JPS6333060B2 - - Google Patents

Info

Publication number
JPS6333060B2
JPS6333060B2 JP18489480A JP18489480A JPS6333060B2 JP S6333060 B2 JPS6333060 B2 JP S6333060B2 JP 18489480 A JP18489480 A JP 18489480A JP 18489480 A JP18489480 A JP 18489480A JP S6333060 B2 JPS6333060 B2 JP S6333060B2
Authority
JP
Japan
Prior art keywords
stage
temperature
water
evaporation chamber
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18489480A
Other languages
Japanese (ja)
Other versions
JPS57105686A (en
Inventor
Hiroshi Kashiwagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP18489480A priority Critical patent/JPS57105686A/en
Publication of JPS57105686A publication Critical patent/JPS57105686A/en
Publication of JPS6333060B2 publication Critical patent/JPS6333060B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 火山国であるわが国においては豊富な高温の地
熱水が各地で噴出しているが、その極く一部が利
用されているに過ぎず、大部分は有害成分が原因
で保有する熱エネルギーが利用されていないのが
実情である。
[Detailed Description of the Invention] In Japan, a volcanic country, an abundance of high-temperature geothermal water gushes out in various places, but only a small portion of it is used, and most of it is free of harmful components. The reality is that the retained thermal energy is not being utilized.

地熱水、各種溶液を冷却する際、伝熱面へのス
ケールの付着を防ぐため伝熱面を持たない直接接
触式の多段フラツシユ型熱交換器が特公昭55―
9635号公報に記載されているが、地熱水の腐食性
および地熱水中に含まれる硫化水素等の有害成分
に関しては何等の考慮も払われていない。
To prevent scale from adhering to the heat transfer surface when cooling geothermal water and various solutions, a direct contact multi-stage flash heat exchanger without a heat transfer surface was developed in 1984.
Although it is described in Publication No. 9635, no consideration is given to the corrosivity of geothermal water and harmful components such as hydrogen sulfide contained in geothermal water.

周知のように水中に溶存するガス、例えば酸
素、あるいは硫化水素などは装置の腐食原因とな
るので脱気することが望ましく、地熱水の熱エネ
ルギーの回収にも脱ガスは重要な問題である。
As is well known, gases dissolved in water, such as oxygen or hydrogen sulfide, cause corrosion of equipment, so degassing is desirable, and degassing is also an important issue for recovering thermal energy from geothermal water. .

従来の多段フラツシユ蒸発方法において、最高
温蒸発室から非凝縮性ガスを抽気する方法はすで
に公知であるが、これは伝熱性能の向上を目的と
したものであり、生成凝縮水が非凝縮性ガスを再
吸収して不純水となり、これが次段以下の蒸発室
に順次送られているのであり、これを地熱水の熱
交換に用いる場合には非凝縮ガスとして腐食性あ
るいは有害なガスを生成凝縮水が含むこととな
り、最高温蒸発室のみならず以下の蒸発室におい
ても蒸発室の構造材料あるいは伝熱管に耐食性の
ある特殊な材料の使用が余儀なくされており、高
価な装置となつていた。また地熱水にひ素、硫化
水素などの有害成分を含む場合は、ブラインのみ
ならず生成蒸留水もそのまま河川へ放流すること
は許されず、その対策が求められていた。
In the conventional multi-stage flash evaporation method, a method of extracting non-condensable gas from the highest temperature evaporation chamber is already known, but this is aimed at improving heat transfer performance, and the condensed water produced is non-condensable. The gas is reabsorbed and becomes impure water, which is sequentially sent to the evaporation chambers below, and when used for heat exchange with geothermal water, corrosive or harmful gases are removed as non-condensable gases. The condensed water generated must contain special corrosion-resistant materials not only in the highest-temperature evaporation chamber but also in the lower-temperature evaporation chambers as well as for the heat exchanger tubes, resulting in expensive equipment. was. Furthermore, if geothermal water contains harmful components such as arsenic and hydrogen sulfide, it is not permissible to discharge not only the brine but also the produced distilled water directly into rivers, and countermeasures are required.

