JPS6332417Y2 - - Google Patents

Info

Publication number
JPS6332417Y2
JPS6332417Y2 JP12119083U JP12119083U JPS6332417Y2 JP S6332417 Y2 JPS6332417 Y2 JP S6332417Y2 JP 12119083 U JP12119083 U JP 12119083U JP 12119083 U JP12119083 U JP 12119083U JP S6332417 Y2 JPS6332417 Y2 JP S6332417Y2
Authority
JP
Japan
Prior art keywords
alignment seat
rotating shaft
convex spherical
bearing
sgb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12119083U
Other languages
Japanese (ja)
Other versions
JPS6028627U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983121190U priority Critical patent/JPS6028627U/en
Publication of JPS6028627U publication Critical patent/JPS6028627U/en
Application granted granted Critical
Publication of JPS6332417Y2 publication Critical patent/JPS6332417Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • F16C23/04Sliding-contact bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 この考案は、回転軸を動圧ラジアル軸受と動圧
スラスト軸受とにより支承してなる、ビデオデイ
スクやレコードプレーヤ等において使用する動圧
形スピンドルユニツトに関し、さらに詳しくは動
圧スラスト軸受の改良に関するものである。
[Detailed description of the invention] Industrial field of application This invention relates to a hydrodynamic spindle unit used in video discs, record players, etc., in which a rotating shaft is supported by a hydrodynamic radial bearing and a hydrodynamic thrust bearing. More specifically, the present invention relates to improvements in hydrodynamic thrust bearings.

従来の技術 この種のスピンドルユニツトは第1図に示すよ
うに、ハウジングもしくは支持部材1と、回転軸
2と、この回転軸2を支承するラジアル軸受3な
らびにスラスト軸受4とからなる。スラスト軸受
4は、回転軸2の端面5とこれと対向協働する平
面6とでもつて構成されるいわゆる平面スパイラ
ル溝付スラスト軸受(以下平面SGBと称す)で
あつて、いずれかの面5または6に第2図に示す
ごとき動圧発生用の溝7を形成してある。なお、
第1図中の空隙には流体が充填される。かく構成
される平面SGBは流体力学的効果を有し、極め
て高い負荷能力を発揮し得るものである。
2. Description of the Related Art As shown in FIG. 1, this type of spindle unit is comprised of a housing or support member 1, a rotating shaft 2, and a radial bearing 3 and a thrust bearing 4 that support the rotating shaft 2. The thrust bearing 4 is a so-called plane spiral grooved thrust bearing (hereinafter referred to as a plane SGB) which is composed of an end surface 5 of the rotating shaft 2 and a plane 6 that faces and cooperates with the end surface 5. 6 is provided with a groove 7 for generating dynamic pressure as shown in FIG. In addition,
The void in FIG. 1 is filled with fluid. The planar SGB constructed in this manner has a hydrodynamic effect and can exhibit an extremely high load capacity.

かかる平面SGBを申し分なく機能させるため
には、軸心に対する軸端面5の直角度ならびに軸
端面5とこれに対向する支持部材の平面6との平
行度を厳しく制限しなければならない。
In order for such a planar SGB to function satisfactorily, the perpendicularity of the shaft end face 5 with respect to the axis and the parallelism of the shaft end face 5 and the plane 6 of the supporting member opposite thereto must be strictly limited.

実公昭46−17842号公報が開示する従来装置は、
第3図に示すように一側に第2図に示したごとき
動圧発生用の螺旋条溝を有する板8を取り付けて
垂片9により固定し、他側に丸味付突起10を形
成してなる正方形の支持部材11を、支持体12
に突設した4個の突耳13で囲繞し、しかして支
持部材12が突耳13間で僅かに傾斜位置を取り
得、これにより軸受をそれ自身によつて自動的に
調整し得るようにしたものである。
The conventional device disclosed in Japanese Utility Model Publication No. 46-17842 is
As shown in FIG. 3, a plate 8 having a spiral groove for generating dynamic pressure as shown in FIG. 2 is attached to one side and fixed with a hanging piece 9, and a rounded protrusion 10 is formed on the other side. A square support member 11 is formed into a support body 12.
The support member 12 is surrounded by four protruding ears 13, which allow the support member 12 to assume a slightly inclined position between the protruding ears 13, thereby allowing the bearing to adjust automatically by itself. It is something.

