JPS6333755Y2 - - Google Patents

Info

Publication number
JPS6333755Y2
JPS6333755Y2 JP1983161037U JP16103783U JPS6333755Y2 JP S6333755 Y2 JPS6333755 Y2 JP S6333755Y2 JP 1983161037 U JP1983161037 U JP 1983161037U JP 16103783 U JP16103783 U JP 16103783U JP S6333755 Y2 JPS6333755 Y2 JP S6333755Y2
Authority
JP
Japan
Prior art keywords
submerged
central
cross
bodies
water surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983161037U
Other languages
Japanese (ja)
Other versions
JPS6068892U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16103783U priority Critical patent/JPS6068892U/en
Publication of JPS6068892U publication Critical patent/JPS6068892U/en
Application granted granted Critical
Publication of JPS6333755Y2 publication Critical patent/JPS6333755Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、水面下に3つの没水体をそなえた半
没水三胴船に関し、特にその喫水を小さくして水
深の浅い港湾へも入港し得るようにした半没水三
胴船に関する。 第1〜6図に半没水三胴船の第1の従来例、第
11,12図に第2の従来例、第13図に第3の
従来例を示す。 第1〜6図および第11〜13図において、第
1,11,13図は側面図、第2,12図は上面
図、第3,4,5図は第1図のそれぞれ−、
−、−線に沿う断面図、また第6図は第
1図の−線に沿う水面貫通部の形状を示す断
面図である。 第1〜6図に示した半没水三胴船は、水面下に
設けられた前後に全通する中央没水体2cが前後
に水面を貫通する2本の支柱3c,3c′がその一
端を取付けられ、その他端は水面上に設けられた
上部船体1にそれぞれ接続部4c,4c′を介して
取付けられている。 また、船体中央部付近の両側の水面下に一対の
没水体2a,2b(側部没水体)が設けられ、側
部没水体2a,2bには、水面を貫通する支柱3
a,3bの一端がそれぞれ取付けられ、その他端
は接続部4a,4bを介して上部船体1にそれぞ
れ取付けられている。 両側の支柱3a,3bは中央部前後の支柱3
c,3c′の間の空所にほぼ位置しており、横方向
に支柱3本が並列するのを避けた配置とされてい
る(第8,12図参照)。 両側の支柱3a,3bの断面形状は、中央の支
柱3c,3c′の断面形状に比べて、第12図に示
すように長さ、幅ともに短くされ、また、側部没
水体2a,2bは中央没水体2cに比べて長さ、
断面積ともに小さくされている。 プロペラ5cは中央没水体2cの後端に設けら
れており、推進軸14c、第1ギアセツト17
c,17c′、垂直伝達軸15c、第2ギアセツト
18c,18c′、水平伝達軸16cを介して、上
部船体1上に設けられた機関室12c内のエンジ
ン13cに接続され駆動されるようになつてお
り、プロペラ5cの後方には舵6cが設けられて
いる。 また、前部水中翼7a,7b、後部水中翼8
a,8bがそれぞれ中央没水体2cの左右に設け
られており、場合によつては前部水中翼7a,7
b、後部水中翼8a,8bのどちらか一方または
両方が両側の没水体2a,2bの内側に設けられ
ることもある。 上部船体1の上部には、船室10、操縦室1
1、ブルワーク19が設けられており、また図中
符号9は喫水線、20は基線をそれぞれ示してい
る。 この従来例の長所を、通常の船舶(単胴船)お
よび半没水双胴船と比較して説明すると、第7〜
10図は船体の水面貫通部の形状を模型的に示し
た断面図であつて、第7図は単胴船の場合を示す
図、第8図は半没水双胴船において左右の没水体
と上部船体とをそれぞれ1個の支柱で連結した場
合を示す図、第9図は半没水双胴船において左右
の没水体と上部船体とをそれぞれ2個の支柱で連
結した場合を示す図、第10図は第1の従来例の
場合を示す図である。 これらの図において、x軸は船の縦方向(進行
方向)、y軸は船の横方向(幅方向)をそれぞれ
示し、原点Oは浮面心上にある。 そして、記号Lは船長、Bは船幅、C0,Cは
支柱断面の長さ、tは支柱断面の幅、bは支柱断
面のx軸よりの距離、lは支柱断面のy軸よりの
距離、3a″,3b″は第8図の支柱断面より第9図
の支柱断面を除いた部分、C1は中央部の支柱断
面の長さ、t1は中央部の支柱断面の幅、C2は両側
の支柱断面の長さ、t2は両側の支柱断面の幅をそ
れぞれ示している。 第7〜9図に示した断面形状は、第8図の3
a″,3b″の部分を除けば互いに相似となつてお
り、支柱断面の幅tを基準にすると、 C=l=5t b=2.5t C0=3c=15t L=4c=20t B=4t という比率になつている。 このときの水線面面線A、水線面の横方向二次
モーメントIt、縦方向二次モーメントIL、縦横二
次モーメント比IL/ITはそれぞれ次のようにな
る。
The present invention relates to a semi-submerged trimaran equipped with three submerged bodies below the water surface, and more particularly to a semi-submerged trimaran that has a reduced draft so that it can enter shallow ports. A first conventional example of a semi-submerged trimaran is shown in FIGS. 1 to 6, a second conventional example is shown in FIGS. 11 and 12, and a third conventional example is shown in FIG. In Figs. 1 to 6 and 11 to 13, Figs. 1, 11, and 13 are side views, Figs. 2 and 12 are top views, and Figs. 3, 4, and 5 are respectively -,
6 is a sectional view taken along the line -, and FIG. 6 is a sectional view showing the shape of the water surface penetrating portion taken along the line - in FIG. 1. The semi-submerged trimaran shown in Figures 1 to 6 has a central submersible body 2c installed under the water surface that completely passes through the front and back, and two struts 3c and 3c' that penetrate the water surface in the front and back. The other end is attached to the upper hull 1 provided above the water surface via connecting portions 4c and 4c', respectively. In addition, a pair of submerged bodies 2a and 2b (side submerged bodies) are provided below the water surface on both sides near the center of the hull, and each of the side submerged bodies 2a and 2b has a support 3 that penetrates the water surface.
