JPS6335459A - Method of dewaxing formed body of sinterable substance-containing mixture - Google Patents

Method of dewaxing formed body of sinterable substance-containing mixture

Info

Publication number
JPS6335459A
JPS6335459A JP61177830A JP17783086A JPS6335459A JP S6335459 A JPS6335459 A JP S6335459A JP 61177830 A JP61177830 A JP 61177830A JP 17783086 A JP17783086 A JP 17783086A JP S6335459 A JPS6335459 A JP S6335459A
Authority
JP
Japan
Prior art keywords
degreasing
temperature
weight
sinterable
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61177830A
Other languages
Japanese (ja)
Inventor
淳二 武田
牧 悦二
竹村 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61177830A priority Critical patent/JPS6335459A/en
Publication of JPS6335459A publication Critical patent/JPS6335459A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 り灸二二血月上■ 本発明は射出成形法、押出成形法およびプレス成形など
の成形法によって成形された焼結性物質含有混合物の成
形体の脱脂方法に関するものであり、脱脂時間を大幅に
短縮させるのみならず、脱脂時に発生するフクレ、亀裂
、さらに有害な変形などのない焼結性物質含有混合物の
成形体の脱脂物を提供することを目的とするものである
[Detailed Description of the Invention] The present invention relates to a method for degreasing a molded body of a mixture containing a sinterable substance formed by a molding method such as an injection molding method, an extrusion molding method, or a press molding method. The purpose is to provide a degreased product of a molded body of a mixture containing a sinterable substance that not only significantly shortens the degreasing time but also does not cause blisters, cracks, or harmful deformation that occur during degreasing. It is.

良釆立且遺 現在、アルミナ、炭化ケイ素、フェライト、チタン酸バ
リウム、チッ化ケイ素などのセラミンクス材料およびニ
ッケル、チタン、鉄などの金属のそれぞれの粉末にポリ
ビニルアルコールなどの水溶性物質を数パーセント混合
させ、顆粒化した粉末をプレス法によって成形させて賦
形化した後、脱詣参焼結させるか、あるいはポリビニル
ブチラールなどの有機物質をトルエンなどの有機溶剤と
ともに混合し、ドクターブレード法によってシートを製
造し、このシートを乾燥させた後、打ち抜き型で打ち抜
き、脱脂・乾燥させることによって成形物を得ることが
一般に行なわれている。しかし、このような方法では、
三次元であり、かつ複雑な形状を有する成形物を得るこ
とはできなかった。最近では、複雑な三次元の形態を有
する成形物を得るために射出成形法によってグリーン体
を得る方法が開発されている。この射出成形法で複雑な
形状を有するグリーン体を得るにはワックス、スチレン
系重合体、アクリル系重合体などの各種高分子重合体の
低重合物10〜30重量%を前記セラミックス物質また
は金属に混合させた混合物を射出成形機を使って金型中
に充填させることによって実施されている。このように
して得られたグリーン体を焼結するためには成形体の賦
形に使用した高分子物質や有機物質を除去する脱脂工程
が必要である。高分子物質、有機物質が除去された後、
焼結工程を経て焼結体を得ることができるが、従来のプ
レス法、ドクターブレード法などの方法では、脱脂工程
において成形体にフクレ、亀裂、さらに有害な変形が発
生することもなく、かつ脱脂に要する時間も短時間であ
る。
Currently, we are mixing powders of ceramic materials such as alumina, silicon carbide, ferrite, barium titanate, and silicon nitride, and metals such as nickel, titanium, and iron with a few percent of water-soluble substances such as polyvinyl alcohol. The granulated powder is shaped using a press method and then sintered, or an organic substance such as polyvinyl butyral is mixed with an organic solvent such as toluene and a sheet is formed using a doctor blade method. After the sheet is manufactured and dried, it is generally punched out using a punching die, degreased and dried to obtain a molded product. However, in such a method,
It was not possible to obtain a molded product that was three-dimensional and had a complicated shape. Recently, a method for obtaining green bodies by injection molding has been developed in order to obtain molded articles having complex three-dimensional shapes. In order to obtain a green body with a complicated shape by this injection molding method, 10 to 30% by weight of a low polymer of various polymers such as wax, styrene polymer, acrylic polymer, etc. is added to the ceramic material or metal. It is carried out by filling the mixed mixture into a mold using an injection molding machine. In order to sinter the green body thus obtained, a degreasing step is required to remove the polymeric substances and organic substances used in shaping the green body. After removing polymeric substances and organic substances,
A sintered body can be obtained through a sintering process, but conventional methods such as the press method and doctor blade method do not cause blisters, cracks, or harmful deformation in the compact during the degreasing process, and The time required for degreasing is also short.

