JPS6332749B2 - - Google Patents

Info

Publication number
JPS6332749B2
JPS6332749B2 JP57138267A JP13826782A JPS6332749B2 JP S6332749 B2 JPS6332749 B2 JP S6332749B2 JP 57138267 A JP57138267 A JP 57138267A JP 13826782 A JP13826782 A JP 13826782A JP S6332749 B2 JPS6332749 B2 JP S6332749B2
Authority
JP
Japan
Prior art keywords
fibers
fiber
sintered body
whiskers
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57138267A
Other languages
Japanese (ja)
Other versions
JPS5930778A (en
Inventor
Shinji Nishio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP57138267A priority Critical patent/JPS5930778A/en
Publication of JPS5930778A publication Critical patent/JPS5930778A/en
Publication of JPS6332749B2 publication Critical patent/JPS6332749B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は特定な方向にすぐれた抗張力の有する
炭素珪素焼結体の製造法に関する。 炭化珪素焼結体は低熱膨脂性で、機械強度や熱
伝導が大きく、耐酸化性も良好なことから、発熱
体やエンジン部品その他の耐熱構造材料として、
最近広範な用途が関けてきた材質であるが、金属
に比べ靭性が乏しく、特に抗張力が弱いという難
点があつた。 本発明はこれを改良し、特定方向に著しく強い
抗張力をもつ繊維強化SiC焼結体の製造法に関す
るもので、W繊維とこの間隙を埋めるSi3N4ホイ
スカーを1平面または1直線に実質的にほゞ平行
に配列し、炭素を含有する結合剤を加えて成形
し、非酸化性雰囲気中にて熱分解し溶融金属珪素
を滲透せしめて全体をSiCとW繊維とSi3N4とW
の複合体とすることを特徴とする繊維強化SiC焼
結体の製造法を提供するもので、SiCの反応焼結
法の1種であるが、W繊維とSi3N4ホイスカーが
実質的に特定方向に配合されているため繊維の伸
長方向に、著しく強い抗張力を有し、また少量の
金属珪素が残留するために靭性の大きいものであ
る。こゝでSi3N4ホイスカーはα型またはβ型の
窒化珪素よりなるホイスカーである。次にこれを
成形するにはW繊維とSi3N4ホイスカーを一平面
上に不特定方向に配置し結合すれば曲げや引張り
応力に強い薄板が得られ放射状に配置すれば、半
径方向の引張応力即ち遠心力に特に強い薄板や羽
根車が得られ、円筒状や角筒状物の側面に捲回し
て結合すれば内部で燃焼反応を起した時も、燃焼
による気体の応力や熱歪に著しく強い円筒や角筒
を得ることができる。また1直線に平行に配置し
結合すればその方向に特に強度のある線状体が得
られこれを円形、コイル状等に加工すればリング
や耐熱性コイルスプリング等に適したものとなり
従来のSiC焼結体に比し著しく靭性の大きいもの
となる。 次に炭素を含有する結合剤は、粘着性と炭素が
含まれることが必要で、ピツチ、タール、脂肪
酸、他特に熱可塑性または熱硬化性樹脂等が有効
に利用できる。炭素の他に珪素を含有する樹脂は
更に良好である。これらはW繊維とSi3N4ホイス
カーと混練しながら配列してもよく、またはW繊
維とSi3N4ホイスカーを配列後液状の結合剤に振
動を加えならが、滲透せしめてもよく、何れの方
法でも繊維の空隙を十分に埋めることが必要でこ
れが不十分ならばそれに応じて焼結も不十分とな
り、強度を低下するものである。また混練後ロー
リングや押出しによりW繊維とSi3N4を好みの方
向に配列せしめることができる。 次にこれを熱分解して炭素を残留するには、非
酸化性雰囲気、具体的には真空、水素、アルゴン
等の雰囲気でよい。この時の分解残留炭素はW繊
維とSi3N4ホイスカーの間隙を多孔質で活性の高
い炭素の形で埋め、溶融金属珪素の滲透を毛細管
現象によつて容易にし、1500℃付近で十分反応焼
結を起す。これにより、反応焼結SiCで結合した
Si3N4ホイスカーの焼結体が得られると共に少量
の珪素が残留するから、繊維の方向に著しく抗張
力の大きく且つ靭性の高いものとなる。 以下実施例により一そう具体的に説明するが本
発明はこれにより拘束されるものではない。 実施例 1 市販の直径100μのW繊維とSi3N4ホイスカー
(タテホ化学K.K.製)をメタクリル酸イソブチル
エステル、ニトロセルローズ、ジオクチルフタレ
ートの混合物に少量のトリクロールエチレンを加
えた液に浸漬したのち、平面上を転がしながらひ
も状にすることにより平行に堆積し、軸と直角方
向に加圧して厚さ2mm×巾10mm×長さ100mmのテ
ストピースを作成し乾燥後、N2雰囲気中で800℃
に5時間加熱して有機物の結合剤を熱分解し、W
繊維とSi3N4ホイスカーを炭素で結合した物体を
製作し、次にアルミナ製のサヤの中に金属珪素の
粉末とこのテストピースを入れ、1500℃に真空中
で昇温せしめ、金属珪素を溶融せしめると共に焼
結体中に滲透させ、反応焼結を完了した。これを
No.1とする。次にポリウレタン樹脂の代りにピツ
チを用いる以外No.1を同様にして製作しNo.2とし
た。また従来の周知の反応焼結法によりNo.1と同
形状のテストピースを作成しNo.3Rとした。 これの特性を表1に示す。表1より、本発明の
繊維強化SiC焼結体は長さ方向の抗張力が従来の
反応焼結SiCに比し、7割以上大きく、抗折力が
約4割大きかつた。これは耐熱構造材料として利
用範囲を拡大できるものである。
