JPS6334747B2 - - Google Patents

Info

Publication number
JPS6334747B2
JPS6334747B2 JP57112679A JP11267982A JPS6334747B2 JP S6334747 B2 JPS6334747 B2 JP S6334747B2 JP 57112679 A JP57112679 A JP 57112679A JP 11267982 A JP11267982 A JP 11267982A JP S6334747 B2 JPS6334747 B2 JP S6334747B2
Authority
JP
Japan
Prior art keywords
blood
dialyzer
ufrp
ultrafiltration
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57112679A
Other languages
Japanese (ja)
Other versions
JPS592749A (en
Inventor
Masahito Amamya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP57112679A priority Critical patent/JPS592749A/en
Publication of JPS592749A publication Critical patent/JPS592749A/en
Publication of JPS6334747B2 publication Critical patent/JPS6334747B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】 本発明は、血液の人工透析を行なう人工透析装
置に関し、更に詳しくは、血液を透析浄化するダ
イアライザが該血液中の水分を透析して除去する
能力たる限外過能力(以下「UFRP」と略す)
の測定値を利用して上記血液に含まれる水分を除
去する量(以下「除水量」という)を制御する人
工透析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an artificial dialysis device for performing artificial dialysis of blood, and more specifically, a dialyzer for dialysis purifying blood has an ultrafiltration capacity that is the ability to dialyze and remove water from the blood. (hereinafter abbreviated as “UFRP”)
The present invention relates to an artificial dialysis device that controls the amount of water contained in the blood to be removed (hereinafter referred to as "water removal amount") using the measured value of .

近年、慢性腎不全患者等に対する血液透析療法
が盛んとなり、上記人工透析装置も頻繁に使用さ
れている。また、人工透析装置において、血液の
透析浄化を行なうダイアライザーの上記UFRPは
経時変化を起こすことが知られており、この経時
変化を考慮しない限り限外過の量を正しく制御
することが不可能であるという問題があつた。
In recent years, hemodialysis therapy for patients with chronic renal failure and the like has become popular, and the above-mentioned artificial dialysis apparatus is also frequently used. In addition, in artificial dialysis equipment, it is known that the above-mentioned UFRP in the dialyzer that performs dialysis purification of blood causes changes over time, and it is impossible to accurately control the amount of ultraviolet rays unless this change over time is taken into account. There was a problem.

然し乍ら、従来の人工透析装置においては上記
UFRPを間欠的に測定し、該測定値を使つて上記
除水量を制御するようになつており、上記経時変
化のことが十分には考慮されていなかつた。第1
図は、このような従来例の除水量制御を概念的に
説明するための特性曲線図であり、図中、Cは
UFRP特性曲線、a1〜a8はUFRPの測定値を示す
測定点、b1〜b8は除水量制御に使用されるUFRP
値を示す線分、S1〜S8は除水量制御に使用される
UFRP値と真のUFRP値(UFRP特性曲線C上の
値)との差に相当する誤差分である。第1図にお
いて、測定点a1〜a8の各時間間隔を短かくすれば
誤差分S1〜S8の各値は小さくなるが、該測定点a1
〜a8の測定中上記人工透析装置に透析液が流れず
透析が中断されるため、透析効率が著しく減少す
るという欠点があつた。また、上記測定点a1〜a8
の各時間間隔を長くすれば透析効率は向上する
が、上記誤差分S1〜S8が大きくなつて空極的に上
記除水量の正しい制御が困難になるという欠点が
あつた。
However, in conventional artificial dialysis machines, the above
UFRP is measured intermittently and the measured value is used to control the amount of water removed, and the change over time has not been fully taken into consideration. 1st
The figure is a characteristic curve diagram for conceptually explaining such conventional water removal amount control, and in the figure, C is
UFRP characteristic curve, a 1 to a 8 are measurement points showing the measured values of UFRP, b 1 to b 8 are UFRP used for water removal control
Line segments showing values, S 1 to S 8 are used to control the amount of water removed
This is an error corresponding to the difference between the UFRP value and the true UFRP value (value on the UFRP characteristic curve C). In FIG. 1, if the time intervals between measurement points a 1 to a 8 are shortened, the values of error S 1 to S 8 become smaller;
During the measurement of ~ a8 , the dialysate did not flow into the artificial dialysis device and the dialysis was interrupted, resulting in a disadvantage that the dialysis efficiency was significantly reduced. In addition, the above measurement points a 1 to a 8
Although the dialysis efficiency can be improved by lengthening each time interval, there is a drawback that the error portions S 1 to S 8 increase, making it difficult to accurately control the amount of water removed in a spatial manner.

