JPS6332085B2 - - Google Patents

Info

Publication number
JPS6332085B2
JPS6332085B2 JP57036361A JP3636182A JPS6332085B2 JP S6332085 B2 JPS6332085 B2 JP S6332085B2 JP 57036361 A JP57036361 A JP 57036361A JP 3636182 A JP3636182 A JP 3636182A JP S6332085 B2 JPS6332085 B2 JP S6332085B2
Authority
JP
Japan
Prior art keywords
polyol
polyisocyanate
weight
foam
polyurethane foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57036361A
Other languages
Japanese (ja)
Other versions
JPS58154714A (en
Inventor
Yasuo Hyoshi
Susumu Tsujiku
Masao Goto
Ataru Yokono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57036361A priority Critical patent/JPS58154714A/en
Publication of JPS58154714A publication Critical patent/JPS58154714A/en
Publication of JPS6332085B2 publication Critical patent/JPS6332085B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、衚皮付き硬質ポリりレタンフオヌム
補造甚の暹脂組成物に関するものである。 む゜シアネヌトず掻性氎玠を有するポリ゚ヌテ
ル、発泡剀、觊媒等を混合し、密閉圢内で発泡硬
化しお埗られる衚皮付きポリりレタンフオヌム
は、断熱性、吞音性、匷床が優れおいるこずから
電機、電子郚品甚材料、建材ずしお䜿甚するのに
適しおいる。近幎、反応射出成圢技術RIM技
術が発達し、䞊蚘フオヌム䜓の甚途は増々拡倧
し぀぀ある。しかし、この気泡化されたりレタン
生成物の工業的利甚を限定する䞀぀の因子は、成
圢サむクルが長いこず、特に脱型時間組成物を
型内に射出しおから、成圢品を取り出すたでの時
間が長い点にある。すなわち、短時間で成圢品
型から取り出した堎合に、発泡圧によ぀おフオヌ
ムが膚れるため、長時間型内に成圢品を保持しな
くおはならないずいう欠点があ぀た。 埓来知られおいる脱型時間の短瞮法ずしおは、
觊媒の配合量を増やしたり、掻性の匷い觊媒を配
合したりする方法、液枩を高くする方法がある
が、これらの堎合、フオヌムの流動性が䜎䞋した
り、フオヌムの衚面の性状が悪くなる欠点があ぀
た。たた、ポリむ゜シアネヌトをプレポリマ化す
るこずにより、成圢時の発熱を抑え脱型時間を短
瞮するこずが知られおいる。しかし、この方法
は、ポリむ゜シアネヌトの保存安定性が䜎䞋する
こず、粘床が高くなるこず、さらには、埗られた
フオヌムの耐熱性が䜎䞋するずいう欠点があ぀
た。 本発明の目的は、䞊蚘埓来技術の欠点のない、
短時間脱型が可胜な衚皮付き硬質ポリりレタンフ
オヌム補造甚暹脂組成物ずしお、ポリむ゜シアネ
ヌトでポリマ化したポリオヌルを甚いるこずを特
城ずしおおり、これにより成圢時の最高発熱枩床
を䜎䞋させお、脱型時の成圢品膚れ珟象を抑え、
脱型時間の短瞮をはかろうずするものである。 䞊蚘暹脂組成物は具䜓的には、プレポリマ化ポ
リオヌルにしお、OH䟡350〜800KOHmgの
ポリオヌルこのポリオヌルを、以䞋、ポリオヌ
ル(A)ず称すず、ポリむ゜シアネヌトこのポリ
む゜シアネヌトを、以䞋、ポリむ゜シアネヌト(B)
ず称すを、NCOOHモル比0.05〜0.3の割合で
反応されお埗られるものポリりレタン生成甚反
応促進剀発泡剀敎泡剀および、ポリむ゜シ
アネヌトこのポリむ゜シアネヌトを、以䞋、ポ
リむ゜シアネヌト(C)ず称すを必須成分ずしお
なるものである。この暹脂組成物は、保存安定性
が良奜であり、これを甚いるず、機械的、熱的性
質に優れた衚皮付き硬質ポリりレタンフオヌム
が、埓来になく短時間で、成圢するこずができる
ようになるものである。 以䞋、本発明の暹脂組成物を、より具䜓的に説
明するずずもに、フオヌムを補造するためのプロ
セスを説明する。 本発明で甚いるポリオヌル(A)ずしおは、ポリ゚
ヌテルポリオヌル、ポリ゚ステルポリオヌルがあ
る。これらの具䜓䟋ずしおは、グリセリン、トリ
メチロヌルプロパン、アンモニア、モノ゚タノヌ
ルアミン、トリ゚タノヌルアミン、ペンタ゚リス
リトヌル、゜ルビトヌル、シペ糖、プノヌル、
トリレンゞアミン、4′―ゞアミノゞプニル
メタン、キシリレンゞアミン、氎添した4′―
ゞアミノゞプニルメタン等にアルキレンオキシ
ドを添加しお埗られるポリ゚ヌテルポリオヌルが
ある。たた、無氎フタル酞にプロピレングリコヌ
ル、゚チレングリコヌルを反応させお埗られる゚
ステル化合物末端はカルボキシルにアルキレ
ンオキシドを付加しお埗られるポリ゚ステルポリ
オヌルがある。䞊蚘以倖のポリオヌルずしおは、
J.SaundersK.C.Frish著「Polyurethanes
Chemisty and TechnologyPart 
ChemistryPart Technology」Robert E.