本発明は上記に鑑み、地熱水の保有熱エネルギ
ーを利用して多段フラツシユ蒸発によつて河川水
等を加熱する熱交換器において、高温部蒸発器に
属する単段または複数段の高温蒸発段でフラツシ
ユ蒸発によつて発生した有害ガスを再吸収した凝
縮水を取出し、又は非凝縮性ガスも取出して後続
の低温部蒸発器に流さず、そこでの腐食性を低減
させて経済的な構造材、伝熱管材の適用を可能と
するとともに、後続の低温部蒸発器の単段又は複
数段の蒸発室から排出する濃縮ブラインに前記の
有害ガスを含む高温部蒸発器での生成蒸留水なら
びに非凝縮性ガスを混合して地下に還元すること
により、有害成分を環境に放出しない安全な多段
フラツシユ式熱交換方法を提供するものであり、
従来無駄に捨てられていた地熱水の利用に役立つ
ものである。
In view of the above, the present invention provides a heat exchanger that heats river water, etc. through multi-stage flash evaporation using the thermal energy retained in geothermal water, and includes a single-stage or multiple-stage high-temperature evaporation stage belonging to a high-temperature section evaporator. The condensed water that has reabsorbed harmful gases generated by flash evaporation is taken out, and non-condensable gases are also taken out and not passed to the subsequent low-temperature section evaporator, reducing corrosivity there and making it an economical structural material. In addition to making it possible to apply heat transfer tube materials, the concentrated brine discharged from the single-stage or multi-stage evaporation chamber of the subsequent low-temperature section evaporator contains the above-mentioned harmful gases, as well as the distilled water produced in the high-temperature section evaporator and non-concentrated brine. It provides a safe multi-stage flash heat exchange method that does not release harmful components into the environment by mixing condensable gases and returning them underground.
This will help utilize geothermal water that was previously wasted.

以下その実施例について説明する。 Examples thereof will be described below.

第1図において、多段蒸発器の各段は蒸発部と
凝縮部を有して高温部蒸発器と低温部蒸発器に区
画され、高温部蒸発器に属して最高温度を示す第
1段蒸発室1aは底部に地熱水を導入する高温水
入口管2、上部に凝縮管束3および凝縮水受皿4
を具え、頂部に不凝縮性ガス排気管5が設けら
れ、かつ内部液体温度の飽和圧力に維持されてお
り、これに続く第2段以下の低温部蒸発器に属す
る蒸発室群6からは独立して設置され、単に管7
及び管8で連絡されている。低温部蒸発器に属す
る第2段以下の蒸発室群6は下部に開口9のある
隔壁10で各段蒸発室に区画され、凝縮管束3′が
蒸発室群6の中に設けられており、ここでは凝縮
水の回収が必要でない限り受皿は設けない。最底
段蒸発室1nの出口管に濃縮ブライン排出ポンプ
11および水エゼクタのごとき混合吸収器12が
設置されており、第1段蒸発室1aの非凝縮性ガ
ス用排気管5は管13を経て混合吸収器12に連
絡し、凝縮水受皿4は管14を有し、さらに管1
5によつて濃縮ブライン排出ポンプ11の入口側
に連絡されている。この第2段以下の蒸発室群6
は各段が抽気管16で連絡されており、最低段蒸
発室1nには真空装置に連絡する抽気管17が設
けられている。
In Figure 1, each stage of the multi-stage evaporator has an evaporating section and a condensing section, and is divided into a high temperature section evaporator and a low temperature section evaporator, and the first stage evaporation chamber which belongs to the high temperature section evaporator and exhibits the highest temperature. 1a is a high temperature water inlet pipe 2 for introducing geothermal water at the bottom, a condensing pipe bundle 3 and a condensed water receiver 4 at the top.
A non-condensable gas exhaust pipe 5 is provided at the top, and the pressure is maintained at the saturation pressure of the internal liquid temperature, and it is independent from the evaporation chamber group 6 belonging to the low-temperature section evaporator of the second stage and below. installed, simply pipe 7
and are connected by pipe 8. The evaporation chamber group 6 of the second and lower stages belonging to the low-temperature section evaporator is divided into each stage evaporation chamber by a partition wall 10 having an opening 9 at the bottom, and a condensing tube bundle 3' is provided in the evaporation chamber group 6. Here, no saucer is provided unless it is necessary to collect condensed water. A concentrated brine discharge pump 11 and a mixing absorber 12 such as a water ejector are installed at the outlet pipe of the bottom stage evaporation chamber 1n, and the non-condensable gas exhaust pipe 5 of the first stage evaporation chamber 1a is connected through a pipe 13. Connected to the mixing absorber 12, the condensate catcher 4 has a pipe 14 and a pipe 1
5 to the inlet side of the concentrated brine discharge pump 11. This evaporation chamber group 6 below the second stage
Each stage is connected by an air bleed pipe 16, and the lowest stage evaporation chamber 1n is provided with an air bleed pipe 17 that communicates with a vacuum device.

