JPS6333519B2 - - Google Patents

Info

Publication number
JPS6333519B2
JPS6333519B2 JP54131909A JP13190979A JPS6333519B2 JP S6333519 B2 JPS6333519 B2 JP S6333519B2 JP 54131909 A JP54131909 A JP 54131909A JP 13190979 A JP13190979 A JP 13190979A JP S6333519 B2 JPS6333519 B2 JP S6333519B2
Authority
JP
Japan
Prior art keywords
fluidized
basic substance
furnace
supply nozzle
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54131909A
Other languages
Japanese (ja)
Other versions
JPS5655492A (en
Inventor
Yoshio Jo
Kichiji Fujita
Tetsuro Ikeda
Shuichi Takemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP13190979A priority Critical patent/JPS5655492A/en
Publication of JPS5655492A publication Critical patent/JPS5655492A/en
Publication of JPS6333519B2 publication Critical patent/JPS6333519B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Treating Waste Gases (AREA)
  • Industrial Gases (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、流動炉を使用して、燃焼時に酸性ガ
スを発生する被燃焼物、特に都市ごみや燃焼可能
な産業廃棄物を燃焼する際に発生する酸性ガス、
例えばHclやSOX等の除去方法に関するものであ
る。 都市ごみや燃焼可能な産業廃棄物の流動炉によ
る燃焼処理は、その燃焼効率が高く建設費、操業
費の点からも有利であり、広く採用されつつあ
る。都市ごみや産業廃棄物中には塩素化合物や硫
黄化合物などが含まれ、例えば都市ごみの焼却で
は燃焼ガス中に500〜1000ppm程度の前記ガスが
含まれており、産業廃棄物としての塩化ビニル系
合成樹脂材料や廃タイヤの焼却処理は、大気汚染
防止上大きな問題となつている。大気中に放出さ
れる排ガス中のこれらのガス濃度については、大
気汚染防止のため規制があり、この規制に対応す
るため、必要な限度まで捕集除去することが要求
され、その処理装置の建設、運転に多大の費用を
要している。 本願発明者の一人は、先に流動炉において発生
する酸性ガスの除去方法として、塩基性流動媒体
又は塩基性物質を表面に保持する流動媒体を用い
て、炉内に発生する酸性ガスを高収率に捕捉除去
する方法(特願昭54−3413号)を提示した。本願
発明者らは、さらに直接流動炉内に塩基性物質を
投入して、炉内に発生する酸性ガスを捕捉除去す
る方法について検討し、或る粒度以下の塩基性物
質を流動炉の特定部分に投入し流動媒体と混合す
ることにより、少量の添加で酸性ガスを高収率で
除去することに成功した。 本発明に使用する塩基性物質としては、入手が
容易で取扱い易く、かつ酸性ガスとの中和性の点
から、CaCO3,Na2CO3,CaOまたはCa(OH)2
よびこれらの化合物を主成分とする物質から選ば
れる一種以上の物質が好ましく、石灰石や、カー
バイトから得られる副生消石灰なども好ましく用
いられる。 次に上記塩基性物質の粒度については、粒度が
細かい程、表面積が大で、酸性ガスとの反応性が
良く、少なくともJIS篩目10メツシよりも細かい
ことが必要である。この粒径より大であると酸性
ガスとの接触面積が小となり、流動層における流
動媒体との混合性も悪く、酸性ガスの捕捉効率が
悪い。実施例からも示されるように、JIS篩目30
メツシよりも小さな粒度のものが好適である。 前記塩基性物質の炉内への投入位置としては、
フリーボード部、流動部などが考えられるが、フ
リーボード部への添加は良好な結果を示さない。 流動部への添加が有効であり、特に流動部内壁
から流動部が円筒形の場合には直径1/3以下、流
動部が角筒形の場合には対向壁までの差し渡し長
さの1/3以下の長さの位置に投入するとき、実施
例からも示されるように優れた除去効果が得られ
る。フリーボード部に添加した場合には、粒径が
小な従つて表面積の大きな粉体は高い酸性ガス除
去能力を有しながらも、燃焼ガスに同伴飛散して
高除去率は得られない。これに対し流動部内の前
記位置に設けられた塩基性物質供給ノズルから投
入したとき、少ない添加量で高収率の得られる理
由としては、流動部に達した被燃焼物から、まず
Hcl等の脱離が起るが、この分圧の高い発生期の
Hcl等と中和反応が起ること、接触効率が良いこ
と、塩基性物質の粒径によつては排ガスに同伴飛
散するが、フリーボード部に投入した場合に比較
して滞留時間が長いこと、さらに流動媒体との衝
突により滞留時間が増大すること、又、一部の塩
基性物質は流動媒体に付着し、滞留時間が一段と
長くなるとともに、接触効率も良くなる等の為と
思われる。 塩基性物質供給ノズルの長さが、流動部直径ま
たは差し渡し長さの1/3より長い場合、投入され
た塩基性物質が、流動媒体の流動の妨げとなる恐
れがあり、かつ、中央部では流動用空気と共に吹
き上げられる恐れがあり、本発明の効果を達成し
なくなるのである。 尚、塩基性物質の供給方法としては、パワーシ
リンダ、スクリユーフイーダー、加圧空気あるい
は加圧スチーム等により供給し、流動媒体と流動
層内で混合する等の何れの方法でも良く、直径が
流動層の深さに比し大きい流動部においては、前
記塩基性物質供給ノズルは流動部周囲に複数個設
けてもよい。 以下本発明を実施例によつてさらに説明する。 実施例 1 小形流動炉を使用して酸性ガス捕捉実験を行な
つた。使用した流動炉は第1図説明図に示すよう
にフリーボード部3は直径25cm,高さ70cm、流動
部2は内径15cm,長さ40cmのステンレス鋼製で
LPGによる空気予熱炉1を具えている。 この装置の流動部に流動媒体として0.1〜3mm
の蛇紋岩の砕砂を用い、該流動媒体を静止状態で
分散板10から25cm高さまで入れ、LPGを助燃
剤として流動部下部600℃,フリーボード部中間
部を400℃に保ち、原料供給ノズル9から塩化ビ
ニルコンパウンドペレツト(PVC含有率87wt%)
を30秒毎に0.75gの割合で供給した。分散板から
17cmの高さで、周壁から4.5cm内部に突出した塩
基性物質の第1供給ノズル4から、次の表1に示
す塩基性物質を供給し乾式脱Hcl実験を行なつ
た。投入量は発生Hcl計算量に対しそれぞれ3倍
当量である。投入空気量は10.5NM3/H,炉内
圧力は−20〜−30mm水柱でまた炉頂速度は
0.13m/sであり、煙道ガスHcl濃度の分析は
JISK−0107チオシアン酸第2水銀法を用いた。
The present invention uses a fluidized fluidized furnace to burn materials that generate acidic gas when burned, particularly acidic gas that is generated when burning municipal waste and combustible industrial waste.
For example, it relates to methods for removing Hcl, SOx, etc. The combustion treatment of municipal waste and combustible industrial waste using a fluidized fluidized furnace has high combustion efficiency and is advantageous in terms of construction and operating costs, and is becoming widely adopted. Municipal waste and industrial waste contain chlorine compounds, sulfur compounds, etc. For example, when municipal waste is incinerated, the combustion gas contains about 500 to 1000 ppm of these gases, and vinyl chloride as industrial waste Incineration of synthetic resin materials and waste tires has become a major problem in terms of air pollution prevention. There are regulations regarding the concentration of these gases in exhaust gases released into the atmosphere in order to prevent air pollution. , which costs a lot of money to operate. One of the inventors of the present application previously proposed a method for removing acidic gases generated in a fluidized fluidized furnace, using a basic fluidized medium or a fluidized medium that retains a basic substance on the surface to remove acidic gases generated in the furnace in a high yield. We proposed a method for trapping and removing them at a high rate (Japanese Patent Application No. 3413/1983). The inventors of the present application further investigated a method of directly injecting basic substances into a fluidized fluidized furnace to capture and remove acidic gas generated in the furnace. By adding a small amount of acid gas and mixing it with a fluidized medium, we