本発明は、かかる状況に鑑みてなされたもので
あり、その目的は、血液の人工透析を行なう人工
透析装置において、上記除水量を正確且つ迅速に
制御できるような人工透析装置を提供することに
ある。
The present invention has been made in view of this situation, and its purpose is to provide an artificial dialysis device that performs artificial dialysis of blood, and which can accurately and quickly control the amount of water removed. be.

以下、本発明について図を用いて詳細に説明す
る。第2図は本発明実施例の使用例構成説明図で
ある。第2図において、慢性腎不全患者等の人体
1の動脈から血液ポンプ2によつて採血された血
液は、通常、動脈側回路3を通り血液チヤンバー
4を介してダイアライザー5に導びかれ、ここで
透析浄化された後、静脈側回路6を通つて再び患
者の人体1内に帰還するといつた循環プロセスが
とられている。また、静脈側回路6はダイアライ
ザ5の限外過圧(以下「TMP」と略す)を制
御するTMP制御装置7内に設けられた絞り8が
調節されることによつて内部圧が所定の値になつ
ている。更に、透析液導入口9から導入された透
析液は通常透析導入流路10→第1ピンチバルブ
V1→透析液導入流路10′→ダイアライザ5→透
析液導出流路12,12′→第3ピンチバルブV3
→透析液導出流路12″→透析液導出口13の流
路で流れるが、第1および第3のピンチバルブ
V1,V3が閉で第2ピンチバルブV2が開にされる
と、上記透析液は透析液導入流路10→バイパス
流路11→第2ピンチバルブV2→バイパス流路
11′→透析液導出流路12″→透析液導出口13
のいわゆるバイパス流路で流れる。更にまた、該
バイパス流路に透析液が流れている場合、ダイア
ライザー5からは水分が導出され該水分は透析液
導出流路12を通りUFRP測定装置14内の容器
14aに導びかれる。また、該容器14aの入側
14bおよび出側14cには夫々第1および第2
のレベルL1,L2が設けられており、該レベルL1
L2間の内容積はV(c.c.)であつて該内容積を上記
水分が満たすのに要する時間tが計測されるよう
になつている。更に、第1および第2の圧力計1
5,16により血液チヤンバー4内の動脈圧P1
および透析液導入流路内の透析液圧P2が計測さ
れ、該動脈圧P1および透析液圧P2から所定の関
数演算によつて上記TMPが求められ、該TMP、
上記内容積V、および上記時間tから下式(1)によ
つてUFRPが求められる。
Hereinafter, the present invention will be explained in detail using figures. FIG. 2 is an explanatory diagram of the configuration of an example of use of the embodiment of the present invention. In FIG. 2, blood collected by a blood pump 2 from an artery of a human body 1, such as a patient with chronic renal failure, is normally led to a dialyzer 5 via an arterial circuit 3 and a blood chamber 4. A circulation process is adopted in which the blood is purified by dialysis and then returned to the patient's body 1 through the venous circuit 6. In addition, in the venous side circuit 6, the internal pressure is kept at a predetermined value by adjusting the throttle 8 provided in the TMP control device 7 that controls the ultra-limit overpressure (hereinafter abbreviated as "TMP") of the dialyzer 5. It's getting old. Furthermore, the dialysate introduced from the dialysate inlet 9 is normally passed through the dialysis inlet channel 10 → the first pinch valve.
V 1 → Dialysate introduction channel 10' → Dialyzer 5 → Dialysate outlet channel 12, 12' → Third pinch valve V 3
→ Dialysate outlet flow path 12″ → Dialysate flow through the flow path of dialysate outlet 13, but the first and third pinch valves
When V 1 and V 3 are closed and the second pinch valve V 2 is opened, the dialysate flows through the dialysate introduction flow path 10 → bypass flow path 11 → second pinch valve V 2 → bypass flow path 11' → Dialysate outlet flow path 12'' → dialysate outlet 13
It flows through the so-called bypass flow path. Furthermore, when the dialysate is flowing through the bypass flow path, water is drawn out from the dialyzer 5 and is led to the container 14a in the UFRP measuring device 14 through the dialysate lead-out flow path 12. Further, first and second tubes are provided on the inlet side 14b and the outlet side 14c of the container 14a, respectively.
Levels L 1 and L 2 are provided, and the levels L 1 and
The internal volume between L2 is V (cc), and the time t required for the internal volume to be filled with the moisture is measured. Furthermore, first and second pressure gauges 1
5, 16, the arterial pressure P 1 in blood chamber 4
Then, the dialysate pressure P 2 in the dialysate introduction flow path is measured, and the above TMP is determined from the arterial pressure P 1 and the dialysate pressure P 2 by a predetermined function calculation, and the TMP,
UFRP is determined from the above-mentioned internal volume V and the above-mentioned time t by the following formula (1).