しかしながら、射出成形法、押出成形法などの成形法に
よって成形体は高分子物質や有機物質の含有量が多いた
めに脱脂工程が従来法に比較して大幅に長時間要するこ
と、さらに、脱脂工程中にグリーン体表面にフクレ、亀
裂、さらに成形体が変形してしまうなどの問題がある。
However, due to molding methods such as injection molding and extrusion molding, the molded product contains a large amount of polymeric substances and organic substances, so the degreasing process takes significantly longer than conventional methods. There are problems such as blisters and cracks on the surface of the green body and deformation of the molded body.

が  しよラ   0 く 以上のことから、本発明はこれらの問題点(欠点)がな
く、すなわち射出成形法、押出成形法などによるグリー
ン体より効率よく、焼結体を製造するために脱脂工程を
短縮し、かつ脱脂時にフクレ、亀裂などの有害な変形を
発生させない方法によって製品を得ることである。
From the above, the present invention does not have these problems (defects), and is more efficient than green bodies produced by injection molding, extrusion, etc., and requires a degreasing process to produce a sintered body. The objective is to obtain a product by a method that shortens the process and does not cause harmful deformations such as blisters and cracks during degreasing.

口       ため   ゛ び 本発明にしたがえば、これの問題点は、焼結性物質含有
混合物の成形体を圧力が10Paないし8X 10’ 
Pa (0,1〜80ミリバール)および温度が20〜
300℃の条件で該成形体中のバインダーが5.0〜5
0重量%減少するまで処理させた後、さらに2.0X1
0  Paないし1.OX 10” Pa(2〜10K
g/ c m”) (7)条件下で最高温度が300〜
600℃まで昇温速度が一時間当り 0.5〜100℃
で脱脂させることを特徴とする焼結性物質含有混合物の
成形体の脱脂方法、 によって解決することができる。以下、本発明を具体的
に説明する。
According to the present invention, the problem is that the molded body of the sinterable substance-containing mixture is heated to a pressure of 10 Pa to 8×10'.
Pa (0,1 to 80 mbar) and temperature 20 to
The binder in the molded product is 5.0 to 5 at 300°C.
After processing until the reduction is 0% by weight, further 2.0X1
0 Pa to 1. OX 10” Pa (2~10K
g/cm”) (7) Maximum temperature under conditions of 300~
Temperature increase rate is 0.5 to 100℃ per hour up to 600℃
The problem can be solved by a method for degreasing a molded body of a sinterable substance-containing mixture, which is characterized by degreasing a molded body of a sinterable substance-containing mixture. The present invention will be explained in detail below.

本発明における焼結性物質含有混合物は本質的に下記の
焼結性物質とバインダーとからなる。
The sinterable substance-containing mixture in the present invention essentially consists of the following sinterable substance and a binder.

(A)  焼結性物質 本発明の焼結性物質の融点、分解温度まは昇華点は通常
600℃以上であり、t、ooo℃以上が好ましく、特
にl 、 400℃以上が好適である。融点、分解温度
または昇華点が600℃未満の金属または無機化合物を
焼結性物質として使用すると、脱脂(か焼)時に有害な
変形やふくれを生じる。
(A) Sinterable substance The melting point, decomposition temperature or sublimation point of the sinterable substance of the present invention is usually 600°C or higher, preferably t,ooo°C or higher, and particularly preferably l,400°C or higher. The use of metals or inorganic compounds with melting points, decomposition temperatures or sublimation points below 600° C. as sinterable substances results in harmful deformation and blistering during degreasing (calcination).

また、平均粒径は0.1〜500ミクロンである。Moreover, the average particle size is 0.1 to 500 microns.

この平均粒径は焼結性物質の種類によって異なるが、金
属の場合では、通常1〜500ミクロンであり、 1〜
300ミクロンが望ましく、とりわけ 1〜200ミク
ロンが最適である。平均粒径が1ミクロン未満の金属を
用いると、混線が困難である。
This average particle size varies depending on the type of sinterable substance, but in the case of metal it is usually 1 to 500 microns, and 1 to 500 microns.
300 microns is preferred, and 1-200 microns is most suitable. When a metal with an average particle size of less than 1 micron is used, crosstalk is difficult.