succeeded in removing acidic gas in high yield with a small amount of addition. The basic substances used in the present invention include CaCO 3 , Na 2 CO 3 , CaO or Ca(OH) 2 and their compounds because they are easily available, easy to handle, and neutralize with acidic gases. One or more substances selected from the substances as the main component are preferable, and limestone and by-product slaked lime obtained from carbide are also preferably used. Next, regarding the particle size of the basic substance, it is necessary that the finer the particle size, the larger the surface area, the better the reactivity with acidic gas, and the finer than JIS sieve size 10. If the particle size is larger than this, the contact area with the acidic gas will be small, the miscibility with the fluidized medium in the fluidized bed will be poor, and the acidic gas trapping efficiency will be poor. As shown in the examples, JIS sieve size 30
A particle size smaller than that of meshi is preferred. The position at which the basic substance is introduced into the furnace is as follows:
Freeboard parts, flowing parts, etc. can be considered, but addition to freeboard parts does not give good results. It is effective to add it to the fluidizing section, especially if the fluidizing section is cylindrical, add 1/3 of the diameter or less, and if the fluidizing section is prismatic, add 1/3 of the width to the opposite wall. When the sample is placed at a position with a length of 3 or less, an excellent removal effect can be obtained as shown in the examples. When added to the freeboard part, although the powder with a small particle size and therefore a large surface area has a high ability to remove acidic gases, it is scattered along with the combustion gas, making it impossible to obtain a high removal rate. On the other hand, the reason why a high yield can be obtained with a small amount of addition when the basic material is fed from the basic material supply nozzle installed at the above position in the fluidizing section is that the material to be combusted that reaches the fluidizing section first
Desorption of Hcl, etc. occurs, but during the developmental period when the partial pressure is high,
A neutralization reaction with HCl etc. occurs, the contact efficiency is good, and depending on the particle size of the basic substance, it is entrained and scattered in the exhaust gas, but the residence time is longer than when it is introduced into the freeboard section. This is thought to be because the residence time increases due to collision with the fluid medium, and some basic substances adhere to the fluid medium, further increasing the residence time and improving the contact efficiency. If the length of the basic substance supply nozzle is longer than 1/3 of the diameter of the fluidizing section or the across length, there is a risk that the introduced basic substance may impede the flow of the fluidizing medium, and There is a risk that it will be blown up together with the fluidizing air, making it impossible to achieve the effects of the present invention. The basic substance may be supplied by any method such as a power cylinder, screw feeder, pressurized air, pressurized steam, etc., and mixed with a fluidized medium in a fluidized bed. In a fluidized section that is larger than the depth of the fluidized bed, a plurality of the basic substance supply nozzles may be provided around the fluidized section. The present invention will be further explained below with reference to Examples. Example 1 An acid gas trapping experiment was conducted using a small fluidized fluidized furnace. As shown in the explanatory diagram in Figure 1, the fluidized fluidized furnace used was made of stainless steel, with the freeboard part 3 having a diameter of 25 cm and a height of 70 cm, and the fluidized part 2 having an inner diameter of 15 cm and a length of 40 cm.
It is equipped with an air preheating furnace 1 using LPG. 0.1 to 3 mm as a fluid medium in the fluid part of this device.
Using crushed serpentinite sand, the fluidized medium is placed in a stationary state up to a height of 25 cm from the dispersion plate 10, and LPG is used as a combustion improver to maintain the lower part of the fluidized part at 600°C and the middle part of the freeboard part at 400°C. Vinyl chloride compound pellets (PVC content 87wt%)
was supplied at a rate of 0.75 g every 30 seconds. from the distribution plate
A dry Hcl removal experiment was carried out by supplying the basic substances shown in Table 1 below from the first supply nozzle 4 for basic substances that was 17 cm high and protruded 4.5 cm inside from the peripheral wall. The input amount was 3 times equivalent to the calculated amount of generated Hcl. The amount of air input was 10.5NM 3 /H, the pressure inside the furnace was -20 to -30mm water column, and the top speed of the furnace was
0.13m/s, and analysis of flue gas HCl concentration was
JISK-0107 mercuric thiocyanate method was used.