A, 3b are attached at one end, respectively, and the other end is attached to the upper hull 1 via connecting portions 4a, 4b, respectively. The pillars 3a and 3b on both sides are the pillars 3 at the front and rear of the central part.
It is located approximately in the space between 3c and 3c' , and is arranged to avoid having three pillars lined up in the horizontal direction (see Figures 8 and 12). The cross-sectional shapes of the pillars 3a and 3b on both sides are shorter in length and width than those of the central pillars 3c and 3c' , as shown in FIG. 12, and the side submerged bodies 2a and 2b are The length compared to the central submerged body 2c,
Both cross-sectional areas have been reduced. The propeller 5c is provided at the rear end of the central submerged body 2c, and includes a propulsion shaft 14c and a first gear set 17.
c, 17c' , the vertical transmission shaft 15c, the second gear set 18c, 18c' , and the horizontal transmission shaft 16c, it is connected to and driven by the engine 13c in the engine room 12c provided on the upper hull 1. A rudder 6c is provided behind the propeller 5c. In addition, front hydrofoils 7a, 7b, rear hydrofoils 8
a and 8b are provided on the left and right sides of the central submerged body 2c, respectively, and in some cases front hydrofoils 7a and 7
b. Either one or both of the rear hydrofoils 8a, 8b may be provided inside the submerged bodies 2a, 2b on both sides. In the upper part of the upper hull 1, there is a cabin 10 and a cockpit 1.
1. A bulwark 19 is provided, and in the figure, reference numeral 9 indicates a waterline and 20 indicates a base line. To explain the advantages of this conventional example in comparison with a normal ship (monohull) and a semi-submerged catamaran,
Figure 10 is a cross-sectional view schematically showing the shape of the water surface penetration part of the hull, Figure 7 is a diagram showing the case of a monohull, and Figure 8 is a diagram showing the left and right submerged bodies of a semi-submerged catamaran. Fig. 9 is a diagram showing the case where the left and right submerged bodies and the upper hull of a semi-submerged catamaran are connected with two posts each. , FIG. 10 is a diagram showing the case of the first conventional example. In these figures, the x-axis indicates the longitudinal direction (traveling direction) of the ship, the y-axis indicates the lateral direction (width direction) of the ship, and the origin O is on the center of the floating surface. The symbol L is the ship's ship length, B is the width of the ship, C 0 and C are the lengths of the strut cross sections, t is the width of the strut cross sections, b is the distance of the strut cross sections from the x-axis, and l is the distance of the strut cross sections from the y-axis. The distance, 3a″, 3b″ is the part of the pillar cross section in Figure 8 excluding the pillar cross section in Figure 9, C 1 is the length of the central pillar cross section, t 1 is the width of the central pillar cross section, C 2 indicates the length of the cross-section of the pillars on both sides, and t 2 indicates the width of the cross-sections of the pillars on both sides. The cross-sectional shapes shown in Figures 7 to 9 are 3 in Figure 8.
They are similar to each other except for parts a″ and 3b″, and based on the width t of the column cross section, C = l = 5t b = 2.5t C 0 = 3c = 15t L = 4c = 20t B = 4t The ratio has become. At this time, the waterline surface line A, the horizontal second moment I t of the waterline surface, the vertical second moment I L , and the vertical and horizontal second moment ratio IL / IT are as follows.