考案が解決しようとする課題 この従来装置は、まず第1の支持部材11の回
り止めを矩形構造に頼つているため、突起10が
設けてあるとはいつても板8の全方向にわたつて
軸14の端面15に対する高い平行度を確保する
ことは困難である。さらに、支持部材11にこれ
とは別体の板8を取り付けることを必須としてい
るため、精度面ならびに製作性の面で不利であ
る。
Problems to be Solved by the Invention This conventional device relies on the rectangular structure to stop the first support member 11 from rotating, so even though the protrusions 10 are provided, they extend in all directions of the plate 8. It is difficult to ensure high parallelism of the shaft 14 to the end surface 15. Furthermore, since it is essential to attach the plate 8 separately from the supporting member 11, this is disadvantageous in terms of accuracy and manufacturability.

この考案は、互いに対向協働して平面SGBを
構成する受面相互の平行性を運転中常に維持する
ことにより、平面SGBの軸受機能を十分に発揮
せしめ得る構造の動圧形スピンドルユニツトを提
供せんとするものである。
This idea provides a hydrodynamic spindle unit with a structure that allows the bearing functions of the flat SGB to be fully demonstrated by always maintaining the mutual parallelism of the bearing surfaces that face each other and cooperate to form the flat SGB during operation. This is what I am trying to do.

課題を解決するための手段 この考案の動圧形スピンドルユニツトは、スラ
スト軸受が、回転軸側に設けた第1の受面と、第
1の受面と対向する第2の受面およびその反対側
に位置する凸球面を有する調心座と、回転軸と同
心に位置し前記調心座の凸球面と係合して環状接
触部を形成する円錐形の凹所を備えた支持部材と
からなる。
Means for Solving the Problems In the hydrodynamic spindle unit of this invention, the thrust bearing has a first bearing surface provided on the rotating shaft side, a second bearing surface facing the first bearing surface, and a second bearing surface opposite thereto. an alignment seat having a convex spherical surface located on the side; and a support member having a conical recess that is located concentrically with the rotation axis and engages with the convex spherical surface of the alignment seat to form an annular contact portion. Become.

作 用 調心座の凸球面を円錐形凹所で支持させること
により、調心座は、回転軸の軸線を通る平面内で
は円錐形凹所内で容易に滑動しうるのに対し、回
転軸の軸線周りには回転しにくくなる。
Function By supporting the convex spherical surface of the alignment seat in the conical recess, the alignment seat can easily slide within the conical depression in a plane passing through the axis of the rotating shaft, whereas It becomes difficult to rotate around the axis.

すなわち、調心座の凸球面と円錐形凹所とは環
状接触部にて線接触するため、軸線を通る平面内
での滑動に対しては、球面同士が面接触している
場合に比べて抵抗が小さい。したがつて、回転軸
が回転して受面間に動圧が発生すると、それに応
じて調心座が容易に動き、受面間に正しく圧力分
布が形成されるように働く。
In other words, since the convex spherical surface of the alignment seat and the conical recess are in line contact at the annular contact part, the sliding movement in the plane passing through the axis is more difficult than when the spherical surfaces are in surface contact with each other. Low resistance. Therefore, when the rotary shaft rotates and dynamic pressure is generated between the bearing surfaces, the alignment seat easily moves in response to the dynamic pressure, thereby working to form a correct pressure distribution between the bearing surfaces.