一方、 500ミクロンを越えた金属を使うならば、焼
結によって得られる成形物の機械的物性が低下する。ま
た、無機化合物の場合では、一般に0.1〜200ミク
ロンであり、0.1〜150ミクロンが好ましく、特に
0.1〜100ミクロンが好適である。平均粒径が0.
1ミクロン未満の無機化合物を使用すると、組成物を製
造するさいに混練時において無機化合物の均一の分散が
困難である。
On the other hand, if a metal with a diameter exceeding 500 microns is used, the mechanical properties of the molded product obtained by sintering will deteriorate. In the case of inorganic compounds, the thickness is generally 0.1 to 200 microns, preferably 0.1 to 150 microns, and particularly preferably 0.1 to 100 microns. Average particle size is 0.
If an inorganic compound with a diameter of less than 1 micron is used, it is difficult to uniformly disperse the inorganic compound during kneading during production of the composition.

一方、 200ミクロンを越えた無機化合物を用いると
、組成物の成形物を焼結するさいに保形性が悪くなると
ともに、焼結後の密度が低下し、焼結体の機械的強度が
低下する。
On the other hand, if an inorganic compound with a diameter exceeding 200 microns is used, shape retention will be poor when sintering a molded product of the composition, the density after sintering will be reduced, and the mechanical strength of the sintered body will be reduced. do.

本発明において焼結性物質として用いられる金属の代表
例としては、アルミニウム、鉄、銅、チタン、モリブデ
ン、ジルコニウム、コバルト、ニッケルおよびクロムの
ごとき金属ならびにこれらの金属を主成分(少なくとも
50重量%)とする合金があげられる。これらの金属お
よび合金の粉末は軸受台金、快削鋼、耐熱材、耐摩耗材
などとして広く使われているものであり、通常粉末冶金
材料と云われているものである。また、無機化合物の代
表例としては、アルミナ、炭化珪素、窒化珪素、ジルコ
ニア、コージライト、タングステンカーバイド、窒化ア
ルミニウムなどのセラミックス材料があげられる。さら
に、焼結助剤として、ホウ素、ベリリウム、炭素、酸化
イットリラム、酸化セリウム、酸化マグネシウム、酸化
リチウムなどを適宜少量(一般には、100重量部の無
機化合物に対して多くとも20重量部)添加させてもよ
い。
Typical examples of metals used as sinterable materials in the present invention include metals such as aluminum, iron, copper, titanium, molybdenum, zirconium, cobalt, nickel, and chromium, and metals based on these metals (at least 50% by weight). Examples include alloys that Powders of these metals and alloys are widely used as bearing base metals, free-cutting steel, heat-resistant materials, wear-resistant materials, etc., and are generally referred to as powder metallurgy materials. Furthermore, typical examples of inorganic compounds include ceramic materials such as alumina, silicon carbide, silicon nitride, zirconia, cordierite, tungsten carbide, and aluminum nitride. Furthermore, as a sintering aid, boron, beryllium, carbon, yttrilam oxide, cerium oxide, magnesium oxide, lithium oxide, etc. are added in an appropriate small amount (generally at most 20 parts by weight per 100 parts by weight of the inorganic compound). It's okay.

(B)バインダー また、バインダーとして使用可能な樹脂としては、エチ
レン系重合体、スチレン系重合体、プロピレン系重合体
、エチレン−酢酸ビニル共重合体、アルキル(炭素数 
6個以下)メタアクリレートを主成分(50重量%以上
)とする重合体(たとえば、ポリメチルメタクリレート
、ポリエチルメタクリレート、ポリブチルメタクリレー
ト)およびアルキル(炭素数 6個以下)アクリレート
を主成分(50重量%以上)とする重合体(たとえば、
ポリメチルアクリレート、ポリエチルアクリレート、ポ
リブチル7クリレート)があげられる0以上において、
“系重合体”とは該七ツマ−の単独重合体および該モノ
マーを主成分(少なくとも50重量%)とし、他のモノ
マーとの共重合体を意味する。これらのバインダーの数
平均分子量〔蒸気浸透圧の法(vapor pres、
sureosmo■6ter)法によって測定〕は通常
2000ないしlO万であり、4000以上のものが好
ましい、これらのバインダーはセラミックス材料と混合
して焼結物質を製造する分野において広く使われている
ものである。
(B) Binder Resins that can be used as binders include ethylene polymers, styrene polymers, propylene polymers, ethylene-vinyl acetate copolymers, alkyl (carbon number
6 or less) methacrylate as the main component (50% by weight or more) (e.g., polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate) and alkyl (6 or less carbon atoms) acrylate as the main component (50% by weight) % or more) (for example,
0 or more including polymethyl acrylate, polyethyl acrylate, polybutyl 7 acrylate),
The term "based polymer" means a homopolymer of the heptamer and a copolymer containing the monomer as a main component (at least 50% by weight) and other monomers. The number average molecular weight of these binders [vapor osmotic pressure method (vapor pres,
[measured by the sureosmo ■6ter) method] is usually 2,000 to 10,000, preferably 4,000 or more. These binders are widely used in the field of manufacturing sintered materials by mixing with ceramic materials. .

