第2表に示す。
[Table] Test specimens were taken from the chromate-treated steel sheets obtained under the conditions shown in Table 1, and the salt water spray resistance of the flat section, the Erichsen section as the processed section, and the bent section was evaluated for performance evaluation. In addition, as for the adhesion of the coating film, tests were carried out using a goblin test, a Dupont impact test, and an Erichsen extrusion test. The test results are shown in Table 2.

【表】【table】

【表】 各試験の試験方法は次の通りである。 耐塩水噴霧性の試験はJIS Z 2371(塩水噴霧
試験方法)に準拠し塩水噴霧試験後に白錆発生し
ないものを◎印、10%未満の発生は〇印、10%以
上30%未満のものを△印、30%以上のものを×印
とした。 即ちシランカツプリング剤を用いない比較例1
〜5、無水クロム酸濃度が高過ぎる比較例6、
Cr+3/Cr+6の比が本発明の規定範囲外である比較
例7〜12は何れも本発明の実施例に比し劣つてい
ることが判る。 平面部:平板な試験片をその儘試験に供し、塩水
噴霧試験160時間後で評価した。 エリクセン押出部:エリクセン押出試験により試
験片を4mm押出したものを試験に供し、塩水噴
霧試験120時間後で評価した。 折曲部:180℃折曲げた試験片を試験に供し、塩
水噴霧試験48時間後で評価した。 塗膜密着性の試験はアクリル系塗料を使用し
200℃で約2分間乾燥した塗装試験片について次
の様に各項目の試験を行なつた。 ゴバン目試験:塗装試験片に対し1mm平方のマス
目を鋼素地に達する様にカツターで切り込み、
セロハンテープを貼り付けて急速に引き剥が
し、塗装面の異常の程度を観察した。 デユポン衝撃試験:直径12.7mm(1/2インチ)、重
さ1Kgの重錘を50cmの高さから落下させ、セロ
ハンテープを貼り付け急速に剥がし、塗装面の
異常の程度を観察した。 エリクセン押出試験:エリクセン押出機により塗
装試験片を6mm押出し、セロハンテープを貼り
付け急速に剥がし、塗装面の異常の程度を観察
した。 上記各項目の塗膜密着性は塗膜の剥離程度によ
つて次の4段階に分けて表示した。 ◎:塗膜剥離なし 〇:塗膜剥離10%未満 △:塗膜剥離10%以上30%未満 ×:塗膜剥離30%以上 第2表に示すようにシランカツプリング剤で還
元されたクロメート処理液で表面処理を行なう本
発明の実施例1〜8のクロメート処理方法による
場合は、比較例1〜10のクロメート処理液を用い
る場合に較べて形成されるクロメート皮膜は平面
部における耐食性が優れていることは勿論の事、
エクセリン押出部や折曲部における耐食性も優れ
ており、クロメート皮膜が被処理板に極めて強固
に密着しているものであり、従つてまた加工性が
優れていることが判つた。また塗料の密着性につ
いてもゴバン目、デユポン衝撃、エリクセン押出
各試験共に本発明例は比較例に較べて優れている
ことが判つた。 またシランカツプリング剤で還元されたクロメ
ート処理液はPH5.0程度でも何等液の安定性に問
題なく、従来のクロメート処理浴の管理に比べて
非常に管理し易い浴に改善されている。
[Table] The test method for each test is as follows. The salt spray resistance test is based on JIS Z 2371 (salt spray test method), and those that do not generate white rust after the salt spray test are marked with ◎, those with less than 10% are marked with ○, and those with 10% or more and less than 30% are marked with ◎. △ marked, and those with 30% or more were marked ×. That is, Comparative Example 1 without using a silane coupling agent.
~5, Comparative example 6 where the concentration of chromic anhydride is too high,
It can be seen that all of Comparative Examples 7 to 12, in which the ratio of Cr +3 /Cr +6 was outside the specified range of the present invention, were inferior to the Examples of the present invention. Flat part: A flat test piece was subjected to a permanent test, and evaluated after 160 hours of salt spray test. Erichsen extrusion part: A 4 mm test piece was extruded according to the Erichsen extrusion test and evaluated after 120 hours of the salt spray test. Bent part: A test piece bent at 180°C was subjected to the test, and evaluated after 48 hours of salt spray test. The paint film adhesion test uses acrylic paint.
The following tests were conducted on painted test pieces that had been dried at 200°C for about 2 minutes. Goban test: Cut 1 mm square squares into the painted test piece with a cutter to reach the steel base.
Cellophane tape was applied and rapidly peeled off to observe the degree of abnormality on the painted surface. Dupont impact test: A weight with a diameter of 12.7 mm (1/2 inch) and a weight of 1 kg was dropped from a height of 50 cm, and cellophane tape was applied and rapidly peeled off to observe the degree of abnormality on the painted surface. Erichsen extrusion test: A painted test piece was extruded by 6 mm using an Erichsen extruder, cellophane tape was applied and quickly peeled off, and the degree of abnormality on the painted surface was observed. The coating adhesion of each of the above items was classified into the following four levels depending on the degree of peeling of the coating. ◎: No paint film peeling 〇: Paint film peeling less than 10% △: Paint film peeling 10% or more and less than 30% ×: Paint film peeling 30% or more Chromate treatment reduced with a silane coupling agent as shown in Table 2 When using the chromate treatment methods of Examples 1 to 8 of the present invention, in which surface treatment is carried out with a liquid, the chromate film formed has superior corrosion resistance on flat surfaces compared to the case where the chromate treatment liquids of Comparative Examples 1 to 10 are used. Of course there are,
It was found that the corrosion resistance at the extruded portions and bent portions of Excelin was excellent, and the chromate film adhered extremely firmly to the plate to be treated, and therefore, the workability was also excellent. It was also found that the inventive examples were superior to the comparative examples in terms of paint adhesion in the goblin, Dupont impact, and Erichsen extrusion tests. Furthermore, the chromate treatment solution reduced with the silane coupling agent has no problem with the stability of the solution even at a pH of around 5.0, and is much easier to manage than conventional chromate treatment baths.

