JPS6332588B2 - - Google Patents

Info

Publication number
JPS6332588B2
JPS6332588B2 JP14783181A JP14783181A JPS6332588B2 JP S6332588 B2 JPS6332588 B2 JP S6332588B2 JP 14783181 A JP14783181 A JP 14783181A JP 14783181 A JP14783181 A JP 14783181A JP S6332588 B2 JPS6332588 B2 JP S6332588B2
Authority
JP
Japan
Prior art keywords
radius
grindstone
rotation axis
cylindrical jig
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14783181A
Other languages
Japanese (ja)
Other versions
JPS5851062A (en
Inventor
Junji Takashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14783181A priority Critical patent/JPS5851062A/en
Publication of JPS5851062A publication Critical patent/JPS5851062A/en
Publication of JPS6332588B2 publication Critical patent/JPS6332588B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/02Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor by means of tools with abrading surfaces corresponding in shape with the lenses to be made
    • B24B13/023Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor by means of tools with abrading surfaces corresponding in shape with the lenses to be made for grinding several lenses simultaneously

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【発明の詳細な説明】 本発明は、特殊光学系に用いるトーリツク面の
加工法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for processing toric surfaces used in special optical systems.

トーリツク面は直交する2方向に異なる曲率を
有する曲面であり、乱視用眼鏡レンズに多用され
ている。曲率半径の絶対値が大きい方を母線、小
さい方を子線とすると、一般には母線半径R1
子線半径R2との差が小さいため、カツプ状砥石
で子線半径R2を創成しながら、レンズ又は砥石
を回動させて母線半径R1を造り出す加工法が考
案され実用化されている。
A toric surface is a curved surface having different curvatures in two orthogonal directions, and is often used in spectacle lenses for astigmatism. If the one with the larger absolute value of the radius of curvature is the generatrix, and the one with the smaller absolute value is the daughter wire, the difference between the generatrix radius R1 and the daughter wire radius R2 is generally small, so the daughter wire radius R2 is created using a cup-shaped grindstone. However, a processing method has been devised and put into practical use that creates a generatrix radius R 1 by rotating a lens or a grindstone.

然し母線半径R1と子線半径R2との差が大きい
場合には、カツプ状砥石とレンズの相対的動きに
無理が生ずるためこの方法は採用できない。その
ため点接触工具でNC工作機などにより輪郭創成
をするほかなく、加工時間が長くなり、工具摩耗
による形状精度の低下をもたらすなどの欠点があ
つた。
However, if the difference between the generatrix radius R 1 and the sagittal radius R 2 is large, this method cannot be adopted because the relative movement between the cup-shaped grindstone and the lens will be unreasonable. Therefore, the contours had to be created using a point contact tool using an NC machine tool, which had disadvantages such as increased machining time and a decrease in shape accuracy due to tool wear.

本発明の目的は、上記の欠点を解消し、線状接
触によりトーリツク面を能率よく高精度に創成す
ることのできるトーリツク面の加工法を提供する
ことにあり、その要旨は、被研削物を母線半径
R1、子線半径R2を有するトーリツク面に加工す
る場合に於いて、円筒治具の周囲の母線半径R1
の位置に被研削物を固定し、該円筒治具をその中
心軸を中心に回転させ、同時に該円筒治具を中心
軸からR1―R2の点を通り前記中心軸と直角方向
の回動軸を中心に回動させ、被研削物との接触面
が被研削物の研削すべき子線半径R2と凹凸逆の
曲率半径を有する砥石を前記回動軸と直角方向の
その中心軸を中心に回転させながら、砥石を回動
軸から距離R2の位置で被研削物に接触させるこ
とにより被研削物をトーリツク面に研削すること
を特徴とするものである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks and to provide a toric surface processing method that can efficiently create a toric surface with high precision through linear contact. Generatrix radius
R 1 , and when processing a toric surface with a sagittal radius R 2 , the generatrix radius R 1 around the cylindrical jig
The object to be ground is fixed at the position, the cylindrical jig is rotated around its central axis, and at the same time, the cylindrical jig is rotated from the central axis through the point R 1 - R 2 in a direction perpendicular to the central axis. A grindstone is rotated about a rotating shaft, and the contact surface with the object to be ground has a radius of curvature opposite to the radius R 2 of the minor wire to be ground on the object to be ground. It is characterized by grinding the workpiece to a toric surface by bringing the grindstone into contact with the workpiece at a distance R2 from the rotation axis while rotating the workpiece around the rotation axis.