(C)混合物の製造 本発明の混合物を製造するにあたり、前記焼結性物質1
00重量部に対するバインダーの混合割合は一般には5
〜40重量部であり、10〜40重量部が望ましく、と
りわけ10〜30重量部が好適である。
(C) Production of mixture In producing the mixture of the present invention, the sinterable material 1
The mixing ratio of binder to 00 parts by weight is generally 5
~40 parts by weight, preferably 10 to 40 parts by weight, particularly preferably 10 to 30 parts by weight.

焼結性物質100重量部に対するバインダーの混合割合
が5重量部未満では、混合物の混練性、成形性および分
散性が悪いばかりでなく、均一な混合物を製造すること
が困難であり、たとえ均一な混合物が得られたとしても
、良好なグリーン体を得ることができない、一方、40
重量部を越えると、グリーン体物性(強度、保形性)は
よいが、脱バインダー後の密度が低く、さらに焼結しに
くい。
If the mixing ratio of the binder to 100 parts by weight of the sinterable material is less than 5 parts by weight, not only will the kneadability, moldability and dispersibility of the mixture be poor, but it will also be difficult to produce a homogeneous mixture. Even if a mixture is obtained, good green bodies cannot be obtained, while 40
If it exceeds the weight part, the physical properties of the green body (strength, shape retention) are good, but the density after removing the binder is low, and furthermore, it is difficult to sinter.

さらに、必要に応じて、脂肪酸アミド、脂肪酸またはそ
のエステル、脂肪族アルコール、フタル酸エステル、脂
肪族エーテル、パラフィンワックス、シラン系またはチ
タネート系カップリング剤などのハロゲンを含有しない
加工助剤を添加することができる。このさい、加工助剤
の添加量は焼結性物質100重量部に対して多くとも2
0重量部であり、特に10重量部以下が好ましい。
Furthermore, if necessary, halogen-free processing aids such as fatty acid amides, fatty acids or their esters, fatty alcohols, phthalates, aliphatic ethers, paraffin waxes, silane-based or titanate-based coupling agents are added. be able to. At this time, the amount of processing aid added is at most 2 parts by weight per 100 parts by weight of the sinterable material.
0 parts by weight, particularly preferably 10 parts by weight or less.

以上の焼結性物質とバインダーあるいはこれらと加工助
剤を均一に混合させることによって本発明の焼結性物質
含有混合物を製造することができる。混合方法としては
熱可塑性樹脂の分野において一般に使われているヘンシ
ェルミキサーのごとき混合機を用いてトライブレンドさ
せても製造することができるし、バンバリーミキサ−、
ニーダ−、ロールミルおよびスクリュ一式押出機のごと
き混合機を使用して溶融混練させても得ることができる
。このさい、あらかじめトライブレンドし、得られる混
合物を溶融混練させることによって均−状の混合物を得
ることができる。この場合、一般には溶融混練させた後
ペレット状物に成形し、後記の成形に供する。
The sinterable substance-containing mixture of the present invention can be produced by uniformly mixing the above sinterable substance and the binder or these and the processing aid. As a mixing method, it can be produced by tri-blending using a mixer such as a Henschel mixer, which is commonly used in the field of thermoplastic resins, or by using a Banbury mixer,
It can also be obtained by melt-kneading using a mixer such as a kneader, roll mill, or screw extruder. At this time, a homogeneous mixture can be obtained by triblending in advance and melt-kneading the resulting mixture. In this case, the mixture is generally melt-kneaded and then molded into pellets, which are then subjected to the molding described later.

(D)成形法 本発明の脱脂法に用いる焼結性物質含有混合物の成形体
は射出成形機、押出成形機、プレス成形機などを使って
混合物中のバインダーが溶融する温度であるが、バイン
ダーが分解しない温度で成形させることによって得られ
る。成形温度は焼結性物質含有混合物中のバインダーの
種類によって限定することができないが、一般には70
〜300℃である。得られた各種の形状の焼結性物質含
有混合物の成形体は後記の脱脂に供せられる。
(D) Molding method The molded body of the sinterable substance-containing mixture used in the degreasing method of the present invention is molded using an injection molding machine, extrusion molding machine, press molding machine, etc. at a temperature where the binder in the mixture melts. It is obtained by molding at a temperature that does not decompose. The molding temperature cannot be limited by the type of binder in the sinterable substance-containing mixture, but is generally 70°C.
~300°C. The obtained molded bodies of the sinterable substance-containing mixture in various shapes are subjected to degreasing described later.