Claims (1)

【特許請求の範囲】 1 無水クロム酸(CrO3)溶液にシランカツプ
リング剤を添加して無水クロム酸の一部を還元さ
せて得られた液の組成を無水クロム酸0.1〜
1mol/、3価クロムと6価クロムとのモル比
(Cr+3/Cr+6)を0.05〜0.7とした処理液でメツキ
鋼板を表面処理することを特徴とするメツキ鋼板
のクロメート処理方法。 2 表面処理を施すメツキ鋼板として亜鉛メツキ
を施した亜鉛メツキ鋼板を用いる特許請求の範囲
第1項に記載のメツキ鋼板のクロメート処理方
法。 3 表面処理を施すメツキ鋼板として亜鉛メツキ
を施した後に更に高温加熱して合金化処理を施し
た亜鉛メツキ鋼板を用いる特許請求の範囲第1項
に記載のメツキ鋼板のクロメート処理方法。 4 表面処理を施すメツキ鋼板としてアルミニウ
ムメツキを施したアルミニウムメツキ鋼板を用い
る特許請求の範囲第1項に記載のメツキ鋼板のク
ロメート処理方法。 5 表面処理を施されるメツキ鋼板がそのメツキ
を溶融メツキによりなされたものである特許請求
の範囲第1項ないし第4項のうちの何れか1項に
記載のメツキ鋼板のクロメート処理方法。 6 表面処理を施されるメツキ鋼板がそのメツキ
を電気メツキによりなされたものである特許請求
の範囲第1項ないしは第4項のうちの何れか1項
に記載のメツキ鋼板のクロメート処理方法。
[Claims] 1. A silane coupling agent is added to a chromic anhydride (CrO 3 ) solution to reduce a part of the chromic anhydride.
A chromate treatment method for a galvanized steel sheet, comprising surface-treating the galvanized steel sheet with a treatment solution having a molar ratio of trivalent chromium to hexavalent chromium (Cr +3 /Cr +6 ) of 0.05 to 0.7. 2. The method for chromate treatment of a galvanized steel sheet according to claim 1, which uses a galvanized steel sheet that has been subjected to galvanization as the galvanized steel sheet to which the surface treatment is applied. 3. The method for chromate treatment of a galvanized steel sheet according to claim 1, which uses a galvanized steel sheet that is subjected to galvanization and then further heated at a high temperature to undergo alloying treatment as the surface-treated galvanized steel sheet. 4. The method for chromate treatment of a plated steel plate according to claim 1, which uses an aluminum plated steel plate that has been subjected to aluminum plating as the plated steel plate to which the surface treatment is applied. 5. The method for chromate treatment of a plated steel plate according to any one of claims 1 to 4, wherein the plated steel plate to be surface-treated is plated by hot-dip plating. 6. The method for chromate treatment of a plated steel plate according to any one of claims 1 to 4, wherein the plated steel plate to be surface-treated is plated by electroplating.
JP12068781A 1981-08-03 1981-08-03 Chromate treatment of plated steel plate Granted JPS5822383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12068781A JPS5822383A (en) 1981-08-03 1981-08-03 Chromate treatment of plated steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12068781A JPS5822383A (en) 1981-08-03 1981-08-03 Chromate treatment of plated steel plate