UFRP=V/t×TMP ……(1) 第3図は、上述の本発明実施例における除水量
制御を概念的に説明するための特性曲線図であ
る。第3図において、最初、第2図を用いて詳述
したようにして第1のUFRP値aが測定され、該
値a(線分a―b″上の値)を使用して除水量制御
が行なわれる。t1時間(例えば30分)後に、同様
にして第2のUFRP値bが測定され、該値bと上
記UFRP値aからb′=b−(b″−b)=b−(a−
b)なる計算値b′がマイクロコンピユータを含む
演算装置(図示せず)により求められる。また、
該計算値b′(線分b′−c′上の値)を使用してその後
の除水量制御が行なわれる。更に、t2時間(例え
ば30分であつてt1=t2を満足する時間)後に、同
様にして第3のUFRP値cが測定され、該値cと
上記計算値b′からc″=c+1/2(c−c′)=c+ 1/2(c+b′)なる計算値c″が求められる。従つ て、t1時間とt2時間において、除水量制御に使用
されたUFRP値と真のUFRP値との誤差のうち第
1および第2の誤差分M1,M2が互いにキヤンセ
ルされる。次に、第2および第3のUFRP測定値
b,cを夫々始点および終点とする線分b−cと
同一の傾きを持ち上記計算値c2″を始点とする線
分c″−d′が得られるようにt3時間(例えば1時間
であつてt3=2t2=2t1を満足する時間)後の
UFRP補正値d′を求める。また、同時に(t3時間
後に)第4のUFRP値dが上述のようにして測定
され、該値dと上記UFRP補正値d′からd″=d+
1/2(d−d′)なる計算値d″が求められる。従つ て、t3時間において、除水量制御に上記線分c″−
d′上のUFRP値を使用すると、該UFRP値と真の
UFRP値との誤差のうち第3および第4の誤差分
M3,M4が互いに大略キヤンセルされる。同様に
して、t4時間(例えば1時間であつてt3=t4を満
足する時間)後においても第5および第6の誤差
分M5,M6が互いに大略キヤンセルされ、以下
UFRP値を測定する毎に同様の補正が繰り下され
除水量制御に使用されるUFRP値と真のUFRP値
との誤差が同様にキヤンセルされるようになる。
以上詳述したようにして求められたUFRPの最適
な値と除水量の目標値とから、上記(1)式に従つて
コントロールすべきTMPが求められ、その後、
第2図に示した上記TMP制御装置7によつて
TMPが制御されるようになる。尚、第3図にお
いては、UFRPが時間とともに減少する特性曲線
について説明したが、UFRPが時間とともに増加
する特性曲線についても同様のことがいえる。ま
た、第3図においては、特性曲線を直線に補正す
る場合について詳述したが、本発明は直線補正に
限定されるものではなく例えば曲線に補正するよ
うにしてもよい。
UFRP=V/t×TMP (1) FIG. 3 is a characteristic curve diagram for conceptually explaining water removal amount control in the embodiment of the present invention described above. In FIG. 3, first, the first UFRP value a is measured as described in detail using FIG. After t1 hour (for example, 30 minutes), a second UFRP value b is measured in the same way, and from this value b and the above UFRP value a, b'=b-(b''-b)=b- (a-
b) The calculated value b' is obtained by an arithmetic device (not shown) including a microcomputer. Also,
Subsequent water removal amount control is performed using the calculated value b' (value on line segment b'-c'). Furthermore, after t 2 hours (for example, 30 minutes and satisfying t 1 = t 2 ), a third UFRP value c is measured in the same way, and from this value c and the above calculated value b′, c″= A calculated value c'' is obtained: c+1/2(c-c')=c+1/2(c+b'). Therefore, at time t 1 and time t 2 , the first and second error portions M 1 and M 2 of the error between the UFRP value used for water removal amount control and the true UFRP value are mutually canceled. Next, a line segment c''-d' having the same slope as the line segment b-c whose starting point and end point are the second and third UFRP measurement values b and c, respectively, and whose starting point is the calculated value c 2 '' is created. After t 3 hours (for example, 1 hour and satisfying t 3 = 2t 2 = 2t 1 ) so that
Find the UFRP correction value d′. At the same time (after 3 hours t), the fourth UFRP value d is measured as described above, and from this value d and the above-mentioned UFRP correction value d', d''=d+
The calculated value d'' is calculated as 1/2 (d-d'). Therefore, at t 3 hours, the above line c''- is used to control the amount of water removed.
Using the UFRP value on d′, the UFRP value and the true
Third and fourth errors from the UFRP value
M 3 and M 4 roughly cancel each other. Similarly, even after t 4 hours (for example, 1 hour and satisfying t 3 = t 4 ), the fifth and sixth error portions M 5 and M 6 are roughly canceled each other, and as follows.
Each time the UFRP value is measured, a similar correction is carried out, and the error between the UFRP value used for water removal amount control and the true UFRP value is similarly canceled.
From the optimal value of UFRP determined as described above and the target value of water removal amount, the TMP to be controlled is determined according to the above equation (1), and then,
By the TMP control device 7 shown in FIG.
TMP becomes controlled. Although FIG. 3 describes a characteristic curve in which UFRP decreases with time, the same can be said of a characteristic curve in which UFRP increases with time. Further, in FIG. 3, the case in which the characteristic curve is corrected to a straight line has been described in detail, but the present invention is not limited to linear correction, and may be corrected to, for example, a curve.