【表】 一方第10図に示した本従来例においては、 C1=C2=5t1=5t2 l=5t1 b=2.5t1 とされている。 すなわち、第9図に示した半没水双胴船と同一
寸法の断面を矩形型の配置から菱形の配置にかえ
たことに相当しており、水線面面積A、水線面の
横方向二次モーメントIT、縦方向二次モーメント
IL、縦横二次モーメント比IL/ITはそれぞれ次の
ようになる。 なお、t=t1=t2である。 第 2 表 半没水三胴船(第10図) A 14.00t2 IT 63.42t4 IL 185.90t4 IL/IT 2.93 第2表を第1表と比較すると、第10図に示す
水線面形状は、第9図の半没水双胴船に比べて縦
横二次モーメント比IL/ITが増大している。そし
てさらに支柱断面の長さおよび幅について、C1
>C2,t1>t2とすることによつて普通の船舶(単
胴船)の縦横二次モーメント比IL/ITに近づく方
向に縦横二次モーメント比IL/ITを増大させるこ
とができる。したがつて半没水三胴船では、半没
水双胴船で生ずるすりこぎ運動を解消することが
可能となる。 また、半没水三胴船においては、側部の没水体
2a,2bに取付られた支柱3a,3bおよび上
部船体1への接続部4a,4bは、船の中央部付
近に限られるので、船の前後端は単胴船に似た形
状および構造となり、上部船体1の下面1′に波
浪衝撃を受ける可能性は非常に少ない利点があ
り、さらに、船首部付近の上部船体1に大きなフ
レーヤーをつければ、波浪中の凌波性能はいつそ
う向上するようになる。 なお、両側の支柱3a,3bの断面形状は長さ
幅ともに中央部の支柱3c,3c′の断面形状の長
さ幅より小さくされるので、側部没水体2a,2
bは、中央部没水体2cに比べて長さ、断面積と
もに小さく構成するのが構造強度上からも適当で
ある。 また中央部没水体2cの支柱3c,3c′は前後
に分けられているので、支柱3c,3c′が両側の
支柱3a,3bと3枚並列に重なつて配設される
場合に比べて、その船体抵抗は小さなものとな
る。 第2の従来例は、第11,12図に示すよう
に、両側の没水体2a,2bの後端にもプロペラ
5a,5bが設けられ、それぞれ上部船体1上の
機関室12a,12b中のエンジン13a,13
bより軸系を介して駆動されるように構成されて
いる。このようにプロペラ軸を3軸に構成するこ
とによつて、大出力を達成することができる。そ
の他の構造、作用、効果は第1の従来例と同様で
ある。 第3の従来例は、第13図に示すように、プロ
ペラ5cが中央没水体2cの後端に設けられると
ともに、エンジン13cも中央没水体2cおよび
支柱3c′内に設けられ、プロペラ5cとエンジン
13cを推進軸14cで連結されている。このよ
うな構成によつて軸系は大幅に簡易化される。そ
の他の構造、作用、効果は第1の従来例と同様で
ある。 しかしながら、上述のような半没水三胴船で
は、没水体2a,2b,2cの横断面形状は、い
ずれも構造が最も容易な円形に構成されており、
このため本船の喫水(喫水線9より基線20まで
の距離)は横断面積の大きい中央没水体2cによ
つて支配され、したがつて、水深の浅い港湾への
入港に制限を生ずる恐れがある。 本考案は、このような実情に鑑み、断面積の大
きい中央没水体の断面形状を高さよりも幅を大き
くなるように構成して、喫水を小さくし、水深の
浅い場所へも入れるようにした、半没水三胴船を
提供することを目的とする。 このため本考案の半没水三胴船は、水面下に位
置する1つの中央没水体と、船体中央部付近にお
いて上記中央没水体の両側に配置される左右一対
の側部没水体と、水面上に位置する1つの上部船
体と、水面を貫通して上記上部船体を上記の中央
没水体および左右一対の側部没水体にそれぞれ連
結する支柱とをそなえ、上記左右一対の側部没水
体がいずれも円形横断面形状を有するように形成
されるとともに、上記中央没水体の横断面形状が
その高さよりも幅を大きくするように形成され
て、これらの側部没水体および中央没水体が、い
ずれも同一基線のレベルに下面を設定されたこと
を特徴としている。 以下図面により、本考案の一実施例としての半
没水三胴船について説明すると、第14図はその
側面図、第15図は第14図の−線に沿
う断面図、第16図は中央没水体の断面図、第1
7図は同断面形状の第1の変形例を示す断面図、
第18図は同断面形状の第2の変形例を示す断面
図である。これらの図中、既述と同じ符号は、同
様のものを示している。また、2c′は断面を大き
い円弧と小さい円弧および直線で構成された中央
没水体、2c″は断面を楕円で構成された中央没水
体、2cは断面を円弧と直線で構成された中央
没水体、20′は本発明の実施例における基線、
P,P1,P2は円弧または楕円の中心、R,R1
R2は円弧または楕円の半径、Lは円弧中心間の
距離、Hは中央没水体断面の高さ、Wは中央没水
体断面の幅をそれぞれ示している。 本発明の半没水三胴船は、水面下に設けられた
前後に全通する中央没水体2cの前後に水面を貫
通する2本の支柱3c,3c′がその一端を取付け
られ、その他端は水面上に設けられた上部船体1
にそれぞれ接続部4c,4c′を介して取付けられ
ている。 また、船体中央部付近の両側の水面下に、円形
横断面形状を有する一対の没水体2a,2b(側
部没水体)が設けられ、側部没水体2a,2bに
は、水面を貫通する支柱3a,3bの一端がそれ
ぞれ取付けられ、その他端は接続部4a,4bを
介して上部船体1にそれぞれ取付けられている。 中央没水体2c′は、その上面を半径R1の円弧、
その下面を半径R2の円弧と直線とで構成されて
いる。 そして、各側部没水体2a,2bおよび中央没
水体2c′は、いずれも同一基線20′のレベルに
下面を設定されている。 上述の構成により、この半没水三胴船の場合
も、波浪時における船体のすりこぎ状の動揺が抑
制されるとともに、上部船体の下面に受ける波浪
衝撃の緩和がもたらされる。 そして、各側部没水体2a,2bについては円
形横断面をもたせて製作の容易性を維持しなが
ら、中央没水体2c′については、その高さHが幅
Wよりも小さくされて、この結果、基線20′は、
3つの没水体(中央および側部没水体2c′,2
a,2b)の下面を通るもの(第15図参照)と
されるので、中央没水体の横断面が円形に形成さ
れたときの基線20よりも上昇し、その分だけ浅
い港湾への入港が可能となるのである。 また、各側部没水体2a,2bおよび中央没水
2c′のそれぞれの下面が、同一基線20′のレ
ベルに設定されているので、この半没水三胴船の
入渠時に船体を安定よく支持しうる利点もある。 なお、中央没水体は第17図に示したように、
長軸R1、短軸R2の楕円形横断面図を持つ中央没
水体2c″または、第18図に示したように、半径
Rの半円弧を距離Lだけ横方向に離し、その間を
直線で結んだ形状の横断面を持つ中央没水体2c
とすることも可能であり、これらの場合にも、
上述の中央没水体2c′と同様にその高さHが幅W
よりも小さくなつて、喫水を小さくすることがで
きるのである。 以上詳述したように、本考案の半没水三胴船
は、水面下に位置する1つの中央没水体と、船体
中央部付近において上記中央没水体の両側に配置
される左右一対の側部没水体と、水面上に位置す
る1つの上部船体と、水面を貫通して上記上部船
体を上記の中央没水体および左右一対の側部没水
体にそれぞれ連結する支柱とをそなえ、上記左右
一対の側部没水体がいずれも円形横断面形状を有
するように形成されるとともに、上記中央没水体
の横断面形状がその高さよりも幅を大きくするよ
うに形成されて、これらの側部没水体および中央
没水体が、いずれも同一基線のレベルに下面を設
定されるという極めて簡素な構成で、波浪時にお
けるすりこぎ状の船体動揺が低く抑えられるほ
か、上部船体の下面に受ける波浪衝撃を軽減しう
るなどの従来の半没水三胴船の利点をあわせ持つ
とともに、その喫水が小さくされるので、水深の
浅い港湾への入港が可能となる効果が得られ、ま
た、各側部没水体および中央没水体のそれぞれの
最下面が同一基線のレベルに設定されることによ
り、入渠時の船体の支持が安定よくおこなわれる
利点もある。