本発明の重要な要素である脱脂方法は二つの工程に分け
ることができる。最初に減圧下で加熱処理させた(以下
「第−脱脂工程」と云う)後、さらに加圧下で昇温させ
る(以下「第二脱脂工程」と云う)ことが特徴である。
The degreasing method, which is an important element of the present invention, can be divided into two steps. It is characterized in that it is first heat-treated under reduced pressure (hereinafter referred to as the "second degreasing step") and then further heated under pressure (hereinafter referred to as the "second degreasing step").

(E)第−脱脂工程 本発明の第−脱脂工程を実施するにあたり、圧力は10
Paないし8X 104Paテあり、 100Paない
し7X10  Paが好ましく、特にlX103Paな
いし5X10’Paが好適である。この工程を10Pa
未満で実施すると、処理温度をいかに下げたとしても、
成形体の表面にフクレが発生する。一方、8X 10’
Paを越えて行なうと、処理温度を下げ、処理時間を大
幅に延長させることをしない限りは、成形体の表面にフ
クレが発生したり、亀裂が発生する。
(E) First degreasing step When carrying out the first degreasing step of the present invention, the pressure is 10
Pa to 8X104Pa, preferably 100Pa to 7X10Pa, particularly preferably 1X103Pa to 5X10'Pa. This process is 10Pa
No matter how low the processing temperature is,
Blisters occur on the surface of the molded product. On the other hand, 8X 10'
If the temperature exceeds Pa, blisters or cracks will occur on the surface of the molded product unless the treatment temperature is lowered and the treatment time is significantly extended.

また、処理温度が20〜300℃であり、40〜250
℃が望ましく、50〜230℃が好適である。処理温度
が20℃より低い温度でこの処理を行なうと、後記の第
二脱脂工程で種々の条件を変えたとしても、成形体の表
面にフクレが発生する。一方、300℃より高い温度で
行なうならば、この第−脱脂工程において成形体が変形
する。この第−脱脂工程で最高処理温度までの昇温速度
は特に限定されないが、一時間当り10〜100℃が一
般的である。さらに、昇温時までに減圧下においても、
また所定温度に到達した後、減圧を開始してもよい。
In addition, the treatment temperature is 20 to 300°C, and 40 to 250°C.
℃ is desirable, and 50 to 230℃ is suitable. If this treatment is performed at a temperature lower than 20° C., blisters will occur on the surface of the molded product even if various conditions are changed in the second degreasing step described later. On the other hand, if the degreasing is carried out at a temperature higher than 300° C., the molded body will be deformed in this first degreasing step. The rate of heating up to the highest treatment temperature in this first degreasing step is not particularly limited, but is generally 10 to 100°C per hour. Furthermore, even under reduced pressure by the time of temperature rise,
Further, pressure reduction may be started after reaching a predetermined temperature.

この第−脱脂工程を実施するにあたり、圧力と温度との
関係は特に限定されないが、温度が低い場合では、圧力
を下げる必要がある。一方、圧力が高い場合では、比較
的に高い温度で実施することが望まれる。
When carrying out this first degreasing step, the relationship between pressure and temperature is not particularly limited, but if the temperature is low, it is necessary to lower the pressure. On the other hand, when the pressure is high, it is desirable to carry out the process at a relatively high temperature.

この第−脱脂工程において、成形体中のバインダーが5
〜50重量%(好ましくは、5〜45重量%)まで減少
するまで、前記の圧力および温度で処理することが重要
である。短時間で処理させると、成形体がフクレを生じ
たり、亀裂、変形が発生するために好ましくない、しか
し、長時間にわたって行なうと、工業的に望ましくない
、したがって、一般にはこの処理時間は0.1〜10時
間であり、 0.2〜5時間が好適である。
In this first degreasing step, the binder in the molded body is
It is important to process at the pressures and temperatures mentioned until a reduction of ~50% by weight (preferably 5-45% by weight) is achieved. If the treatment is carried out for a short period of time, the molded product may blister, crack or deform, which is undesirable.However, if the treatment is carried out for a long time, it is not desirable from an industrial perspective.Therefore, the treatment time is generally 0. The time is 1 to 10 hours, preferably 0.2 to 5 hours.