次に本発明を図示の実施例に基づいて詳細に説
明する。
Next, the present invention will be explained in detail based on illustrated embodiments.

第1図は本発明に係る加工法の原理を示すもの
であり、回転軸A―Aを中心として回転する円筒
治具1の周囲に加工すべき多数個のレンズ2を固
定する。このレンズ2の数は多い方がよく、レン
ズ2同志の間隙が小さい程、研削抵抗の変動が少
なく安定した加工が加能となる。レンズ2の厚み
を加えた円筒治具1の半径は、トーリツク面の母
線半径R1に削り代を加えたものとし、回転軸B
―Bを中心として回転する円板状の砥石3を切込
みながら、円筒治具1の半径を測定して母線半径
R1を決める。又、円筒治具1は回転軸C―C(第
1図の紙面と直交する方向にある)を中心として
示矢方向に回動させる。回転軸C―Cの位置は、
回動運動により子線半径R2を同時に造り出すた
めに、円筒治具の回転軸A―AからR1―R2の位
置に前記回転軸A―Aと直角方向に設定する。こ
の回動軸C―Cは、砥石3の回転軸B―Bとも直
角方向とし、砥石3の接触面はレンズ2と凹凸が
逆の子線半径R2とする。そして円筒治具1を回
転軸A―Aを中心に回転させながら、同時に回転
軸C―Cを中心に回動させ、回転する砥石3をレ
ンズ2に対し、回転軸C―Cから距離R2の位置
で接触させる。これにより砥石3はレンズ2を研
削し、母線半径R1と子線半径R2を有するトーリ
ツク面を有するレンズ2を製作できることにな
る。尚、砥石3の幅tは大きい程、砥石3の摩耗
が少なく、加工精度が向上し、更には加工能率も
よくなるので、少なくとも円筒治具1の高さh以
上にしておくことが好ましい。
FIG. 1 shows the principle of the processing method according to the present invention, in which a large number of lenses 2 to be processed are fixed around a cylindrical jig 1 that rotates around a rotation axis AA. It is better to have a large number of lenses 2, and the smaller the gap between the lenses 2, the less fluctuations in grinding resistance and the more stable machining becomes possible. The radius of the cylindrical jig 1 including the thickness of the lens 2 is the generatrix radius R1 of the toric surface plus the cutting allowance, and the rotation axis B
-Measure the radius of the cylindrical jig 1 while cutting with the disc-shaped grindstone 3 rotating around B, and find the generatrix radius.
Determine R 1 . Further, the cylindrical jig 1 is rotated in the direction indicated by the arrow around the rotation axis CC (located in a direction perpendicular to the paper plane of FIG. 1). The position of the rotation axis C-C is
In order to simultaneously create the sagittal wire radius R 2 by rotational movement, the cylindrical jig is set at a position R 1 -R 2 from the rotation axis AA in a direction perpendicular to the rotation axis AA. The rotation axis CC is also perpendicular to the rotation axis B-B of the grindstone 3, and the contact surface of the grindstone 3 has a sagittal radius R2 with convex and concave portions opposite to those of the lens 2. Then, while rotating the cylindrical jig 1 around the rotation axis A-A, the rotating grindstone 3 is rotated at a distance R 2 from the rotation axis CC to the lens 2. Make contact at the position. As a result, the grindstone 3 can grind the lens 2 to produce a lens 2 having a toric surface having a generatrix radius R 1 and a sagittal radius R 2 . The width t of the grindstone 3 is preferably at least the height h of the cylindrical jig 1 or more, since the larger the width t of the grindstone 3, the less the wear of the grindstone 3, the higher the machining accuracy, and the better the machining efficiency.

第2図は前述の原理に基づいたトーリツク面の
研削機の構成図を示し、基台4上に回動軸C―C
を中心に回動する回動台5を取付け、更にこの回
動台5上には砥石3の方向に移動し得る治具摺動
台6を設ける。この摺動台6に円筒治具1を固定
し図示しない駆動機構により円筒治具1をその回
転軸A―Aを中心に回転させる。又、基台4には
円筒治具1の方向に移動し得る砥石摺動台7を設
け、ここに砥石3を固定し図示しない駆動機構に
より砥石3をその回転軸B―Bを中心に回転す
る。尚、8は回動台5を円滑に回動させるための
ベアリング、9は研削液ノズルである。
FIG. 2 shows a configuration diagram of a toric surface grinding machine based on the above-mentioned principle.
A rotating table 5 that rotates around the center is attached, and a jig sliding table 6 that can move in the direction of the grindstone 3 is further provided on this rotating table 5. The cylindrical jig 1 is fixed to this sliding table 6, and is rotated about its rotation axis A--A by a drive mechanism (not shown). The base 4 is provided with a grindstone sliding table 7 that can move in the direction of the cylindrical jig 1, and the grindstone 3 is fixed thereto and rotated around its rotation axis B--B by a drive mechanism (not shown). do. Note that 8 is a bearing for smoothly rotating the rotary table 5, and 9 is a grinding fluid nozzle.