The present invention relates to a method for manufacturing a carbon silicon sintered body having excellent tensile strength in a specific direction. Silicon carbide sintered bodies have low thermal expansion, high mechanical strength and thermal conductivity, and good oxidation resistance, so they are used as heat-resistant structural materials for heating elements, engine parts, and other parts.
Although this material has recently been used in a wide range of applications, it has the drawback of poor toughness compared to metals, and particularly low tensile strength. The present invention improves this and relates to a method for manufacturing a fiber-reinforced SiC sintered body that has extremely strong tensile strength in a specific direction.The present invention improves this and relates to a method for manufacturing a fiber-reinforced SiC sintered body that has extremely strong tensile strength in a specific direction. The fibers are arranged almost parallel to each other, and a carbon-containing binder is added to form the fibers, and then thermally decomposed in a non-oxidizing atmosphere to allow molten metal silicon to seep through, the entire structure is made up of SiC, W fibers, Si 3 N 4 and W fibers.
The present invention provides a method for producing a fiber-reinforced SiC sintered body, which is characterized by forming a composite of W fibers and Si 3 N 4 whiskers. Because it is blended in a specific direction, it has extremely strong tensile strength in the direction of fiber elongation, and because a small amount of metallic silicon remains, it has high toughness. Here, the Si 3 N 4 whisker is a whisker made of α-type or β-type silicon nitride. Next, to form this, W fibers and Si 3 N 4 whiskers are arranged on one plane in unspecified directions and bonded to obtain a thin plate that is strong against bending and tensile stress. Thin plates and impellers that are particularly resistant to stress, that is, centrifugal force, can be obtained, and if they are wound and bonded to the side of a cylindrical or rectangular object, even when a combustion reaction occurs internally, they will resist the stress and thermal strain of the gas caused by combustion. It is possible to obtain extremely strong cylinders and square tubes. In addition, if they are arranged parallel to a straight line and bonded together, a linear body that is particularly strong in that direction can be obtained, and if this is processed into a circular or coiled shape, it becomes suitable for rings, heat-resistant coil springs, etc. It has significantly greater toughness than a sintered body. Next, the carbon-containing binder must be adhesive and contain carbon, and pitch, tar, fatty acids, and especially thermoplastic or thermosetting resins can be effectively used. Resins containing silicon in addition to carbon are even better. These may be arranged while kneading with the W fibers and Si 3 