また、その間にも調心座が回転軸に伴つて回転
したのでは所期の動圧発生が望めないので、調心
座のかかる共回りを防止する必要がある。本考案
によれば、上述のように調心座の凸球面を円錐形
凹所で支持させたので、調心座が回転軸の軸線周
りに回転しようとすることに対しては、球面同士
が面接触している場合に比べて抵抗が大きい。こ
れは、凸球面を円錐面で受けることにより、水平
方向分力が発生し、これが調心座の回転を抑制す
る摩擦力として作用することによる。ちなみに、
第3図に示した従来装置がそうであるように、凸
球面を平面で受けた場合は、荷重に対して垂直方
向の反力が作用するだけで水平方向分力が発生し
ないため、凸球面は簡単に回転することができ
る。
Furthermore, if the alignment seat rotates along with the rotating shaft during that time, the desired dynamic pressure cannot be generated, so it is necessary to prevent the alignment seat from rotating in tandem. According to the present invention, as mentioned above, the convex spherical surface of the alignment seat is supported by the conical recess, so that when the alignment seat tries to rotate around the axis of the rotating shaft, the spherical surfaces are The resistance is greater than when there is surface contact. This is because a horizontal component of force is generated by receiving the convex spherical surface on the conical surface, and this acts as a frictional force that suppresses the rotation of the alignment seat. By the way,
When a convex spherical surface is received on a flat surface, as is the case with the conventional device shown in Figure 3, the convex spherical surface can be easily rotated.

考案の効果 この考案の動圧形スピンドルユニツトは、調心
座が自動調心機能を有することにより受面間の平
行性を運転中常に維持し、かくして平面SGBの
軸受機能を十分に発揮せしめる。調心座は環状接
触部の摩擦トルクを平面SGBにおける起動時の
摩擦トルクより大きくなすことにより回り止めを
図つてあるので、回転軸に随伴して回転せず、し
かも些も自動調心機能を損なうことがない。また
回り止めのために突起や矩形構造等別段の構造上
の工夫を要しないから、製作性の面からも有利で
ある。
Effects of the invention The hydrodynamic spindle unit of this invention maintains the parallelism between the bearing surfaces at all times during operation due to the self-aligning function of the alignment seat, thus fully demonstrating the bearing function of the flat SGB. The alignment seat is designed to prevent rotation by making the friction torque of the annular contact part larger than the friction torque at startup in the flat SGB, so it does not rotate along with the rotation axis and has no self-alignment function. It will not be damaged. Further, since no special structural measures such as protrusions or rectangular structures are required to prevent rotation, it is advantageous in terms of manufacturability.

さらに、動圧発生用のスパイラル溝は回転軸
側、調心座側のいずれの受面に形成してもよい
が、とりわけ調心座側に設けるときは、スパイラ
ル溝と凸球面の形成をプレス加工により同時に行
うことができる点で有利である。
Furthermore, the spiral groove for generating dynamic pressure may be formed on either the receiving surface on the rotating shaft side or the alignment seat side, but especially when provided on the alignment seat side, the spiral groove and the convex spherical surface are formed by pressing. This is advantageous in that processing can be performed simultaneously.

加えて調心座の自動調心機能に基づく受面間の
平行性が維持されるため、ラジアル軸受内径に対
する支持部材のフランジ端面の直角度をさほど厳
しく規制せずとも、平面SGBの軸受機能を損な
う虞れがない。したがつてこれもまた製作性の向
上に寄与する。
In addition, since the parallelism between the bearing surfaces is maintained based on the self-aligning function of the alignment seat, the bearing function of the flat SGB can be maintained without restricting the perpendicularity of the flange end face of the support member to the radial bearing inner diameter too strictly. There is no risk of damage. Therefore, this also contributes to improving manufacturability.

実施例 この考案の特徴は同面に示す実施例につき下記
するところから一層明瞭になろう。
Embodiments The features of this invention will become clearer from the following description of embodiments shown on the same page.

まずこの考案の第1の実施例を示す第4図を参
照すると、スピンドルユニツトは回転軸20、こ
れを支承する動圧ラジアル軸受21ならびに動圧
スラスト軸受22、および支持部材23を包含す
る。
First, referring to FIG. 4 showing the first embodiment of this invention, the spindle unit includes a rotating shaft 20, a dynamic pressure radial bearing 21 and a dynamic pressure thrust bearing 22 supporting the rotating shaft 20, and a support member 23.