【表】 比較例 1 実施例1と同一実験装置を用い、実施例1と同
一条件のもとに塩化ビニルコンパウンドを燃焼し
た。塩基性物質の投入は、炉頂より600mmでフリ
ーボード部内下部内壁に開口する原料供給を兼ね
た塩基性物質第3供給ノズル6から実施例1と同
一物質を同一方方法で添加した。 実施例1と比較例1の実験結果を次項の表2に
示す。 表2の結果から、投入位置が流動部内にあつて
周壁から直径の1/3以下のノズルでは優れた捕捉
効果を示し、これに対しフリーボード周壁下部で
は、塩基性物質を多量に投入した場合でも捕捉効
果が劣ることを示している。また塩基性物質の粒
度は対照例の4mmφのものは65%程度の除去率で
あり、D(CaCO3,15〜20メツシ),J(Ca
(OH)2,30メツシ)では高い除去率を示し、粒
度は少なくともJIS篩目10メツシより細かく、30
メツシより細かいことが好ましいことを示してい
る。尚塩基性物質Aをノズル4から供給したと
き、助燃剤を中途からポリエチレンペレツトの流
動層内で燃焼させた場合でも、その除去率は変ら
なかつた。
[Table] Comparative Example 1 Using the same experimental equipment as in Example 1, a vinyl chloride compound was burned under the same conditions as in Example 1. The basic substance was added in the same manner as in Example 1 through the third basic substance supply nozzle 6, which also served as raw material supply, and opened on the inner wall of the lower part of the freeboard section at a distance of 600 mm from the top of the furnace. The experimental results of Example 1 and Comparative Example 1 are shown in Table 2 in the next section. From the results in Table 2, a nozzle whose injection position is within the flow zone and 1/3 or less of the diameter from the peripheral wall shows an excellent trapping effect, whereas in the lower part of the freeboard peripheral wall, when a large amount of basic substance is injected, However, it shows that the capture effect is inferior. In addition, regarding the particle size of the basic substance, the removal rate of the control example of 4 mmφ was about 65%, D (CaCO 3 , 15-20 mesh), J (CaCO 3, 15-20 mesh),
(OH) 2,30 mesh) shows a high removal rate, and the particle size is at least finer than JIS sieve size 10 mesh.
This indicates that it is preferable that the grain be finer than mesh. When the basic substance A was supplied from the nozzle 4, the removal rate did not change even when the combustion improver was combusted in the fluidized bed of polyethylene pellets.