Publications (2)

Publication Number Publication Date
JPS5822383A JPS5822383A (en) 1983-02-09
JPS6335712B2 true JPS6335712B2 (en) 1988-07-15

Family

ID=14792462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12068781A Granted JPS5822383A (en) 1981-08-03 1981-08-03 Chromate treatment of plated steel plate

Country Status (1)

Country Link
JP (1) JPS5822383A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08982B2 (en) * 1986-02-28 1996-01-10 日本パ−カライジング株式会社 Metal chromating method
JPS62202084A (en) * 1986-02-28 1987-09-05 Nippon Parkerizing Co Ltd Treatment of surface of metal
JPH0781193B2 (en) * 1988-07-08 1995-08-30 株式会社日本ダクロシャムロック Metal surface treatment method
JPH03243796A (en) * 1990-02-22 1991-10-30 Nippon Steel Corp Production of organic compositely plated steel sheet having high corrosion resistance
JPH0696778B2 (en) * 1990-10-05 1994-11-30 新日本製鐵株式会社 Chromate treatment method for galvanized steel sheet
JP2628782B2 (en) * 1990-10-08 1997-07-09 日本パーカライジング株式会社 Chromate treatment method for galvanized steel sheet
JPH0753913B2 (en) * 1990-11-14 1995-06-07 新日本製鐵株式会社 Method for manufacturing organic composite plated steel sheet
JP3278509B2 (en) * 1993-10-21 2002-04-30 日本パーカライジング株式会社 Method for forming hardly soluble chromate film on zinc-containing metal plated steel sheet
US6149735A (en) * 1995-11-30 2000-11-21 Henkel Corporation Chromate treatment bath composition and process for application to metals
WO2005087981A1 (en) * 2004-03-10 2005-09-22 Jfe Steel Corporation Steel sheet for fuel tank and method for manufacture thereof

Also Published As

Publication number Publication date
JPS5822383A (en) 1983-02-09

Similar Documents

Publication Publication Date Title
CA1215934A (en) Surface treated steel sheet for paint coating
AU724454B2 (en) Method of preventing corrosion of metal sheet using vinyl silanes
US6132808A (en) Method of treating metals using amino silanes and multi-silyl-functional silanes in admixture
JP4043784B2 (en) Mixed silane coating
AU726765B2 (en) Method of preventing corrosion of metals using silanes
JP3898302B2 (en) Surface treatment agent composition for metal material and treatment method
US5053081A (en) Composition and method for treatment of conversion coated metal surfaces with an aqueous solution of 3-aminopropyltriethoxy silane and titanium chelate
US6106901A (en) Method of treating metals using ureido silanes and multi-silyl-functional silanes in admixture
JPH0873775A (en) Metal surface treating agent for forming coating film excellent in fingerprint resistance, corrosion resistance and adhesion of coating film and method of treating therewith
US6071566A (en) Method of treating metals using vinyl silanes and multi-silyl-functional silanes in admixture
KR20010041809A (en) Surface treatment composition and surface treatment method for metallic materials
JP2001089868A (en) Substrate treating agent for precoated metallic sheet, coated substrate treated metallic sheet coated with the same and precoated metallic sheet excellent in working adhesion of coating film using the same
JP4510196B2 (en) Method for producing aqueous resin composition for anticorrosive coating agent
JPS6335712B2 (en)
JP3923419B2 (en) Non-chromium treatment of non-chromium steel sheet
WO2000063303A1 (en) Silane treatments for corrosion resistance and adhesion promotion
WO1999050366A1 (en) Metallic material with organic composite coating excellent in corrosion resistance and coatability and reduced in finger mark adhesion and process for producing the same
JP2004002958A (en) Non-chromium treated, galvanized steel sheet, and method of producing the same
JP5000802B2 (en) Inorganic film-forming coating agent, inorganic film-forming method, inorganic film-coated aluminum material and inorganic film-coated steel material obtained by using the same
JP2000248380A (en) Production of non-chromium type treated galvanized steel sheet
JP3289769B2 (en) Manufacturing method of galvanized steel sheet with excellent white rust resistance, paint adhesion and alkali degreasing resistance
JP3900070B2 (en) Non-chromic treatment of galvanized steel sheet
JPS6017590B2 (en) Surface treatment method for zinc or zinc alloy coated steel sheet
JP3319385B2 (en) Painted galvanized steel sheet excellent in workability, scratch resistance and corrosion resistance and method for producing the same
JPH05295562A (en) Method for chromate-treating galvanized steel sheet