[Table] On the other hand, in the conventional example shown in FIG. 10, C 1 =C 2 =5t 1 =5t 2 l=5t 1 b=2.5t 1 . In other words, this corresponds to changing the cross section of the same dimensions as the semi-submerged catamaran shown in Figure 9 from a rectangular arrangement to a rhombus arrangement, and the water line surface area A and the lateral direction of the water line surface are Second moment of inertia I T , longitudinal second moment of inertia
I L and the vertical and horizontal moment of inertia ratio I L / IT are as follows. Note that t=t 1 =t 2 . Table 2 Semi-submerged trimaran (Figure 10) A 14.00t 2 I T 63.42t 4 I L 185.90t 4 I L /I T 2.93 Comparing Table 2 with Table 1, Figure 10 shows Regarding the waterline shape, the longitudinal and lateral moment of inertia ratio I L / IT is increased compared to the semi-submerged catamaran shown in FIG. And further for the length and width of the strut cross section, C 1
> C 2 , t 1 > t 2 increases the longitudinal and lateral moment of inertia ratio I L / IT in a direction approaching the longitudinal and lateral moment of inertia ratio I L / IT of a normal ship (monohull). can be done. Therefore, in a semi-submerged trimaran, it is possible to eliminate the grinding motion that occurs in a semi-submerged catamaran. In addition, in a semi-submerged trimaran, the struts 3a, 3b attached to the submerged bodies 2a, 2b on the sides and the connection parts 4a, 4b to the upper hull 1 are limited to the vicinity of the center of the ship. The front and rear ends of the ship have a shape and structure similar to that of a monohull ship, which has the advantage that the lower surface 1' of the upper hull 1 is less likely to receive wave impact.Furthermore, the upper hull 1 near the bow has a large flare. If you attach it, the wave-surviving performance in waves will improve. Note that the length and width of the cross-sectional shapes of the pillars 3a and 3b on both sides are smaller than those of the central pillars 3c and 3c' , so that the side submerged bodies 2a and 2
From the viewpoint of structural strength, it is appropriate that b be configured to have a smaller length and cross-sectional area than the central submerged body 2c. Also, since the pillars 3c and 3c' of the central submerged body 2c are divided into front and rear parts, compared to the case where the pillars 3c and 3c' are arranged in parallel with the pillars 3a and 3b on both sides, The hull resistance will be small. In the second conventional example, as shown in FIGS. 11 and 12, propellers 5a and 5b are also provided at the rear ends of submerged bodies 2a and 2b on both sides, and propellers 5a and 5b are installed in engine rooms 12a and 12b on upper hull 1, respectively. Engine 13a, 13
b is configured to be driven via a shaft system. By configuring the propeller shaft into three axes in this way, a large output can be achieved. Other structures, functions, and effects are the same as those of the first conventional example. In the third conventional example, as shown in FIG. 13, the propeller 5c is provided at the rear end of the central submerged body 2c, and the engine 13c is also provided within the central submerged body 2c and the strut 3c ' . 13c are connected by a propulsion shaft 14c. Such a configuration greatly simplifies the shaft system. Other structures, functions, and effects are the same as those of the first conventional example. However, in the semi-submerged trimaran as described above, the cross-sectional shapes of the submerged bodies 2a, 2b, and 2c are all circular, which is the easiest structure.