図示では第1段蒸発室1a単段としたが複数段
でもよいことは勿論であり、高温部蒸発器と低温
部蒸発器は同一ケーシング内に設置してもよい。
また、混合吸収器12は上記では水エゼクターと
したが、単なるミキサーとし、管13の経路に注
入用の圧縮機を設ける方法とすることもできる。
In the illustration, the first stage evaporation chamber 1a is shown as a single stage, but it is of course possible to have multiple stages, and the high temperature section evaporator and the low temperature section evaporator may be installed in the same casing.
Further, although the mixing absorber 12 is a water ejector in the above example, it may be a simple mixer and a compressor for injection may be provided in the path of the pipe 13.

上記の構成を有する装置において、腐食性ガス
や有害ガス等を含有する高温の地熱水が入口管2
から自噴によりまたは適宜のポンプ等により導入
され、所定圧力に維持されている第1段蒸発室1
aでフラツシユ蒸発する。
In a device having the above configuration, high temperature geothermal water containing corrosive gases, harmful gases, etc.
The first stage evaporation chamber 1 is introduced by self-injection or by an appropriate pump, etc., and is maintained at a predetermined pressure.
The flash evaporates at a.

凝縮管束3には例えば有害物質を殆んど含まな
い清浄河川水がポンプ18によつて導入されてお
り、蒸発室群6で発生蒸気と熱交換して順次高温
となり、さらに管8を経て第1段蒸発室1aに至
り、ここでも発生蒸気と熱交換して加熱され、有
害成分のない高温の河川水が管19から取出され
る。ここで発生蒸気の一部と非凝縮性ガスは管5
から取出され、管13を経て混合吸収器12に吸
引され、地下へ還元される。低温となつている濃
縮ブラインは非凝縮性ガスをよく吸収する。第1
段蒸発室1aでは発生蒸気中の有害性ガスの含有
率が高いうえに凝縮水の一部は過冷状態になるた
め有害性ガスは凝縮水に再吸収され受皿4に溜つ
た凝縮水は管14によつて排棄され、もしくは管
15を通り濃縮ブラインポンプ11の吸引側にお
いて濃縮ブラインに混合し、有害物質は混合吸収
器12を経て地下へ還元される。
For example, clean river water containing almost no harmful substances is introduced into the condensing tube bundle 3 by a pump 18, which exchanges heat with the generated steam in the evaporation chamber group 6 to gradually reach a high temperature. The water reaches the first stage evaporation chamber 1a, where it is also heated by heat exchange with the generated steam, and high-temperature river water free of harmful components is taken out from the pipe 19. Here, part of the generated steam and non-condensable gas are transferred to pipe 5
It is taken out from the water, sucked into the mixing absorber 12 through the pipe 13, and returned to the underground. Concentrated brine at low temperature absorbs non-condensable gases well. 1st
In the stage evaporation chamber 1a, the content of harmful gases in the generated steam is high and a part of the condensed water is supercooled, so the harmful gases are reabsorbed by the condensed water and the condensed water accumulated in the saucer 4 is drained into the pipe. 14 or mixed with the concentrated brine on the suction side of the concentrated brine pump 11 through the pipe 15, the hazardous substances are returned to the underground via the mixing absorber 12.