回転軸20はその一端面に受面24を有する。
回転軸20の受面24と対向協働して平面SGB
を構成する受面25と、その反対側に形成した凸
球面26とを有する調心座27を設ける。調心座
27は支持部材23に形成した回転軸20と同心
の円錐形の凹所28内に配置する。調心座27の
凸球面26と支持部材23の凹所28とは互いに
係合して環状接触部29を形成する。
The rotating shaft 20 has a receiving surface 24 on one end surface thereof.
A plane SGB faces and cooperates with the receiving surface 24 of the rotating shaft 20.
An alignment seat 27 is provided which has a receiving surface 25 constituting a receiving surface 25 and a convex spherical surface 26 formed on the opposite side thereof. The alignment seat 27 is arranged in a conical recess 28 formed in the support member 23 and concentric with the rotating shaft 20 . The convex spherical surface 26 of the alignment seat 27 and the recess 28 of the support member 23 engage with each other to form an annular contact portion 29.

調心座27は支持部材23の凹所28内に揺動
自在に座しているのみであつて、回転軸20の受
面24に対する受面25の平行性を常に維持し得
る姿勢を確保し、かくして平面SGBの機能を十
分に発揮できるように保証する。
The alignment seat 27 is only swingably seated in the recess 28 of the support member 23, and maintains an attitude in which the parallelism of the receiving surface 25 to the receiving surface 24 of the rotating shaft 20 can always be maintained. , thus ensuring that the functions of the planar SGB can be fully demonstrated.

なお、調心座27は、平面SGBが機能するた
めには、回転軸20に随伴して回転してはならな
い。このために、環状接触部29の寸法は、該部
における摩擦トルクが平面SGBにおける起動時
の摩擦トルク及び運転中の摩擦トルクより大きく
なるように設定する。以下この点について述べ
る。
Note that the alignment seat 27 must not rotate along with the rotating shaft 20 in order for the plane SGB to function. For this purpose, the dimensions of the annular contact portion 29 are set so that the friction torque at this portion is greater than the friction torque at startup and during operation in the plane SGB. This point will be discussed below.

調心座27の両側すなわち平面SGBと環状接
触部29における摩擦トルクについて考察する
(第5図参照)。まず受面24と受面25との間の
摩擦トルクをM1とすると、 M1=μ1・(2/3)R・F ここに、 F:アキシヤル荷重 R:受面の半径 μ1:受面間の静摩擦係数 つぎに、半径rの位置の幅Δrの環状の面積に
荷重がかかつたときの環状接触部29における摩
擦トルクをM2とすると、 M2=μ2・r(F/sinβ) ここに、 μ2:環状接触部における静摩擦係数 β:調心座の円錐部の角度(第5図参照) したがつて、M1<M2ならば r>2μ1/3μ2R・(sinβ) 上に述べたことから判るように、調心座の凸球
面26と支持部材23の凹所28との間の環状接
触部29における半径rを2μ1/3μ2R×sinβより大
き く設定することにより、調心座27が回転軸20
とともに回転するのを防止することができる。
The friction torque on both sides of the alignment seat 27, that is, the plane SGB and the annular contact portion 29 will be considered (see FIG. 5). First, if the friction torque between the receiving surfaces 24 and 25 is M1, then M1=μ1・(2/3)R・F where, F: Axial load R: Radius of the receiving surfaces μ1: Between the receiving surfaces Static friction coefficient Next, if the friction torque at the annular contact portion 29 when a load is applied to the annular area of width Δr at the position of radius r is M2, then M2=μ2・r(F/sinβ) where, μ2 : Static friction coefficient in the annular contact part β : Angle of the conical part of the alignment seat (see Figure 5) Therefore, if M1<M2, r>2μ1/3μ2R・(sinβ) As can be seen from the above By setting the radius r of the annular contact portion 29 between the convex spherical surface 26 of the alignment seat and the recess 28 of the support member 23 to be larger than 2μ1/3μ2R×sinβ, the alignment seat 27 is aligned with the rotating shaft 20.
It is possible to prevent it from rotating with the