以上詳しく説明したような本発明の実施例によ
れば、前記従来例に比して除水量を正確且つ迅速
に制御できるという利点を有する。即ち、上記
UFRPは一般に連続単調減少する性質があるた
め、該UFRPの測定値をマイクロプロセツサで管
理するとUFRPの経時変化状態が間欠的に知ら
れ、その値と上記単調減少傾向とからあらかじめ
用意された演算プログラムによつて除水量の目標
値に対する最適なUFRP値が容易に決定されるこ
とにより、上記目標値に対しトータル的に誤差の
少ない正確な除水が行なわれるようになるのであ
る。また、本発明実施例によれば、UFRPの経時
変化の予測が可能な為、前記従来例に比して
UFRPの測定回数が少なくとも正確な除水量制御
が可能であり、測定回数が少ない分だけ人工透析
装置の透析効率も向上するという利点がある。更
に、前記従来はいわゆる連続測定方式に比し構造
が簡単であるけれども除水量の誤差が大きいとさ
れていたが、本発明実施例により構造が簡単で且
つ除水量誤差の少ない間欠測定方式の人工透析装
置が実現できるという利点もある。
The embodiments of the present invention as described in detail above have the advantage that the amount of water removed can be controlled more accurately and quickly than in the conventional example. That is, the above
UFRP generally has the property of continuously monotonically decreasing, so if the measured value of UFRP is managed by a microprocessor, the state of change over time of UFRP is known intermittently, and a pre-prepared calculation is performed from that value and the monotonically decreasing tendency described above. By easily determining the optimal UFRP value for the target value of the amount of water removed by the program, accurate water removal with little total error can be performed with respect to the target value. In addition, according to the embodiment of the present invention, it is possible to predict the change over time of UFRP, so compared to the conventional example,
At least the number of measurements of UFRP allows accurate control of the amount of water removed, and the advantage is that the dialysis efficiency of the artificial dialysis device is improved by the smaller number of measurements. Furthermore, although the conventional method has a simpler structure than the so-called continuous measurement method, it has been thought that the error in the amount of water removed is large, but the embodiment of the present invention provides an artificial measurement method using an intermittent measurement method that has a simple structure and less error in the amount of water removed. Another advantage is that a dialysis machine can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の除水量制御を説明するための
特性曲線図、第2図は本発明実施例の使用例構成
説明図、第3図は本発明実施例における除水量制
御を説明するための特性曲線図である。 1…人体、2…血液ポンプ、3…動脈側回路、
4…血液チヤンバ、5…ダイアライザ、6…静脈
側回路、7…TMP制御回路、9,13…透析液
導出入口、10,10′,12,12′,12″…
透析液導出入流路、11,11′…バイパス流路、
V1〜V3…ピンチバルブ、14…UFRP測定装器、
14a…容器、15,16…圧力計。
Fig. 1 is a characteristic curve diagram for explaining water removal amount control in a conventional example, Fig. 2 is an explanatory diagram of a usage example configuration of an embodiment of the present invention, and Fig. 3 is a diagram for explaining water removal amount control in an embodiment of the present invention. FIG. 1...Human body, 2...Blood pump, 3...Arterial side circuit,
4... Blood chamber, 5... Dialyzer, 6... Venous side circuit, 7... TMP control circuit, 9, 13... Dialysate inlet/outlet, 10, 10', 12, 12', 12''...
Dialysate lead-in/out flow path, 11, 11′... bypass flow path,
V 1 ~ V 3 ...Pinch valve, 14...UFRP measuring device,
14a... Container, 15, 16... Pressure gauge.