本発明の第−脱脂工程において、2.5X 10’ P
aないし4.OX 10’ Paの圧力で、120〜1
80℃の温度で0.5〜2時間処理することが好適であ
る。
In the first degreasing step of the present invention, 2.5X 10'P
a to 4. At a pressure of OX 10' Pa, 120~1
It is preferred to treat at a temperature of 80°C for 0.5 to 2 hours.

(F)第二脱脂工程 このようにして第−脱脂工程によって得られた成形体を
加圧処理(第二脱脂工程)を実施することによって脱脂
の時間を大幅に短縮することができる。
(F) Second degreasing step By subjecting the molded body thus obtained in the first degreasing step to pressure treatment (second degreasing step), the degreasing time can be significantly shortened.

この第二脱脂工程における圧力は2.5X 105Pa
ないし 1.OX 10”  pa  (2〜10Kg
/ c m’)であり、3、OX 10  Paないし
9.OX 105Paが好ましく、特に4.0X10 
 Paないし8.5X 105Paが好適である。
The pressure in this second degreasing step is 2.5X 105Pa
Or 1. OX 10”pa (2~10Kg
/ cm') and 3, OX 10 Pa to 9. OX 105Pa is preferred, especially 4.0X10
Pa to 8.5×105 Pa is preferred.

この工程において、2.OX 10” Paより低い圧
力で実施するならば、昇温速度を遅くさせたとしても、
成形体にフクレが発生する。一方、1.OX 108P
aを越えてこの工程を実施すると、製造上に問題がある
In this step, 2. If carried out at a pressure lower than OX 10” Pa, even if the heating rate is slowed down,
Blisters occur on the molded product. On the other hand, 1. OX 108P
If this step is carried out beyond step a, there will be problems in manufacturing.

この工程における昇温速度は一時間当り 0.5〜10
0℃であり、 1.0〜100℃が望ましく、とりわけ
20〜70℃が好適である。昇温速度が一時間当り0.
5℃未満でこの工程を実施すると、脱脂時間の短縮にな
らない。一方、一時間当り 100℃を越えて行なうと
、成形体にフクレが発生する。また、最高温度は300
〜800℃であり、350〜600℃が好ましく、特に
400〜580℃が好適である。最高温度が300℃未
満では、得られる成形体に炭素などの残存量が多いため
に焼結時に亀裂などが発生する。一方、最高温度が60
0℃を越えると、成形体を焼結するさいに取り扱いが問
題となる。
The temperature increase rate in this process is 0.5 to 10 per hour.
0°C, preferably 1.0 to 100°C, particularly preferably 20 to 70°C. The heating rate is 0.0 per hour.
If this step is carried out below 5°C, the degreasing time will not be shortened. On the other hand, if the temperature exceeds 100°C per hour, blisters will occur in the molded product. Also, the maximum temperature is 300
-800°C, preferably 350-600°C, particularly preferably 400-580°C. If the maximum temperature is less than 300°C, cracks will occur during sintering due to the large amount of residual carbon etc. in the resulting molded body. On the other hand, the maximum temperature is 60
If the temperature exceeds 0°C, handling becomes a problem when sintering the compact.

以上の第一処理工程および第二処理工程は、いずれも不
活性ガス(たとえば、窒素ガス)中で行なってもよく、
酸素や空気中で実施してもよい。
Both of the above first treatment step and second treatment step may be performed in an inert gas (for example, nitrogen gas),
It may be carried out in oxygen or air.

本発明によれば、焼結性物質含有混合物の成形体を脱脂
するさいにまず減圧処理(第−脱脂工程)し、しかる後
に加圧処理(第二脱脂工程)することにより、成形の表
面にフクレ、亀裂、変形などの有害な変形を発生せず、
かつ脱脂の時間を従来の単に加圧のみで脱脂をした場合
、または真空のみで脱脂をした場合、大気圧下で脱脂を
するのに比べて大幅に短縮することが可能である。この
ようにして得られた脱脂体は焼結を行なうことによって
最終製品に仕上げることができる。
According to the present invention, when degreasing a molded body of a sinterable substance-containing mixture, the surface of the mold is No harmful deformations such as blisters, cracks, or deformations occur.
In addition, the degreasing time can be significantly shortened compared to degreasing under atmospheric pressure when conventional degreasing is carried out only by pressurization or by vacuum only. The degreased body thus obtained can be finished into a final product by sintering.