研削に当つては先ず治具摺動台6を調整して回
動軸C―Cと回転軸A―Aの間の距離をR1―R2
とし、更に砥石摺動台7を移動してレンズ2が回
動軸C―Cを中心に子線半径R2で研削できるよ
うに砥石3の位置を調整する。そして円筒治具1
及び砥石3を回転させながら、回動台5を回動さ
せれば、母線半径R1と同時に子線半径R2も決定
され、各レンズ2は所定の寸法に仕上げることが
できる。
When grinding, first adjust the jig sliding table 6 to set the distance between the rotation axis C-C and the rotation axis A-A to R 1 - R 2
Then, the grindstone sliding table 7 is moved to adjust the position of the grindstone 3 so that the lens 2 can be ground with a radius R 2 around the rotation axis CC. And cylindrical jig 1
By rotating the rotary table 5 while rotating the grindstone 3, the generatrix radius R1 and the sagittal radius R2 are determined at the same time, and each lens 2 can be finished to a predetermined size.

本発明に係るトーリツク面の加工法を実現する
には、第2図以外にも種々の装置が考えられる。
例えば第3図は他の実施例であり、砥石3の形状
を断面「コ」字型として第2図の実施例とは円筒
治具1に対して異なる方向の回転軸B―Bを中心
に回転させている。又、円筒治具1の母線半径
R1と子線半径R2との関係を逆にして、子線半径
R2に沿つて加工すべきレンズを多数個固定する
こともでき、この場合はレンズの取付け個数が減
少し、砥石の幅が大きくなり経済的にやや不利と
なるが、原理的に何ら変るところはない。更には
母線半径、子線半径の何れか一方が負のトーリツ
クレンズ、所謂鞍型レンズの加工についても、本
発明では治具と砥石との関係を逆にすることによ
り両方とも正の場合と何ら変ることなく加工がで
きる。加工の対象は実施例のレンズのみならず、
トーリツク面を有するものであればよく、例えば
成型用の親型の製造にも適用できる。
In order to realize the toric surface processing method according to the present invention, various devices other than those shown in FIG. 2 can be used.
For example, FIG. 3 shows another embodiment in which the shape of the grinding wheel 3 is U-shaped in cross section, and the rotation axis B--B is in a different direction with respect to the cylindrical jig 1 than the embodiment shown in FIG. 2. It's rotating. Also, the generatrix radius of the cylindrical jig 1
By reversing the relationship between R 1 and the minor wire radius R 2 , the minor wire radius is
It is also possible to fix a large number of lenses to be machined along R 2. In this case, the number of lenses to be mounted is reduced and the width of the grinding wheel becomes larger, which is somewhat economically disadvantageous, but there is no change in principle. There isn't. Furthermore, in the case of machining a Tory lens, a so-called saddle lens, in which either the generatrix radius or the sagittal radius is negative, the present invention reverses the relationship between the jig and the grindstone, so that it is no different from the case where both are positive. It can be processed without changing. The object of processing is not only the lens of the example,
Any material having a toric surface may be used, and it can be applied to, for example, the production of a parent mold for molding.

以上説明したように本発明に係るトーリツク面
の加工法は、被加工物を周囲に取付けた円筒治具
を、直角方向の2本の軸線を中心に回転・回動す
ると共に、砥石を回転させて研削するものであ
り、各種形状のトーリツク面が能率よく高精度に
加工できるものである。
As explained above, the toric surface processing method according to the present invention involves rotating a cylindrical jig around which a workpiece is attached around two orthogonal axes, and rotating a grindstone. This machine grinds toric surfaces of various shapes efficiently and with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るトーリツク面の加工法の
原理を説明するための説明図、第2図はこの加工
法を実現するための研削機の構成図、第3図は治
具と砥石の他の組合せの構成図である。 符号1は治具、2はレンズ、3は砥石、4は基
台、5は回動台、6は治具摺動台、7は砥石摺動
台である。
Figure 1 is an explanatory diagram for explaining the principle of the toric surface machining method according to the present invention, Figure 2 is a configuration diagram of a grinding machine for realizing this machining method, and Figure 3 is a diagram of the jig and grindstone. It is a block diagram of another combination. 1 is a jig, 2 is a lens, 3 is a grindstone, 4 is a base, 5 is a rotating table, 6 is a jig sliding table, and 7 is a grindstone sliding table.