Claims (1)

【特許請求の範囲】[Claims] 1 血液の人工透析を行う人工透析装置におい
て、血液を透析浄化するダイアライザと、一定の
内容積Vをもつ容器、該容器内に前記ダイアライ
ザからの透析液が導かれて該容器内を満たすまで
の時間tを計測する第1および第2のレベル計と
を有し前記ダイアライザの上流を流れる血液の圧
力と前記ダイアライザの上流を流れる透析液の圧
力から前記ダイアライザが前記血液中の水分を透
析して除去する圧力たる限外濾過圧TMPを求め
該限外濾過圧TMP、前記内容積V、および前記
時間tから前記ダイアライザが前記血液中の水分
を透析して除去する能力たる限外濾過能力UFRP
を所定時間t1,t2,t3,t4,……,to毎に測定する
限外濾過能力測定装置と、該測定装置で測定され
た前記限外濾過能力UFRPの値a,b,c,d,
……,aoから演算で限外濾過能力制御値を求める
演算装置と、前記血液が流れる血液回路を前記ダ
イアライザの下流で押圧して該回路の内部圧力を
調節する絞りが内部に設けられ前記限外濾過能力
制御値に基いて前記限外濾過圧TMPを制御する
制御装置とを具備し、前記ダイアライザで前記血
液から除去する前記所定時間t1,t2,t3,t4,…
…,to毎の所望水分量たる除去量目標値と前記限
外濾過能力制御値との誤差が一定時間t1+t2,t3
t4,……,to内毎に夫々大略相殺されるように構
成したことを特徴とする人工透析装置。
1. In an artificial dialysis device that performs artificial dialysis of blood, a dialyzer for dialysis purifying the blood, a container with a certain internal volume V, and a container with which dialysate from the dialyzer is introduced until the container is filled. The dialyzer dialyzes water in the blood based on the pressure of the blood flowing upstream of the dialyzer and the pressure of the dialysate flowing upstream of the dialyzer. Determine the ultrafiltration pressure TMP, which is the pressure to be removed, and calculate the ultrafiltration capacity UFRP, which is the ability of the dialyzer to dialyze and remove water from the blood, from the ultrafiltration pressure TMP, the internal volume V, and the time t.
an ultrafiltration capacity measuring device that measures the ultrafiltration capacity UFRP at predetermined times t 1 , t 2 , t 3 , t 4 , ..., t o , and the values a and b of the ultrafiltration capacity UFRP measured by the measuring device. ,c,d,
..., an arithmetic device for calculating an ultrafiltration capacity control value from a o , and an aperture for pressuring the blood circuit through which the blood flows downstream of the dialyzer to adjust the internal pressure of the circuit are provided inside. a control device that controls the ultrafiltration pressure TMP based on an ultrafiltration capacity control value, and the predetermined time t 1 , t 2 , t 3 , t 4 , . . . for removing the blood from the dialyzer.
..., the error between the removal amount target value, which is the desired water amount for each t o , and the ultrafiltration capacity control value is a certain period t 1 + t 2 , t 3 ,
An artificial dialysis device characterized in that it is configured such that each of t 4 , . . . , t o is approximately canceled out.
JP57112679A 1982-06-30 1982-06-30 Artifical dialysis apparatus Granted JPS592749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57112679A JPS592749A (en) 1982-06-30 1982-06-30 Artifical dialysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57112679A JPS592749A (en) 1982-06-30 1982-06-30 Artifical dialysis apparatus