N 4 whiskers, or after the W fibers and Si 3 N 4 whiskers are arranged, vibration may be applied to the liquid binder or it may be allowed to permeate. Even in the method described above, it is necessary to sufficiently fill the voids in the fibers, and if this is insufficient, the sintering will be insufficient accordingly, resulting in a decrease in strength. Further, after kneading, the W fibers and Si 3 N 4 can be arranged in a desired direction by rolling or extrusion. Next, in order to thermally decompose this and leave carbon behind, a non-oxidizing atmosphere, specifically an atmosphere of vacuum, hydrogen, argon, etc., may be used. The decomposed residual carbon at this time fills the gap between the W fibers and the Si 3 N 4 whiskers in the form of porous and highly active carbon, making it easier for molten metal silicon to permeate through capillary action, and fully reacting at around 1500℃. Causes sintering. This allows the reaction-sintered SiC bonded
Since a sintered body of Si 3 N 4 whiskers is obtained and a small amount of silicon remains, it has extremely high tensile strength and toughness in the fiber direction. The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited thereto. Example 1 Commercially available W fibers with a diameter of 100μ and Si 3 N 4 whiskers (manufactured by Tateho Kagaku KK) were immersed in a mixture of isobutyl methacrylate, nitrocellulose, and dioctyl phthalate with a small amount of trichlorethylene added. The test piece was deposited in parallel by rolling it on a flat surface and forming a string, and then pressurized in a direction perpendicular to the axis to create a test piece with a thickness of 2 mm x width of 10 mm x length of 100 mm. After drying, it was heated to 800°C in an N 2 atmosphere.
was heated for 5 hours to thermally decompose the organic binder, and
An object was made by bonding fibers and Si 3 N 4 whiskers with carbon, then metal silicon powder and this test piece were placed in an alumina pod, and the temperature was raised to 1500°C in a vacuum to form metal silicon. It was melted and permeated into the sintered body, completing reaction sintering. this
Set it as No.1. Next, No. 2 was made in the same manner as No. 1 except that pitch was used instead of polyurethane resin. In addition, a test piece with the same shape as No. 1 was prepared using a conventional well-known reaction sintering method and designated as No. 3R. The characteristics of this are shown in Table 1. Table 1 shows that the fiber-reinforced SiC sintered body of the present invention had a longitudinal tensile strength that was more than 70% larger and a transverse rupture strength that was about 40% larger than that of conventional reaction-sintered SiC. This can expand the scope of its use as a heat-resistant structural material.