Claims (1)

【特許請求の範囲】[Claims] 1 被研削物を母線半径R1、子線半径R2を有す
るトーリツク面に加工する場合に於いて、円筒治
具の周囲の母線半径R1の位置に被研削物を固定
し、該円筒治具をその中心軸を中心に回転させ、
同時に該円筒治具を中心軸からR1―R2の点を通
り前記中心軸と直角方向の回転軸を中心に回動さ
せ、被研削物との接触面が被研削物の研削すべき
子線半径R2と凹凸逆の曲率半径を有する砥石を
前記回動軸と直角方向のその中心軸を中心に回転
させながら、砥石を回動軸から距離R2の位置で
被研削物に接触させることにより被研削物をトー
リツク面に研削することを特徴とするトーリツク
面の加工法。
1 When processing a workpiece to be ground into a toric surface having a generatrix radius R 1 and a sagittal radius R 2 , the workpiece is fixed at a position around a cylindrical jig with a generatrix radius R 1 , and the cylindrical jig is Rotate the ingredient around its central axis,
At the same time, the cylindrical jig is rotated from the central axis through a point R 1 - R 2 about a rotation axis perpendicular to the central axis, so that the contact surface with the object to be ground is the part of the object to be ground. While rotating a grindstone having a radius of curvature opposite to the linear radius R 2 about its central axis perpendicular to the rotation axis, the grindstone is brought into contact with the workpiece at a distance R 2 from the rotation axis. A toric surface machining method characterized by grinding the object to be ground into a toric surface.
JP14783181A 1981-09-21 1981-09-21 Working for toric surface Granted JPS5851062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14783181A JPS5851062A (en) 1981-09-21 1981-09-21 Working for toric surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14783181A JPS5851062A (en) 1981-09-21 1981-09-21 Working for toric surface

Publications (2)

Publication Number Publication Date
JPS5851062A JPS5851062A (en) 1983-03-25
JPS6332588B2 true JPS6332588B2 (en) 1988-06-30

Family

ID=15439223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14783181A Granted JPS5851062A (en) 1981-09-21 1981-09-21 Working for toric surface

Country Status (1)

Country Link
JP (1) JPS5851062A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176747A (en) * 1986-01-28 1987-08-03 レイザ− マグネテイツク ストレツジインタ−ナシヨナル カンパニ− Method and device for producing toric single lens
JP2574278B2 (en) * 1987-03-03 1997-01-22 松下電器産業株式会社 Toric surface processing equipment

Also Published As

Publication number Publication date
JPS5851062A (en) 1983-03-25

Similar Documents

Publication Publication Date Title
CN101376229B (en) Processing method and device for forming aspheric surface part by numerical control tangent line turning method
US4928435A (en) Apparatus for working curved surfaces on a workpiece
US5125775A (en) Method for machining a workpiece by end-face cutting tool
KR20070037501A (en) Raster cutting technology for ophthalmic lenses
EP0162285B1 (en) Curved surface formation polishing apparatus
KR930701270A (en) Apparatus and method for dressing universal rollers and cup-shaped grinding wheels
JP2602293B2 (en) Processing method and processing apparatus for aspherical object
KR100659433B1 (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
CN1174110A (en) Spherical part track forming processing method and device
JPS6165772A (en) Dressing device
JPS6332588B2 (en)
JP2004042188A (en) Working method of die
JP2957224B2 (en) Chamfering mechanism for ball mill
SU528181A1 (en) The method of processing aspherical surfaces
US3824746A (en) Wankel engine cylinder generating machine
JPS6328552A (en) Nonspherical face machining method
JPS63150165A (en) Gear-type grindstone
JP2875344B2 (en) Processing apparatus and processing method for toric and aspheric lenses
JPH0630368Y2 (en) Grinding machine
JPH0475878A (en) Polishing device
US7757373B2 (en) Method and tool head for machining optically active surfaces, particularly surfaces of progressive spectacle lenses, which are symmetrical in pairs
CA2220371C (en) Apparatus and method for generating ultimate surfaces on ophthalmic lenses
US3444652A (en) Lens surfacing machine for forming both surfaces of a lens simultaneously
JPH08257886A (en) Machining method for metal die of axial asymmetrical shape
JPS6133665B2 (en)