−ゝび 以下、実施例によって本発明をさらにくわしく説明する
- Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1〜10、比較例 1〜3 平均粒径が1.Op、 vsであるアルミナ(昭和軽金
属社製、商品名 AL−45−A ) 、平均粒径が0
.6gmである炭化ケイ素(昭和電工社製、商品名DU
  A−2S)および平均粒径が40IL園である純鉄
(昭和電工社製、商品名 7トミロン)を焼結性物質と
して使った。
Examples 1 to 10, Comparative Examples 1 to 3 Average particle size is 1. Op, vs alumina (manufactured by Showa Light Metal Co., Ltd., trade name AL-45-A), average particle size is 0
.. 6gm of silicon carbide (manufactured by Showa Denko, trade name DU)
A-2S) and pure iron (manufactured by Showa Denko K.K., trade name: 7 Tomilon) having an average particle size of 40IL were used as the sinterable material.

第1表に示されているこれらの焼結性物質をそれぞれ9
0重量部、数平均分子量が約30万であるポリアクリル
酸メチル10重量部、2.0重量部のジブチルフタレー
トおよび1.0重量部のステアリン酸をあらかじめヘン
シェルミキサーを用いて5分間トライブレンドを行なっ
た。得られた各混合物を二軸押出機(径 30I)を使
用して120℃の温度において混練させながら組成物(
ペレット)を製造した。得られた各ペレットを射出成形
機を使って 160℃において成形し、肉厚が5m鵬、
高さが130mmおよび外径が25mmの円筒状の成形
体を製造した。
9 of each of these sinterable substances shown in Table 1.
0 parts by weight, 10 parts by weight of polymethyl acrylate having a number average molecular weight of about 300,000, 2.0 parts by weight of dibutyl phthalate, and 1.0 parts by weight of stearic acid were pre-triblended for 5 minutes using a Henschel mixer. I did it. The composition (
pellets) were produced. Each of the obtained pellets was molded using an injection molding machine at 160°C, with a wall thickness of 5 m,
A cylindrical molded body with a height of 130 mm and an outer diameter of 25 mm was manufactured.

得られた各成形体を減圧炉に入れ、圧力および温度が第
1表に示されている条件下で第1表に示されている時間
減圧処理(第−脱脂工程)を行なった。脱脂された各成
形体中の出発物質であるバインダー(ポリアクリル酸メ
チル、ステアリン酸、ジブチルフタレート)の減少量(
脱脂量)を求めた。それらの結果を第1表に示す。
Each of the obtained molded bodies was placed in a vacuum furnace and subjected to a vacuum treatment (first degreasing step) under the pressure and temperature conditions shown in Table 1 for the time shown in Table 1. The amount of decrease (
Degreased amount) was determined. The results are shown in Table 1.

このようにして脱脂された各成形体を加圧炉に入れ、窒
素雰囲気下で圧力および昇温速度が第1表に示されてい
る条件で最高温度まで昇温させ、加圧処理(第二脱脂工
程)を行なった。このようにして脱脂された成形体の外
観は比較例1を除き、すべてなんら異常を認めることが
できなかったが、比較例1では、外観にふくれが発生し
ていた。
Each molded body degreased in this way is placed in a pressure furnace, heated to the maximum temperature under the conditions of pressure and temperature rise rate shown in Table 1 in a nitrogen atmosphere, and then subjected to pressure treatment (second Degreasing step) was performed. With the exception of Comparative Example 1, no abnormalities were observed in the external appearance of the molded articles degreased in this manner, but in Comparative Example 1, blistering had occurred in the external appearance.

このようにして脱脂された各成形体を焼結炉に入れ、窒
素雰囲気下で1600℃まで(ただし、実施例9では、
アルゴン雰囲気下で2200℃まで、実施例10では、
真空下で1100℃まで)昇温速度が100℃/時間で
昇温させ、焼結を行なった。全実施例で得られた焼結体
は、すべてなんら異常を認めることができなかった。し
かし比較例2および3では、焼結体の表面にふくれが発
生していた。
Each molded body thus degreased was placed in a sintering furnace and heated to 1600°C under a nitrogen atmosphere (however, in Example 9,
In Example 10, up to 2200°C under an argon atmosphere.
Sintering was carried out by raising the temperature at a rate of 100°C/hour (up to 1100°C under vacuum). No abnormality was observed in any of the sintered bodies obtained in all Examples. However, in Comparative Examples 2 and 3, blistering occurred on the surface of the sintered body.

また、比較例1では、焼結体に亀裂が発生していた。Moreover, in Comparative Example 1, cracks were generated in the sintered body.

(以下余白) 発」LL」L釆 本発明方法によれば下記のごとき効果(特徴)を発揮す
る。
(Hereinafter in the margin) ``LL''L button According to the method of the present invention, the following effects (characteristics) are exhibited.

(1)脱脂時間が大幅に短縮される。(1) Degreasing time is significantly shortened.