【表】 実施例 2 市販の直径100μのW繊維とSi3N4ホイスカーを
振動と加圧を繰り返しながら一平面上に平行に1
mmの厚さに並べ炭素粉末を混ぜたタールを含浸さ
せた後、プレスして厚さ2mmの平板とし直径60mm
の円板に切断した後は、実施例1のNo.2と同様に
して反応焼結SiCとしNo.4とした。また別に従来
の反応焼結法により、同形状の円板を得、これを
No.5Rこれの側面図を第1図に示す如くピストン
の上面に設置した。図中1はアルミニウム合金製
ピストン、2は繊維強化SiC焼結体である。これ
を気筒容積1200c.c.の内燃機関に取付け100時間運
転したところ、No.5Rは5個中4個破損したが、
No.4は5個中1個も破損を起さなかつた。 実施例 3 市販のW繊維とSi3N4ホイスカーを溶融ピツチ
に浸漬し、直径100mmの円筒の側面にたゝきつけ
ながら捲回し厚さ3mmとし、冷却して、内径100
mm、外径106mm、長さ300mmの円筒を成形した。こ
の後実施例2と同条件にて反応焼結SiCとし、No.
6とする。次に従来の周知の反応焼結法にて同形
状の円筒を製作し、No.7Rとした。これの内部に
て都市ガスを燃焼させ、内部温度を3分で600℃,
700℃,800℃,900℃と上昇させるテストを行つ
た処No.7Rは600℃の時に破壊したのに対し、No.6
は950℃迄上昇させても破壊せず、急熱に著しく
強いことが判つた。 実施例 4 市販の直径100μのW繊維とSi3N4ホイスカーを
糖密液に浸した後直径2mmのひも状に成形し半乾
燥状態にし、直径50mmの円筒の表面にピツチ10mm
のらせん状に捲回して軸方向の長さ100mmのコイ
ルスプリングとし、実施例2と同様にして、反応
焼結SiCとしNo.8とした。また、従来の反応焼結
法にて同形状のSiCコイルスプリングを製作しNo.
9とし1000℃の炉中で軸方向に圧縮し破壊に至る
迄の弾性変形量を調べたが、No.9Rは5mm変形で
きるのに対して本発明のNo.8は9mm変形でき、ス
プリングとして利用価値を大きく改善できた。 以上の如く本発明による繊維強化SiC焼結体は
特定方向に抗張力大きく、振動衝撃に強く、熱衝
撃にも強く弾性変形も大きくでき強靭で産業上利
用価値の大きい耐熱部品の製造法を提供できるも
のである。
[Table] Example 2 A commercially available W fiber with a diameter of 100μ and a Si 3 N 4 whisker were placed in parallel on one plane while repeating vibration and pressure.
Arranged in a thickness of mm and impregnated with tar mixed with carbon powder, pressed to form a flat plate with a thickness of 2 mm and a diameter of 60 mm.
After cutting into disks, reaction sintered SiC was prepared as No. 4 in the same manner as No. 2 in Example 1. Separately, a disk of the same shape was obtained using a conventional reaction sintering method, and this
The side view of No. 5R was installed on the top surface of the piston as shown in Figure 1. In the figure, 1 is an aluminum alloy piston, and 2 is a fiber-reinforced SiC sintered body. When this was installed in an internal combustion engine with a cylinder capacity of 1200 c.c. and operated for 100 hours, 4 out of 5 pieces of No. 5R were damaged.
In No. 4, none of the five pieces were damaged. Example 3 Commercially available W fibers and Si 3 N 4 whiskers were immersed in a molten pitch, rolled to a thickness of 3 mm while being wrapped around the side of a cylinder with a diameter of 100 mm, cooled, and made into a cylinder with an inner diameter of 100 mm.
A cylinder with an outer diameter of 106 mm and a length of 300 mm was molded. After this, reaction sintered SiC was prepared under the same conditions as in Example 2, and No.
Set it to 6. Next, a cylinder with the same shape was manufactured using the conventional well-known reaction sintering method, and it was named No. 7R. City gas is combusted inside this, and the internal temperature reaches 600℃ in 3 minutes.
No. 7R, which was tested at temperatures of 700℃, 800℃, and 900℃, broke at 600℃, while No. 6
was found to be extremely resistant to rapid heat without being destroyed even when heated to 950℃. Example 4 Commercially available W fibers with a diameter of 100μ and Si 3 N 4 whiskers were immersed in a molasses liquid, formed into a string with a diameter of 2 mm, kept semi-dry, and placed on the surface of a cylinder with a diameter of 50 mm in a pitch of 10 mm.
A coil spring having an axial length of 100 mm was obtained by winding the spring into a spiral shape, and it was made of reactive sintered SiC No. 8 in the same manner as in Example 2. In addition, a SiC coil spring with the same shape was manufactured using the conventional reaction sintering method and No.
No. 9 was compressed in the axial direction in a furnace at 1000°C and the amount of elastic deformation until fracture was investigated. No. 9R could be deformed by 5 mm, while No. 8 of the present invention could be deformed by 9 mm, making it difficult to use as a spring. We were able to greatly improve the utility value. As described above, the fiber-reinforced SiC sintered body according to the present invention has high tensile strength in a specific direction, is resistant to vibration shock, is resistant to thermal shock, and has large elastic deformation, and can provide a method for manufacturing heat-resistant parts that are strong and have great industrial utility value. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例2の試料No.4の繊維強
化SiC焼結体を装着したピストンの側面図。
FIG. 1 is a side view of a piston equipped with a fiber-reinforced SiC sintered body of sample No. 4 of Example 2 of the present invention.