For this reason, the ship's draft (distance from waterline 9 to base line 20) is controlled by the central submerged body 2c with a large cross-sectional area, which may limit entry into shallow ports. In view of these circumstances, the present invention was developed by configuring the cross-sectional shape of the central submerged body, which has a large cross-sectional area, so that the width is larger than the height, thereby reducing the draft and making it possible to enter shallow water areas. , aims to provide a semi-submerged trimaran. For this reason, the semi-submerged trimaran of the present invention has a central submerged body located below the water surface, a pair of left and right side submerged bodies placed on both sides of the central submerged body near the center of the hull, and a submerged body located below the water surface. It has one upper hull located above, and a strut that penetrates the water surface and connects the upper hull to the central submerged body and the pair of left and right side submerged bodies, and the pair of left and right side submerged bodies are Both of them are formed to have a circular cross-sectional shape, and the cross-sectional shape of the central submerged body is formed to have a width larger than its height, and these side submerged bodies and the central submerged body, Both are characterized by having their lower surfaces set at the same base line level. A semi-submerged trimaran as an embodiment of the present invention will be explained below with reference to the drawings. Fig. 14 is a side view thereof, Fig. 15 is a sectional view taken along the - line in Fig. 14, and Fig. 16 is a center view. Cross-sectional view of submerged body, 1st
FIG. 7 is a cross-sectional view showing a first modification of the same cross-sectional shape;
FIG. 18 is a cross-sectional view showing a second modification of the same cross-sectional shape. In these figures, the same reference numerals as those described above indicate similar parts. In addition, 2c' is a central submerged body whose cross section is composed of a large arc, a small circular arc, and a straight line, 2c'' is a central submerged body whose cross section is an ellipse, and 2c is a central submerged body whose cross section is composed of an arc and a straight line. , 20' is the baseline in the embodiment of the present invention,
P, P 1 , P 2 are the centers of the arc or ellipse, R, R 1 ,
R 2 is the radius of the circular arc or ellipse, L is the distance between the centers of the circular arcs, H is the height of the central submerged body cross section, and W is the width of the central submerged body cross section. In the semi-submerged trimaran of the present invention, two struts 3c and 3c' penetrating through the water surface are attached at one end to a central submersible body 2c which is provided under the water surface and extends completely from front to back. is the upper hull 1 installed above the water surface.
They are attached to the terminals via connecting portions 4c and 4c' , respectively. Further, a pair of submerged bodies 2a and 2b (side submerged bodies) having a circular cross-sectional shape are provided below the water surface on both sides near the center of the hull, and the side submerged bodies 2a and 2b have a structure that penetrates the water surface. One end of each of the struts 3a and 3b is attached, and the other end is attached to the upper hull 1 via connecting portions 4a and 4b, respectively. The central submerged body 2c' has an arc with a radius R 1 on its upper surface,