第1段蒸発室1aの残存濃縮ブラインは管7を
経て第2段以下の蒸発室群6に至り順次蒸発と濃
縮を繰返して前記のとおり河川水と熱交換し濃縮
ブラインポンプ11に導入される。非凝縮ガス中
の有害成分は吸着処理や薬品処理で除去すること
も可能であり、この場合ブラインに混合しなくて
もよい。
The remaining condensed brine in the first stage evaporation chamber 1a passes through the pipe 7 to the second stage and below evaporation chamber group 6, repeats evaporation and concentration in sequence, exchanges heat with river water as described above, and is introduced into the condensed brine pump 11. . Harmful components in the non-condensable gas can also be removed by adsorption treatment or chemical treatment, and in this case they do not need to be mixed with brine.

また、非凝縮性ガスに有害成分を含まない時に
も凝縮水のみ残存ブラインに混入して地下に還元
する。
Furthermore, even when the non-condensable gas does not contain harmful components, only condensed water is mixed into the remaining brine and returned to the underground.

第2図に示す他の実施例は、最高温度の第1段
蒸発室1aにおける発生蒸気との熱交換は凝縮管
束3による間接接触で行い、以下に続く蒸発室群
6では清水との直接接触熱交換方式を採用した多
段フラツシユ式熱交換方法である。
In another embodiment shown in FIG. 2, heat exchange with the generated steam in the first stage evaporation chamber 1a having the highest temperature is performed through indirect contact with the condensing tube bundle 3, and in the evaporation chamber group 6 that follows, direct contact with fresh water is performed. This is a multi-stage flash heat exchange method that uses a heat exchange method.

本発明においては、高温の地熱水を高温蒸発室
に導いて減圧下でフラツシユ蒸発させたのち清浄
河川水との熱交換によつて凝縮させ、この腐食成
分を含む生成凝縮水および一部蒸発を含む非凝縮
性ガスを濃縮ブラインに混合して地下に還元し、
残存の原水を以下の蒸発室で順次フラツシユ蒸発
させ、清浄河川水の温度を高めるようにした多段
フラツシユ式熱交換方法であるから、原水が保有
する酸素、硫化水素等の腐食性ガスは外部に放出
されることなく安全である。
In the present invention, high-temperature geothermal water is introduced into a high-temperature evaporation chamber, flash evaporated under reduced pressure, and then condensed by heat exchange with clean river water, resulting in condensed water containing corrosive components and partially evaporated. The non-condensable gas containing
This is a multi-stage flash heat exchange method in which the remaining raw water is sequentially flash-evaporated in the following evaporation chambers to raise the temperature of clean river water, so corrosive gases such as oxygen and hydrogen sulfide contained in the raw water are released to the outside. Safe with no release.

以上の説明では、低温部蒸発器以下の蒸発室を
多段で説明したが、原水の温度が低いとか、原水
に溶解性物質が多く沸点上昇が大きく、段間圧力
差が十分とれない場合には、低温部蒸発器は単一
の蒸発室となり、その蒸発段数は原水の性状によ
り決定されることはいうまでもない。
In the above explanation, the evaporation chamber below the low-temperature section evaporator was explained as having multiple stages. However, if the raw water temperature is low, or there are many soluble substances in the raw water, and the boiling point rise is large, and the pressure difference between stages cannot be maintained sufficiently, It goes without saying that the low-temperature section evaporator is a single evaporation chamber, and the number of evaporation stages is determined by the properties of the raw water.