Claims (1)

【特許請求の範囲】 1 W繊維とこの間隙を埋めるSi3N4ホイスカー
に、炭素を含有する結合剤を加えて成形し非酸化
性雰囲気中にて結合剤を熱分解し、溶融金属珪素
を滲透して全体をSiCとW繊維とSi3N4の複合体
とすることを特徴とする繊維強化SiC焼結体の製
造法。 2 W繊維とSi3N4ホイスカーが1平面に実質的
に平行に配列した特許請求の範囲第1項記載の繊
維強化SiC焼結体の製造法。 3 W繊維とSi3N4ホイスカーが1直線に実質的
に平行に配列した特許請求の範囲第1項記載の繊
維強化SiC焼結体の製造法。 4 炭素を含有する結合剤が有機質の樹脂である
特許請求の範囲第1項記載の繊維強化SiC焼結体
の製造法。
[Claims] 1. A carbon-containing binder is added to the W fibers and Si 3 N 4 whiskers filling the gap, and the binder is thermally decomposed in a non-oxidizing atmosphere to form molten metal silicon. A method for manufacturing a fiber-reinforced SiC sintered body, characterized by permeating the entire body into a composite of SiC, W fibers, and Si 3 N 4 . 2. The method for producing a fiber-reinforced SiC sintered body according to claim 1, wherein the W fibers and Si 3 N 4 whiskers are arranged substantially parallel to one plane. 3. The method for producing a fiber-reinforced SiC sintered body according to claim 1, wherein the 3W fibers and the Si 3 N 4 whiskers are arranged substantially parallel to one straight line. 4. The method for producing a fiber-reinforced SiC sintered body according to claim 1, wherein the carbon-containing binder is an organic resin.
JP57138267A 1982-08-09 1982-08-09 Manufacture of fiber reinforced sic sintered body Granted JPS5930778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57138267A JPS5930778A (en) 1982-08-09 1982-08-09 Manufacture of fiber reinforced sic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57138267A JPS5930778A (en) 1982-08-09 1982-08-09 Manufacture of fiber reinforced sic sintered body

Publications (2)

Publication Number Publication Date
JPS5930778A JPS5930778A (en) 1984-02-18
JPS6332749B2 true JPS6332749B2 (en) 1988-07-01

Family

ID=15217929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57138267A Granted JPS5930778A (en) 1982-08-09 1982-08-09 Manufacture of fiber reinforced sic sintered body

Country Status (1)

Country Link
JP (1) JPS5930778A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06473B2 (en) * 1984-02-21 1994-01-05 三菱自動車工業株式会社 Drive coupling device for four-wheel drive
JPH0684267B2 (en) * 1986-06-19 1994-10-26 株式会社豊田中央研究所 Fiber-reinforced ceramic composite and its manufacturing method
FR2660304B1 (en) * 1990-04-02 1993-09-03 Europ Propulsion PROCESS FOR PRODUCING A THERMOSTRUCTURAL COMPOSITE MATERIAL WITH CARBON INTERPHASE BETWEEN REINFORCEMENT FIBERS AND MATRIX.
SE507706C2 (en) * 1994-01-21 1998-07-06 Sandvik Ab Silicon carbide whisker reinforced oxide based ceramic cutter
CN114956829B (en) * 2022-06-18 2023-06-02 江苏诺明高温材料股份有限公司 Silicon nitride combined silicon carbide brick for dry quenching chute and preparation method thereof

Also Published As

Publication number Publication date
JPS5930778A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
US3222438A (en) Heat resisting material and method for producing it
US4294788A (en) Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US4240835A (en) Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US4041123A (en) Method of compacting shaped powdered objects
US20060220320A1 (en) Thermal insulation structures comprising layers of expanded graphite particles compressed to different densities and thermal insulation elements made from these structures
JPS6212194B2 (en)
US4419161A (en) Method of producing composite ceramic articles
US5236638A (en) Process for producing a shaped body of graphite
KR20000069367A (en) Fibrous composite material and process for producing the same
JP2003238265A (en) Method of manufacturing hollow body made from fiber- reinforced ceramic material
JPS6332749B2 (en)
JP4381207B2 (en) Process for producing reaction sintered silicon carbide structure
US4215088A (en) Method for fabricating boron carbide articles
JPS63206351A (en) Manufacture of carbon carbon composite material
JPS6225629B2 (en)
JPS6225628B2 (en)
CA1282943C (en) Fiber-reinforced ceramic and process therefor
US3394026A (en) Method of glazing silicon nitride shaped body and article
JP2009120426A (en) Long fiber reinforced ceramic composite material and its manufacturing method
JP5085575B2 (en) Process for producing reaction sintered silicon carbide structure
JP3163273B2 (en) Method for producing molded member made of high-density carbon
JPS5957959A (en) Manufacture of high strength sic sintered body
JPS6114114B2 (en)
JPH0825814B2 (en) Heat exchanger manufacturing method
JP2972836B2 (en) Forming method of composite ceramics