Its lower surface consists of a circular arc with radius R 2 and a straight line. The lower surfaces of each of the side submerged bodies 2a, 2b and the central submerged body 2c' are set at the same base line 20'. With the above-described configuration, also in the case of this semi-submerged trimaran, the grinding motion of the hull during waves is suppressed, and the wave impact applied to the lower surface of the upper hull is alleviated. While each of the side submerged bodies 2a and 2b has a circular cross section to maintain ease of manufacturing, the height H of the central submerged body 2c' is made smaller than the width W. , the baseline 20' is
Three submerged bodies (central and side submerged bodies 2c' , 2
a, 2b) (see Figure 15), the cross section of the central submerged body rises above the base line 20 when it is formed in a circular shape, and entry into a shallow port is made that much easier. It becomes possible. In addition, since the lower surfaces of each of the side submerged bodies 2a, 2b and the central submerged body 2c' are set at the same base line 20', the half-submerged trimaran is stably supported when docked. There are also some advantages. The central submerged body is as shown in Figure 17.
The central submerged body 2c'' has an elliptical cross-sectional view with major axis R 1 and minor axis R 2 , or as shown in Figure 18, semicircular arcs of radius R are separated laterally by distance L, and a straight line is drawn between them. The central submerged body 2c has a cross section in the shape of
It is also possible to do this, and in these cases,
Similar to the central submerged body 2c′ mentioned above, its height H is equal to the width W
This makes it possible to reduce the draft. As detailed above, the semi-submerged trimaran of the present invention has one central submerged body located below the water surface, and a pair of left and right side parts located on both sides of the central submerged body near the center of the hull. A submerged body, an upper hull located above the water surface, and a strut that penetrates the water surface and connects the upper hull to the central submerged body and the pair of left and right side submerged bodies, Each of the side submerged bodies is formed to have a circular cross-sectional shape, and the cross-sectional shape of the central submerged body is formed to have a width larger than its height, so that these side submerged bodies and The central submerged body has an extremely simple configuration in which the lower surface is set at the same base line level, which not only suppresses the jagged motion of the hull during waves, but also reduces wave impact on the lower surface of the upper hull. It has the advantages of conventional semi-submerged trimarans such as Uru, and its draft is reduced, making it possible to enter shallow ports. By setting the lowermost surfaces of each of the central submerged bodies at the same base line level, there is also the advantage that the hull can be stably supported when docked.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜6図は第1の従来の半没水三胴船を示す
もので、第1図はその側面図、第2図はその上面
図、第3図は第1図の−線に沿う断面図、第
4図は第1図の−線に沿う断面図、第5図は
第1図の−線に沿う断面図、第6図は第1図
の−線に沿う水面貫通部の形状を示す断面図
であり、第7〜10図は上記水面貫通部の形状を
模型的に示した断面図であつて、第7図は単胴船
の場合を示す図、第8図は半没水双胴船において
左右の没水体と上部船体とをそれぞれ1個の支柱
で連結した場合を示す図、第9図は半没水双胴船
において左右の没水体と上部船体とをそれぞれ2
個の支柱で連結した場合を示す図、第10図は第
1の従来例の場合を示す図であり、第11,12
図は第2の従来の半没水三胴船を示すもので、第
11図はその側面図、第12図はその上面図であ
り、第13図は第3の従来の半没水三胴船を示す
側面図であり、第14〜18図は本考案の一実施
例としての半没水三胴船を示すもので、第14図
はその側面図、第15図は第14図の−
線に沿う断面図、第16図は中央没水体の断面
図、第17図は同断面形状の第1の変形例を示す
断面図、第18図は同断面形状の第2の変形例を
示す断面図である。 1……上部船体、1′……上部船体の下面、2
a,2b……側部没水体、2c′2c″2c
…中央没水体、3……単胴船の水面貫通部、3
a,3a′,3b,3b′,3c,3c′……支柱、4
a,4a′,4b,4b′,4c,4c′……支柱と上
部船体との接続部、5a,5b,5c……プロペ
ラ、6a,6b,6c……舵、7a,7b……前