【表】 実施例 2 実施例1と同一の流動炉でLPGを助燃剤とし
て流動層を600℃に保ち、実施例1と同一条件下
でPVCの燃焼を行つた。塩基性物質AをHcl計算
発生量に対し3モル当量を、目皿から34cmの位置
で、流動層内にあつてその上部に近くかつ周壁か
ら4.5cm突出した部分に開口する塩基性物質の第
2供給ノズル5から添加した。除去率として85%
を得た。 比較例 2 実施例1と同一の装置を用い、同一条件の下で
PVCの燃焼を行なつた。塩基性物質AのHcl計算
発生量に対し3倍当量を、のぞき窓を兼ねた塩基
性物質の第4供給ノズル7からSUS製パイプを
フリーボード部上面より30cm下のフリーボード中
央部まで挿入添加して、脱塩酸実験を実施した。
除去率70%が得られ、実施例に比べ劣る結果であ
つた。 なお、同一の実験方法で塩基性物質B(JIS篩目
200メツシ)を用いたときの除去率も75%と低く、
助燃剤として中途からポリエチレンペレツトを流
動層内で燃焼した場合や、PVC投入口をフリー
ボード部下部の第3供給ノズル6に変えた場合で
も、その除去率は70%,75%と低かつた。 また、塩基性物質の第1供給ノズル4の流動部
内の長さを7cmと長くして、このノズルから前記
塩基性物質Aと前記塩基性物質Bを供給して、そ
れぞれ同様の実験を行つたところ、下部からの吹
上げる空気と共にフリーボード部へ吹飛ばされる
ような状態が見られ、従つて、Hcl除去率も、そ
れぞれ75%,79%と低かつた。 実施例 3 実施例1と同一の実験炉に流動媒体を静止状態
で25cm高さまで入れLPGを用いて600℃まで昇温
後、タイヤ破砕物(4mmφ)を原料供給ノズル9
から300g/Hrの割合で投入自燃させ、流動層温
度を600℃に保ち、実施例1と同じく塩基性物質
の第1供給ノズル4から325メツシ全通とした
CaCO3をSO2計算発生量に対し3倍当量を供給し
し、乾式脱SOx実験を行い、SO2換算除去率とし
て97.5%を得た。 比較例 3 実施例3と全く同一条件下でタイヤ破砕物を燃
焼させ、流動層温度を600℃に保ち、フリーボー
ド部下部に開口する塩基性物質の第3供給ノズル
6から、325メツシ全通としたCaCO3をSO2計算
発生量に対し3倍当量を供給し、乾止脱SOx実験
を行つた。SO2換算除去率は70%と低かつた。 また、塩基性物質の第1供給ノズル4を内壁か
ら7cm突出させて、このノズルから実施例3と同
量のCaCO3を供給してタイヤ燃焼ガスの脱SO2
験を行つたが、SO2換算除去率は75%と低かつ
た。
[Table] Example 2 PVC was burned in the same fluidized furnace as in Example 1 under the same conditions as in Example 1, using LPG as a combustion improver and maintaining the fluidized bed at 600°C. Add 3 molar equivalents of basic substance A to the calculated amount of Hcl generated at a position 34 cm from the perforated plate, and add the basic substance A to the opening in the fluidized bed near the top and protruding 4.5 cm from the peripheral wall. 2 was added from supply nozzle 5. 85% as removal rate
I got it. Comparative Example 2 Using the same equipment as Example 1 and under the same conditions
PVC combustion was carried out. Insert an SUS pipe from the fourth supply nozzle 7 of the basic substance, which also serves as a viewing window, to the center of the freeboard, 30 cm below the top surface of the freeboard, and add 3 times the equivalent of the calculated Hcl generation amount of basic substance A. Then, a dehydrochlorination experiment was conducted.
A removal rate of 70% was obtained, which was an inferior result compared to the Examples. In addition, basic substance B (JIS sieve mesh) was obtained using the same experimental method.
200 mesh), the removal rate is as low as 75%.
Even when polyethylene pellets are burned as a combustion improver in the fluidized bed, or when the PVC input port is changed to the third supply nozzle 6 at the bottom of the freeboard section, the removal rate is as low as 70% or 75%. Ta. In addition, the length of the inside of the flow section of the first supply nozzle 4 for the basic substance was increased to 7 cm, and the basic substance A and the basic substance B were supplied from this nozzle, and similar experiments were conducted respectively. However, there was a situation in which the air was blown into the freeboard section along with the air blown up from the bottom, and the Hcl removal rate was therefore low at 75% and 79%, respectively. Example 3 A fluidized medium was put into the same experimental furnace as in Example 1 to a height of 25 cm in a stationary state, and the temperature was raised to 600°C using LPG, and then the crushed tire material (4 mmφ) was passed through the raw material supply nozzle 9.