ここで本発明において、第1段蒸発室1aで発
生した非凝縮性ガスを大気に放出することなく排
出濃縮ブラインに水エゼクタのごとき装置によつ
て混合吸収させたので、排出濃縮水は低温となつ
ているから吸収は良好となり、前記先行技術にお
ける第1段蒸発室より大気へ放出する場合に較べ
て大気汚染は減少でき、さらに第1段蒸発室にお
いて有害物質を再吸収した凝縮水を排出濃縮ブラ
インに混合したから有害物質の濃度は減じ公害防
止に役立つ。また高温部蒸発器に属する単段また
は複数段の高温蒸発室を以下に続く低温部蒸発器
に属する蒸発室群から独立して設置すれば高温段
蒸発室の腐食が進行した場合でも次段以下の蒸発
室群は有害物質の流入がなく長期の使用に耐え、
よつてこの独立した高温段蒸発室のみを交換する
だけで足りるなどの効果がある。
In the present invention, the non-condensable gas generated in the first stage evaporation chamber 1a is mixed and absorbed into the discharged concentrated brine using a device such as a water ejector without being released into the atmosphere, so that the discharged concentrated water is kept at a low temperature. Because of this, the absorption is good, and air pollution can be reduced compared to the case of releasing into the atmosphere from the first stage evaporation chamber in the prior art, and furthermore, the condensed water that has reabsorbed harmful substances is discharged in the first stage evaporation chamber. Mixing it with concentrated brine reduces the concentration of harmful substances and helps prevent pollution. In addition, if the single-stage or multiple-stage high-temperature evaporation chambers belonging to the high-temperature section evaporator are installed independently from the evaporation chamber group belonging to the following low-temperature section evaporator, even if corrosion progresses in the high-temperature section evaporation chamber, the next stage The evaporation chamber group can withstand long-term use without the inflow of harmful substances.
Therefore, it is sufficient to replace only this independent high-temperature stage evaporation chamber.

以上要するに本発明においては、高温部蒸発器
のみ耐食性材料を考慮すればよく、低温部蒸発器
では通常の材質のものが使用でき、耐食材料の省
資源となるとともに頗る安価に製作でき経済的に
も有利となり、また熱交換によつて高温となつた
河川水は有害物質を含まないので各方面に広く利
用でき、例えば山村においてビニールハウスの地
下に導入して室内の温度を上げ、寒冷地帯でも野
菜のハウス栽培を可能にするなどその効果は大き
い。
In summary, in the present invention, it is only necessary to consider corrosion-resistant materials for the high-temperature section evaporator, while ordinary materials can be used for the low-temperature section evaporator, which saves resources for corrosion-resistant materials and can be manufactured at a very low cost, making it economical. In addition, river water heated to high temperature through heat exchange does not contain harmful substances, so it can be widely used in various areas. For example, in mountain villages, it can be introduced into the basement of a plastic greenhouse to raise the indoor temperature, and even in cold regions. Its effects are significant, such as making it possible to grow vegetables in greenhouses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明のそれぞれ異なる実施
例における断面説明図である。 1a……第1段蒸発室、1n……最終段蒸発
室、2……高温水入口管、3……凝縮管束、4…
…凝縮水受皿、5…非凝縮性ガス用排気管、6…
…蒸発室群、7……管、8……管、9……開口、
10……隔壁、11……濃縮ブライン排出ポン
プ、12……混合吸収器、13……管、14……
管、15……管、16……抽気管、17……抽気
管、18……ポンプ、19……管。
FIGS. 1 and 2 are cross-sectional explanatory views of different embodiments of the present invention. 1a...First stage evaporation chamber, 1n...Final stage evaporation chamber, 2...High temperature water inlet pipe, 3...Condensing tube bundle, 4...
...Condensed water tray, 5...Exhaust pipe for non-condensable gas, 6...
...evaporation chamber group, 7...tube, 8...tube, 9...opening,
10... Bulkhead, 11... Concentrated brine discharge pump, 12... Mixing absorber, 13... Tube, 14...
Pipe, 15...pipe, 16...bleeding pipe, 17...bleeding pipe, 18...pump, 19...pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 各段に蒸発部と凝縮部とを有する多段蒸発器
を高温部蒸発器と低温部蒸発器に区成し、有害成
分を有する高温地熱水を該高温部蒸発器の最高温
蒸発段から該低温部蒸発器の最底温蒸発段まで順
次各段で蒸発させつつ流下させ、他方、凝縮部に
は清浄河川水を該最低温蒸発段から該最高温蒸発
段に順次流して各蒸発段で発生した蒸気を凝縮せ
しめ、前記高温部蒸発器で生成した凝縮水と同蒸
発器で発生した非凝縮性ガスとを外部に取出し低
温部蒸発器から抜き出された残存ブラインに混合
して地下に還元する地熱水の多段フラツシユ式熱
交換方法。
1 A multistage evaporator having an evaporation section and a condensation section in each stage is divided into a high temperature section evaporator and a low temperature section evaporator, and high temperature geothermal water containing harmful components is collected from the highest temperature evaporation stage of the high temperature section evaporator. The low-temperature section evaporator is made to flow down to the lowest temperature evaporation stage while being evaporated in each stage, while in the condensing section, clean river water is sequentially flowed from the lowest temperature evaporation stage to the highest temperature evaporation stage and the water flows down to each evaporation stage. The steam generated at A multi-stage flash heat exchange method for geothermal water.
JP18489480A 1980-12-24 1980-12-24 Multi-stage flash type heat exchanging method Granted JPS57105686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18489480A JPS57105686A (en) 1980-12-24 1980-12-24 Multi-stage flash type heat exchanging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18489480A JPS57105686A (en) 1980-12-24 1980-12-24 Multi-stage flash type heat exchanging method