部水中翼、8a,8b……後部水中翼、9……喫
水線、10……船室、11……操縦室、12a,
12b,12c……機関室、13a,13b,1
3c……エンジン、14a,14b,14c……
推進軸、15a,15b,15c……垂直伝達
軸、16a,16b,16c……水平伝達軸、1
7a,17a′,17b,17b′,17c,17
c′……第1ギアセツト、18a,18a′,18
b,18b′,18c,18c′……第2ギアセツ
ト、19……ブルワーク、20,20′……基線。
Figures 1 to 6 show the first conventional half-submerged trimaran, with Figure 1 being a side view, Figure 2 being a top view, and Figure 3 taken along the - line in Figure 1. 4 is a sectional view taken along the - line in Fig. 1, Fig. 5 is a sectional view taken along the - line in Fig. 1, and Fig. 6 is a cross-sectional view taken along the - line in Fig. 1. FIGS. 7 to 10 are cross-sectional views schematically showing the shape of the water surface penetrating portion. FIG. 7 is a view showing the case of a monohull ship, and FIG. Figure 9 shows a case where the left and right submerged bodies and the upper hull of a semi-submerged catamaran are connected by one strut each.
FIG. 10 is a diagram showing the case of the first conventional example, and FIG.
The figures show a second conventional semi-submerged trimaran, Fig. 11 is a side view thereof, Fig. 12 is a top view thereof, and Fig. 13 is a third conventional semi-submerged trimaran. 14 to 18 show a half-submerged trimaran as an embodiment of the present invention, FIG. 14 is a side view thereof, and FIG. 15 is a side view of the ship shown in FIG. 14.
16 is a sectional view of the central submerged body, FIG. 17 is a sectional view showing a first modification of the same cross-sectional shape, and FIG. 18 is a second modification of the same cross-sectional shape. FIG. 1...Upper hull, 1'...Lower surface of upper hull, 2
a, 2b...Side submerged body, 2c' , 2c'' , 2c ...
...Central submerged body, 3...Water surface penetration part of monohull, 3
a, 3a' , 3b, 3b' , 3c, 3c' ...Strut, 4
a, 4a' , 4b, 4b' , 4c, 4c' ... Connection between the strut and the upper hull, 5a, 5b, 5c... Propeller, 6a, 6b, 6c... Rudder, 7a, 7b... Front part Hydrofoil, 8a, 8b...rear hydrofoil, 9...waterline, 10...cabin, 11...cockpit, 12a,
12b, 12c...engine room, 13a, 13b, 1
3c...Engine, 14a, 14b, 14c...
Propulsion shaft, 15a, 15b, 15c...Vertical transmission shaft, 16a, 16b, 16c...Horizontal transmission shaft, 1
7a, 17a' , 17b, 17b' , 17c, 17
c'...1st gear set, 18a, 18a' , 18
b, 18b' , 18c, 18c' ... 2nd gear set, 19... Bulwark, 20, 20'... Baseline.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 水面下に位置する1つの中央没水体と、船体中
央部付近において上記中央没水体の両側に配置さ
れる左右一対の側部没水体と、水面上に位置する
1つの上部船体と、水面を貫通して上記上部船体
を上記の中央没水体および左右一対の側部没水体
にそれぞれ連結する支柱とをそなえ、上記左右一
対の側部没水体がいずれも円形横断面形状を有す
るように形成されるとともに、上記中央没水体の
横断面形状がその高さよりも幅を大きくするよう
に形成されて、これらの側部没水体および中央没
水体が、いずれも同一基線のレベルに下面を設定
されたことを特徴とする、半没水三胴船。
One central submerged body located below the water surface, a pair of left and right side submerged bodies located on both sides of the central submerged body near the center of the hull, one upper hull located above the water surface, and penetrating the water surface. and struts that connect the upper hull to the central submerged body and the pair of left and right side submerged bodies, each of the left and right pair of side submerged bodies having a circular cross-sectional shape. In addition, the cross-sectional shape of the central submerged body is formed to be wider than its height, and the lower surfaces of both the side submerged bodies and the central submerged body are set at the same base line level. A semi-submerged trimaran featuring:
JP16103783U 1983-10-18 1983-10-18 semi-submerged trimaran Granted JPS6068892U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16103783U JPS6068892U (en) 1983-10-18 1983-10-18 semi-submerged trimaran