The basic substance was fed at a rate of 300 g/Hr to self-combust, the temperature of the fluidized bed was maintained at 600°C, and 325 mesh was passed through the first supply nozzle 4 of the basic substance as in Example 1.
CaCO 3 was supplied in an amount equivalent to three times the calculated amount of SO 2 generated, and a dry deSO x experiment was conducted, resulting in a removal rate of 97.5% in terms of SO 2 . Comparative Example 3 Crushed tire material was burned under exactly the same conditions as in Example 3, the temperature of the fluidized bed was maintained at 600°C, and 325 mesh was completely passed through the third basic substance supply nozzle 6 that opened at the bottom of the freeboard section. A dry deSO x experiment was conducted by supplying CaCO 3 equivalent to 3 times the calculated amount of SO 2 generated. The SO 2 equivalent removal rate was as low as 70%. In addition, an experiment was conducted to remove SO 2 from tire combustion gas by protruding the first basic substance supply nozzle 4 by 7 cm from the inner wall and supplying the same amount of CaCO 3 as in Example 3 from this nozzle. The conversion removal rate was as low as 75%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法に使用した実験用流動炉
の構造を示す説明図である。 1……流動用空気予熱炉、2……流動部、3…
…フリーボード部、4……塩基性物質の第1供給
ノズル、5……塩基性物質の第2供給ノズル、6
……塩基性物質の第3供給ノズル、7……塩基性
物質の第4供給ノズル、8……煙道、9……原料
供給ノズル、10……分散板、11……流動媒体
抜出しノズル、T1〜T5……熱電対温度計、PM
……マノメーター。
FIG. 1 is an explanatory diagram showing the structure of an experimental fluidized bed furnace used in the method of the present invention. 1... Air preheating furnace for fluidization, 2... Fluidization section, 3...
...Freeboard portion, 4...First supply nozzle for basic substance, 5...Second supply nozzle for basic substance, 6
... Third supply nozzle for basic substance, 7 ... Fourth supply nozzle for basic substance, 8 ... Flue duct, 9 ... Raw material supply nozzle, 10 ... Dispersion plate, 11 ... Fluid medium extraction nozzle, T 1 ~ T 5 ... Thermocouple thermometer, PM
……manometer.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼時に酸性ガスを発生する被燃焼物を流動
炉によつて燃焼する際に、JIS篩目10メツシより
細粉とした塩基性物質を、前記流動炉の流動部内
に内壁から該流動部の直径または差し渡し長さの
1/3以下の長さで内設される前記塩基性物質の供
給ノズルを介して投入しつつ被燃焼物を燃焼する
ことを特徴とする燃焼時に発生する酸性ガスの除
去方法。
1. When combustible materials that generate acidic gases during combustion are burned in a fluidized fluidized furnace, a basic substance made into a fine powder of JIS sieve size 10 is introduced into the fluidized section of the fluidized furnace from the inner wall of the fluidized section. Removal of acidic gas generated during combustion, characterized by combusting the substance to be combusted while injecting the basic substance through a supply nozzle installed internally with a length of 1/3 or less of the diameter or across length. Method.
JP13190979A 1979-10-15 1979-10-15 Removal of acidic gas evolved during combustion Granted JPS5655492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13190979A JPS5655492A (en) 1979-10-15 1979-10-15 Removal of acidic gas evolved during combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13190979A JPS5655492A (en) 1979-10-15 1979-10-15 Removal of acidic gas evolved during combustion