(2)脱脂された成形体にふくれ、亀裂、変形などの発
生がない。
(2) There is no occurrence of blistering, cracking, deformation, etc. in the degreased molded product.

(3)複雑な形状を有する成形体であっても、上記のご
とき異常がなく脱脂することができる。
(3) Even if the molded article has a complicated shape, it can be degreased without the above abnormalities.

Claims (1)

【特許請求の範囲】[Claims]  焼結性物質含有混合物の成形体を圧力が10Paない
し8×10^4Paおよび温度が20〜300℃の条件
で該成形体中のバインダーが5〜50重量%減少するま
で処理させた後、さらに圧力が2.0×10^5Paな
いし1.0×10^6Paの条件下で最高温度が300
〜600℃まで昇温速度が一時間当り0.5〜100℃
で脱脂させることを特徴とする焼結性物質含有混合物の
成形体の脱脂方法。
After treating the molded body of the sinterable substance-containing mixture at a pressure of 10 Pa to 8×10^4 Pa and a temperature of 20 to 300°C until the binder in the molded body is reduced by 5 to 50% by weight, further Maximum temperature is 300℃ under pressure of 2.0×10^5Pa to 1.0×10^6Pa
Temperature increase rate is 0.5-100℃ per hour up to ~600℃
A method for degreasing a molded body of a mixture containing a sinterable substance, the method comprising degreasing a molded body of a mixture containing a sinterable substance.
JP61177830A 1986-07-30 1986-07-30 Method of dewaxing formed body of sinterable substance-containing mixture Pending JPS6335459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61177830A JPS6335459A (en) 1986-07-30 1986-07-30 Method of dewaxing formed body of sinterable substance-containing mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61177830A JPS6335459A (en) 1986-07-30 1986-07-30 Method of dewaxing formed body of sinterable substance-containing mixture

Publications (1)

Publication Number Publication Date
JPS6335459A true JPS6335459A (en) 1988-02-16

Family

ID=16037854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61177830A Pending JPS6335459A (en) 1986-07-30 1986-07-30 Method of dewaxing formed body of sinterable substance-containing mixture

Country Status (1)

Country Link
JP (1) JPS6335459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218984A (en) * 1990-01-22 1991-09-26 Komatsu Ltd Binder removing method
JP2012530848A (en) * 2009-06-25 2012-12-06 ビーエーエスエフ ソシエタス・ヨーロピア Method for continuously and thermally removing a binder from a metal and / or ceramic molding produced by injection molding, extrusion molding or pressing using a thermoplastic molding composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218984A (en) * 1990-01-22 1991-09-26 Komatsu Ltd Binder removing method
JP2012530848A (en) * 2009-06-25 2012-12-06 ビーエーエスエフ ソシエタス・ヨーロピア Method for continuously and thermally removing a binder from a metal and / or ceramic molding produced by injection molding, extrusion molding or pressing using a thermoplastic molding composition

Similar Documents

Publication Publication Date Title
JP3142828B2 (en) Binder system for powder injection molding
JP5661278B2 (en) Method for producing refractory metal molded body
JPH0647684B2 (en) Degreasing method for injection molded products
EP0427375B1 (en) Sintering metal powder and a process for making a sintered metal product
JP2012512962A (en) Method for manufacturing cemented carbide products
CN1311724A (en) Aqueous molding compositions for powders of stainless steel, intermetallic compound and/or metal matrix composites
JPS6335459A (en) Method of dewaxing formed body of sinterable substance-containing mixture
JPS63166768A (en) Method of sintering formed body of sinterable substance-containing mixture
JP2677675B2 (en) Method for producing sintered product consisting of powder molding binder and metal powder or ceramic powder
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
JPH0313503A (en) Method for degreasing molding for powder metallurgy, binder and supercritical fluid
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JPH02290642A (en) Manufacture of ceramic core
JPH02204355A (en) Production of sinterable mixture
JPH02311374A (en) Degreasing
JPH03290374A (en) Production of sintered article
JPH0820803A (en) Production of sintered compact
JPH02294404A (en) Production of industrial parts
JPH0641601B2 (en) Molding composition
JPH0647682B2 (en) Manufacturing method of sintered metal
JPH0711010B2 (en) COMPOSITION FOR METAL POWDER INJECTION MOLDING, SINTERED METAL MEMBER AND PROCESS FOR PRODUCING SAID MEMBER
JPS5926653B2 (en) How to form cemented carbide
JPH0483752A (en) Mixture of sinterable substance
JPH03257101A (en) Method for degreasing powder green compact
JPS6255107A (en) Method of injecting and molding sintering substance contained mixture