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16103783U JPS6068892U (en) 1983-10-18 1983-10-18 semi-submerged trimaran

Publications (2)

Publication Number Publication Date
JPS6068892U JPS6068892U (en) 1985-05-16
JPS6333755Y2 true JPS6333755Y2 (en) 1988-09-07

Family

ID=30354028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16103783U Granted JPS6068892U (en) 1983-10-18 1983-10-18 semi-submerged trimaran

Country Status (1)

Country Link
JP (1) JPS6068892U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018103951A (en) * 2016-12-28 2018-07-05 株式会社三井E&Sホールディングス Trimaran and horizontal agitation reduction method for trimaran

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623444A (en) * 1970-03-17 1971-11-30 Thomas G Lang High-speed ship with submerged hulls
JPS5149117A (en) * 1974-10-25 1976-04-28 Hitachi Ltd SEKISHUTSUKOKAGATASUTENRESUKONO JINSEIKAIZENNETSUSHORIHO
JPS56160283A (en) * 1980-05-15 1981-12-09 Mitsubishi Heavy Ind Ltd Catamaran with submerged body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623444A (en) * 1970-03-17 1971-11-30 Thomas G Lang High-speed ship with submerged hulls
JPS5149117A (en) * 1974-10-25 1976-04-28 Hitachi Ltd SEKISHUTSUKOKAGATASUTENRESUKONO JINSEIKAIZENNETSUSHORIHO
JPS56160283A (en) * 1980-05-15 1981-12-09 Mitsubishi Heavy Ind Ltd Catamaran with submerged body

Also Published As

Publication number Publication date
JPS6068892U (en) 1985-05-16

Similar Documents

Publication Publication Date Title
JPS6333755Y2 (en)
JPH02182594A (en) Catamaran
JPS6229360Y2 (en)
JPS623036B2 (en)
JPS62247994A (en) Hull structure for catamaran
JPS5927351Y2 (en) Wave-dissipating catamaran
JPS5927349Y2 (en) semi-submerged catamaran
JPH0371320B2 (en)
JPS5943193Y2 (en) semi-submerged catamaran
JPS6240235B2 (en)
JPS6017440Y2 (en) semi-submersible catamaran
JPH0224720Y2 (en)
JPH0326069Y2 (en)
JPS6039359Y2 (en) semi-submerged catamaran
JPH0319832B2 (en)
JPH0219359Y2 (en)
JPS63130492A (en) Semi-submerged type trimaran
JPS6332676B2 (en)
JPS5915751Y2 (en) semi-submerged catamaran
JPS5844068Y2 (en) semi-submerged catamaran
JPS625110B2 (en)
JPS5927350Y2 (en) Sailing semi-submerged catamaran
RU1768437C (en) Multihull vessel
JPS6146786A (en) Shape of high-speed boat
JPS6123511Y2 (en)