Publications (2)

Publication Number Publication Date
JPS5655492A JPS5655492A (en) 1981-05-16
JPS6333519B2 true JPS6333519B2 (en) 1988-07-05

Family

ID=15069005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13190979A Granted JPS5655492A (en) 1979-10-15 1979-10-15 Removal of acidic gas evolved during combustion

Country Status (1)

Country Link
JP (1) JPS5655492A (en)

Also Published As

Publication number Publication date
JPS5655492A (en) 1981-05-16

Similar Documents

Publication Publication Date Title
JP2657896B2 (en) Fluid bed reactor and combustion method
US8999278B2 (en) Method and apparatus for on-site production of lime and sorbents for use in removal of gaseous pollutants
EP2891843B1 (en) Method for combusting waste with a mineral additive
JPS59197724A (en) Post-burning purifying method of process exhaust gas
US10046273B1 (en) Systems and method for removal of acid gas in a circulating dry scrubber
CA1237894A (en) Fuel burning method to reduce sulfur emissions and form non-toxic sulfur compounds
EP1399695B1 (en) Flue gas purification device for an incinerator
US20040182292A1 (en) Incineration process using high oxygen concentrations
KR970006969B1 (en) Incinerator
US5185134A (en) Reduction of chlorinated organics in the incineration of wastes
CN110513693A (en) A kind of sludge incineration method
CN103922624B (en) Be calcareous raw material with carbide slag and the sinter leaching system for the treatment of refuse incineration flue gas
US5002743A (en) Process for the removal of sulfur dioxide from hot flue gases
US5021229A (en) Reduction of chlorinated organics in the incineration of wastes
US3864458A (en) Fluid bed incineration of chloride-containing waste streams
JPS6333519B2 (en)
EP0156784B1 (en) A method of reducing sulphur-oxide and nitrogen-oxide emission when burning solid fuel on travelling grates
JPH06210128A (en) Dry type stack gas desulfurization
JPS642409B2 (en)
JPS636313A (en) Method of processing combustion gas in incinerator
EP0748983A1 (en) A waste incineration plant with dust collection and removal of acid compounds, particularly HC1
JPH0376963B2 (en)
JP2888395B2 (en) Fluidized bed combustion device
TWI484995B (en) Dry processes, apparatus, compositions and systems for reducing sulfur oxides and hci
JPH0739844B2 (en) Fluidized bed combustion equipment