Publications (2)

Publication Number Publication Date
JPS592749A JPS592749A (en) 1984-01-09
JPS6334747B2 true JPS6334747B2 (en) 1988-07-12

Family

ID=14592756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57112679A Granted JPS592749A (en) 1982-06-30 1982-06-30 Artifical dialysis apparatus

Country Status (1)

Country Link
JP (1) JPS592749A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156471A (en) * 1984-01-25 1985-08-16 横河電機株式会社 Artificial dialytic apparatus
JPS60241449A (en) * 1984-05-16 1985-11-30 横河電機株式会社 Artificial dialytic apparatus
JPS61100260A (en) * 1984-10-23 1986-05-19 横河電機株式会社 Artificial dialytic apparatus
JPH0450037Y2 (en) * 1987-01-30 1992-11-25

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684606A (en) * 1979-12-07 1981-07-10 Nitsushiyoo:Kk Control device of ultrafiltration rate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684606A (en) * 1979-12-07 1981-07-10 Nitsushiyoo:Kk Control device of ultrafiltration rate

Also Published As

Publication number Publication date
JPS592749A (en) 1984-01-09

Similar Documents

Publication Publication Date Title
US6939471B2 (en) Method for determining a treatment parameter on a haemofiltration device, and haemofiltration device for applying the method
US11020518B2 (en) Apparatus and a method for extracorporeal blood treatment
JP6388166B2 (en) Apparatus and method for adjusting a therapeutic instrument
US6861266B1 (en) Method and device for calculating dialysis efficiency
US6217539B1 (en) Method of in-vivo determination of hemodialysis parameters and a device for carrying out the method
JP4148536B2 (en) Device for calculating the efficiency of dialysis
US8676512B2 (en) Method and device for determining the transmembrane pressure in an extracorporeal blood treatment
US6156002A (en) Method of measuring the efficiency of mass and energy transfer in hemodialysis
JP4509387B2 (en) Method for calculating the distribution of blood components during extracorporeal blood treatment and apparatus for carrying out this method
US7131957B2 (en) Safety device for a blood treatment machine and a method of increasing the safety of a blood treatment machine
US20100168925A1 (en) Device and method for controlling an extracorporeal blood- treating apparatus
WO2004014463A1 (en) Blood purifying device and method of operating the same
US20050251086A1 (en) Blood treatment equipment, method, and software program for controlling infusion in blood treatment equipment
JPH03173569A (en) Internal measurement of blood dialysis parameter
PT1223995E (en) Extracorporeal blood purification device
US20170224897A1 (en) Device And Method For Determining An Optimum Dialysate Flow For An Extracorporeal Blood Treatment With An Extracorporeal Blood Treatment Device
JPS58133258A (en) Dialysis apparatus
US10307526B2 (en) Device and method for regulating a treatment device
EP3544651A1 (en) Apparatus for extracorporeal blood treatment
JPS6334747B2 (en)
CN107412895B (en) Blood purification weighing compensation method and blood purification weighing compensation system using same
WO2024004482A1 (en) Blood purification device, and method for determining detection defect in flow meter
CN117479966A (en) Device for extracorporeal blood treatment
JPS6329655A (en) Artificial kidney apparatus
JPS59171559A (en) Water removing amount controller