Publications (2)

Publication Number Publication Date
JPS57105686A JPS57105686A (en) 1982-07-01
JPS6333060B2 true JPS6333060B2 (en) 1988-07-04

Family

ID=16161174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18489480A Granted JPS57105686A (en) 1980-12-24 1980-12-24 Multi-stage flash type heat exchanging method

Country Status (1)

Country Link
JP (1) JPS57105686A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58205089A (en) * 1982-05-25 1983-11-29 Hitachi Zosen Corp Method for heat exchange utilizing geothermal heat
JPS6111567A (en) * 1984-06-27 1986-01-18 Mayekawa Mfg Co Ltd Device for retrieving heat of underground water

Also Published As

Publication number Publication date
JPS57105686A (en) 1982-07-01

Similar Documents

Publication Publication Date Title
US6076369A (en) Evaporative concentration apparatus for waste water
EP0485375B1 (en) Method and apparatus for evaporation of liquids
US4084379A (en) Energy conversion system
CN102205993A (en) Adverse current closed type multistage seawater desalination system and method
CN210764423U (en) Heat pump vacuum waste liquid concentration treatment device
CN113587187A (en) Flue gas waste heat recycling system and method
CN110440239B (en) Deep recovery device and method for waste heat and moisture of exhaust gas of power station boiler
CN210904991U (en) High-efficient enrichment facility of low temperature evaporation
JPS6333060B2 (en)
CN102079552A (en) Low-temperature multi-effect evaporation seawater desalination system with falling film condenser
KR101323160B1 (en) Marine vertical multistage desalinator
Eriksson et al. Heat transformer with self-circulation: design and preliminary operational data
CN201560132U (en) Low temperature multi-effect distillation seawater desalination system adopting falling film type condenser
CN213739032U (en) Novel initiative recovery latent heat disk type solar energy sea water desalination device
CN209378488U (en) A kind of half cycle energy conservation evaporated crystallization device
CN109751095A (en) The water-electricity cogeneration system and working method of cascade utilization fume waste heat concentrate solution
CN105174331B (en) A kind of heat pump cycle formula sea water desalinating unit and its application method
CN220078666U (en) Waste heat recovery and wastewater treatment system
CN115608118B (en) Composite absorption tower and absorption type carbon capture pressure increasing system and process
CN216694063U (en) Absorption heat exchanger unit for deep recycling of flue gas waste heat
SU1268894A1 (en) Air-conditioning unit with heat energy recovery
JPS59130592A (en) Bleeding method
JPH0345088Y2 (en)
JPS5820679B2 (en) watermelon watermelon
SU1245844A1 (en) Method of condensing vapour-gas mixture in multisection condenser