静摩擦係数は材質等によつて異なるが、μ1=
μ2のときはβ=30゜とするとr0>(1/3)Rとな
ることは言うまでもない。なお、摩擦トルクの
M1<M2なる関係は、上式r2μ1/3μ2R×sinβからも 判るとおり、半径rの調整のみならず、静摩擦係
数を変えることによつても実現できる。
The coefficient of static friction varies depending on the material, etc., but μ1=
Needless to say, in the case of μ2, if β=30°, then r0>(1/3)R. In addition, the friction torque
As can be seen from the above equation r2μ1/3μ2R×sinβ, the relationship M1<M2 can be realized not only by adjusting the radius r but also by changing the coefficient of static friction.

つぎにこの考案の別の実施例を示す第6図を参
照すると、回転軸30の端部に形成したフランジ
31の下側に一方の受面32を設け、これと対向
協働して平面SGBを構成するもう一方の受面3
3は、中央の貫通孔34にて回転軸30の挿通を
許容する環状の調心座35の上側に設けてある。
調心座35は受面33とは反対の側つまり下側に
凸球面36を備えている。凸球面36は支持部材
37に形成した円錐形の凹所38内に位置し、こ
の凹所38と互いに係合して環状接触部39を形
成する。
Next, referring to FIG. 6 showing another embodiment of this invention, one receiving surface 32 is provided on the lower side of the flange 31 formed at the end of the rotating shaft 30, and the flat SGB The other receiving surface 3 that constitutes
3 is provided above an annular alignment seat 35 that allows the rotating shaft 30 to be inserted through the central through hole 34.
The alignment seat 35 has a convex spherical surface 36 on the side opposite to the receiving surface 33, that is, on the lower side. The convex spherical surface 36 is located within a conical recess 38 formed in the support member 37 and engages with the recess 38 to form an annular contact portion 39 .

この実施例の場合、平面SGBを構成する受面
32,33はともに環状であつて、両者間におけ
る摩擦トルクM3は次式で与えられる。
In this embodiment, both the receiving surfaces 32 and 33 constituting the plane SGB are annular, and the friction torque M3 between them is given by the following equation.

M3=μ3・2/3・F・R02+R0・Ri+Ri2/R0+Ri ここに、 μ3:受面間の静摩擦係数 R0:受面の外径 Ri:受面の内径 したがつて、環状接触部39における摩擦モー
メントM2と平面SGBにおける摩擦モーメント
M3がM2>M3なる関係となるための条件は次式
で表される。
M3=μ3・2/3・F・R0 2 +R0・Ri+Ri 2 /R0+Ri where, μ3: Coefficient of static friction between the receiving surfaces R0: Outer diameter of the receiving surface Ri: Inner diameter of the receiving surface Therefore, the annular contact portion 39 Frictional moment M2 at and frictional moment at plane SGB
The condition for M3 to have the relationship M2>M3 is expressed by the following equation.

r0>2μ3/3μ2・R02+R0・Ri+Ri2/R0+Ri (sinβ) 第7図は第6図の実施例を若干改変した実施例
を示す。すなわち、第6図に示す平面SGBに加
えていまひとつの平面SGBを付加してある。こ
の追加の平面SGBは回転軸40のフランジ41
の上面に形成した一方の受面42と、これと対向
するもう一方の受面43とで構成される。下側に
受面43を備え、上側に凸球面44を形成した調
心座45は、支持部材46の円錐形の凹所47内
に揺動自在に座し、凸球面44と凹所47は互い
に係合して環状接触部49を形成する。なお、調
心座45は磁性体製とし、磁石48により吸引さ
せて落下防止を図る。
r0>2μ3/3μ2·R0 2 +R0·Ri+Ri 2 /R0+Ri (sin β) FIG. 7 shows an embodiment that is slightly modified from the embodiment shown in FIG. That is, in addition to the plane SGB shown in FIG. 6, another plane SGB is added. This additional plane SGB is the flange 41 of the rotating shaft 40.
It is composed of one receiving surface 42 formed on the upper surface of and the other receiving surface 43 facing thereto. The alignment seat 45, which has a receiving surface 43 on the lower side and a convex spherical surface 44 on the upper side, is swingably seated in a conical recess 47 of the support member 46, and the convex spherical surface 44 and the recess 47 are They engage with each other to form an annular contact portion 49. The alignment seat 45 is made of a magnetic material and is attracted by a magnet 48 to prevent it from falling.

第8図はこの考案のさらに別の実施例を示す。
この実施例においては、回転軸50の途中に形成
したフランジ51の両側に一対の平面SGBを設
けてある。一方の平面SGBはフランジ51の一
側の受面52とこれと対向する調心座53の受面
54とでもつて構成される。いまひとつの平面
SGBは、フランジ51の他側の受面55とこれ
と対向する調心座56の受面57とでもつて構成
される。調心座53,56は前述の実施例と同様
に、各々、凸球面58,59にて支持部材60の
円錐形の凹所61,62と係合して環状接触部を
形成する。
FIG. 8 shows yet another embodiment of this invention.
In this embodiment, a pair of flat surfaces SGB are provided on both sides of a flange 51 formed in the middle of the rotating shaft 50. One plane SGB is constituted by a receiving surface 52 on one side of the flange 51 and a receiving surface 54 of the alignment seat 53 opposing this. Another plane
The SGB includes a receiving surface 55 on the other side of the flange 51 and a receiving surface 57 of the alignment seat 56 facing thereto. As in the previous embodiment, the alignment seats 53, 56 engage conical recesses 61, 62 in the support member 60 with convex spherical surfaces 58, 59, respectively, to form annular contacts.

この実施例に係る動圧形スピンドルユニツト
は、回転軸50が水平に延在するいわゆる横形と
なすこともでき、応用範囲が広がるといつた点で
有利である。
The dynamic pressure type spindle unit according to this embodiment can also be made into a so-called horizontal type in which the rotating shaft 50 extends horizontally, which is advantageous in that the range of applications can be expanded.

なお、ここに述べた総ての実施例において、動
圧発生用のスパイラル溝は、平面SGBを構成す
る一対の受面のいずれに形成してもよい。
In all the embodiments described here, the spiral groove for generating dynamic pressure may be formed on either of the pair of receiving surfaces constituting the plane SGB.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の動圧形スピンドルユニツトの断
面図、第2図は動圧発生用溝を備えた受面の正面
図、第3図はいまひとつの従来装置の断面図、第
4図はこの考案の実施例たる動圧形スピンドルユ
ニツトの断面図、第5図は第4図の部分拡大図、
第6図ないし第8図は各々この考案の別の実施例
を示す第4図と同様の断面図である。 20,30,40,50……回転軸、23,3
7,46,60……支持部材、24,25、3
2,33、42,43、52,54、55,57
……受面、26,36,44,58,59……凸
球面、27,35,45,53,56……調心
座、28,38,47,61,62……凹所、2
9,39,49……環状接触部。
Figure 1 is a sectional view of a conventional hydrodynamic spindle unit, Figure 2 is a front view of the receiving surface with grooves for generating dynamic pressure, Figure 3 is a sectional view of another conventional device, and Figure 4 is a sectional view of this type of spindle unit. A sectional view of a hydrodynamic spindle unit as an embodiment of the invention, FIG. 5 is a partially enlarged view of FIG. 4,
6 to 8 are sectional views similar to FIG. 4, each showing another embodiment of this invention. 20, 30, 40, 50... Rotating shaft, 23, 3
7, 46, 60...Supporting member, 24, 25, 3
2, 33, 42, 43, 52, 54, 55, 57
...Receiving surface, 26, 36, 44, 58, 59 ... Convex spherical surface, 27, 35, 45, 53, 56 ... Aligning seat, 28, 38, 47, 61, 62 ... Recess, 2
9, 39, 49... annular contact portion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転軸をラジアル軸受とスラスト軸受とにより
支承してなり、前記スラスト軸受が回転軸に設け
た第1の受面、第1の受面と対向協働して平面ス
パイラル溝付スラスト軸受を構成する第2の受面
とその反対側に位置する凸球面とを備えた調心
座、および前記回転軸と同心に位置し前記調心座
の凸球面と係合して環状接触部を形成する円錐形
の凹所を備えた支持部材を含み、調心座の凸球面
を円錐形凹所で支持させることにより、調心座の
回転軸との共回りを防止しつつ受面同士の平行性
を維持するようにしたことを特徴とする動圧形ス
ピンドルユニツト。
A rotating shaft is supported by a radial bearing and a thrust bearing, and the thrust bearing faces and cooperates with a first bearing surface provided on the rotating shaft to form a planar spiral grooved thrust bearing. an alignment seat having a second receiving surface and a convex spherical surface located on the opposite side thereof; and a cone that is located concentrically with the rotation axis and engages with the convex spherical surface of the alignment seat to form an annular contact portion. The convex spherical surface of the alignment seat is supported by the conical depression, which prevents the alignment seat from co-rotating with the rotation axis while maintaining parallelism between the receiving surfaces. A dynamic pressure type spindle unit characterized by being designed to maintain
JP1983121190U 1983-08-02 1983-08-02 Dynamic pressure type spindle unit Granted JPS6028627U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983121190U JPS6028627U (en) 1983-08-02 1983-08-02 Dynamic pressure type spindle unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983121190U JPS6028627U (en) 1983-08-02 1983-08-02 Dynamic pressure type spindle unit

Publications (2)

Publication Number Publication Date
JPS6028627U JPS6028627U (en) 1985-02-26
JPS6332417Y2 true JPS6332417Y2 (en) 1988-08-30

Family

ID=30277469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983121190U Granted JPS6028627U (en) 1983-08-02 1983-08-02 Dynamic pressure type spindle unit

Country Status (1)

Country Link
JP (1) JPS6028627U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314517B2 (en) * 2009-07-06 2013-10-16 三菱重工業株式会社 Bearing device, bearing unit and rotating machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136553A (en) * 1974-04-10 1975-10-29

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128097Y2 (en) * 1981-06-02 1986-08-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136553A (en) * 1974-04-10 1975-10-29

Also Published As

Publication number Publication date
JPS6028627U (en) 1985-02-26

Similar Documents

Publication Publication Date Title
US6767133B2 (en) Tilting pad bearing arrangement
JP4099259B2 (en) Compound bearing
JPS5849742B2 (en) Friction damping device
JPH0668439A (en) Drum motor for vtr
US5836701A (en) Mechanical spin bearings
JPS6332417Y2 (en)
KR0165280B1 (en) Head drum of magnetic tape recorder
JPH01199017A (en) Support structure for rotary shaft and thrust bearing
JP2000356219A (en) Pre-loaded bearing device
JPH051975Y2 (en)
JPH10246224A (en) Thrust bearing
JP2841648B2 (en) Magnetic disk drive
JPS6128097Y2 (en)
JP2556759Y2 (en) Half bearing prevention type journal bearing
JPS62255611A (en) Elastic bearing
JP3456882B2 (en) Bearing mechanism
JPS6343606B2 (en)
JPS5920044B2 (en) Bearing preload device
JPH082497Y2 (en) Thrust type rolling bearing
JPS63312509A (en) Fluid bearing structure
JPS63285320A (en) Fluid bearing structure
JP2533793Y2 (en) Motor bearing device
JPH11247851A (en) Composite bearing
JP2850986B2 (en) Automatic alignment mechanism of spiral groove type thrust bearing
JP2536647Y2 (en) Spindle motor