Krieger Publishing CompanyHuntington
New York1978David Staly著「Analytical
Chemistry of the Polyurethanes
PolyurethanesPart」Robert Kriger
Publishing CompanyHuntingtonNew
York1979、岩田敬治著「プラスチツク材料構座
(2)ポリりレタン暹脂」日刊工業新開瀟1975に蚘茉
されおいるポリオヌルがある。これらのうち特に
重芁なものは、䞋蚘の䞀般匏(1)で瀺される芳銙族
アミンにアルキレンオキシドを付加しお埗られる
ポリオヌルである。 䜆し、R′たたはアルキル基 自然数 䞊蚘芳銙族アミン系ポリオヌルの具䜓䟋ずしお
は、4′―ゞアミノゞプニルメタンのアルキ
レンオキシド付加物、トリレンゞアミンのアルキ
レンオキシド付加物があり、ポリオヌル(A)に占め
る芳銙族アミン系ポリオヌルの割合は、ポリオヌ
ルの粘床、埗られる成圢品の耐熱性、機械的性質
のバランスより考えお、20〜80重量パヌセントで
あるこずが特に望たしい。ここでポリオヌル(A)の
OH䟡は、350〜800KOHmgであるこずが必
芁である。その理由は、たず、OH䟡が350KOH
mg未満であるず、埗られた成圢品の機械的性
質が悪いこず、たた、成圢時の発熱によ぀おフオ
ヌムが膚れによ぀お、本発明の意図する脱型時間
の短瞮が実珟しなくなるためである。䞀方、OH
䟡が800KOHmgより倧であるず、埗られた成
圢品がもろくなり、工業的に有効な補品が埗られ
なくなるため、そのOH䟡は800KOHmg以䞋
ずするこずが必芁である。ポリオヌル(A)は、単独
のポリオヌルであ぀おも良いし、各皮ポリオヌル
の混合物であ぀おも良い。混合物の堎合、その平
均OH䟡が䞊蚘の条件を満たせば良い。 本発明で甚いるポリむ゜シアネヌト(B)の具䜓䟋
ずしおは、アニリンずホルムアルデヒドの反応生
成物にホスゲンを反応させお埗られるMDI
4′―ゞプニルメタンゞむ゜シアネヌトがある
が、MDI単品のみならず、これに類䌌したむ゜
シアネヌト、すなわちポリプニレンポリメチレ
ンポリむ゜シアネヌト、カルボシむミド化MDI
も䜿甚できる。さらに、キシレンゞむ゜シアネヌ
ト、む゜フオロンゞむ゜シアネヌト、トリレンゞ
む゜シアネヌトTDIも同様であり、前述の文
献に蚘茉されおいる化合物を含んでいる。このう
ち特に重芁なポリむ゜シアネヌト(B)は、䞋蚘の䞀
般匏(2)で瀺されるTDI系化合物、 および、䞋蚘の䞀般匏(3)で瀺されるMDI系化合
物である。 䜆し、0.2〜0.8 本発明におけるプレポリマ化ポリオヌルは、前
蚘のポリオヌル(A)ず、ポリむ゜シアネヌト(B)ずを
NCOOHモル比0.05〜0.3の割合で反応させるこ
ずにより埗るこずができる。具䜓的には、ポリオ
ヌル(A)を25〜80℃に加熱しお、良く撹拌しながら
ポリむ゜シアネヌト(B)を滎䞋し、滎䞋終了埌、さ
らに〜時間撹拌しお反応を終了させるこずに
より埗るこずができる。この堎合、ポリオヌル(A)
䞭に氎が含たれおいおも、その量が1.5重量パヌ
セント以䞋であるなら問題ない。たた、必芁に応
じお、プレポリマ化反応の促進を目的に、各皮の
反応促進剀を配合しおも良い。反応の終点は、ポ
リオヌル䞭のむ゜シアネヌト含有率が零ずなる時
点であり、これは通垞甚いられおいる分析法を応
甚するこずにより枬定するこずができる。 本発明で䜿甚する反応促進剀、発泡剀、敎泡剀
の具䜓䟋を次に述べる。 たず、反応促進剀ずしおは、各皮の玚アミン
化合物、スズ化合物等がある。玚アミン化合物
の具䜓䟋ずしおは、トリ゚チレンゞアミン、ゞメ
チル゚タノヌルアミン、モルホリン類、ピペラゞ
ン類、むミダゟヌル化合物、DBU―ゞア
ザ―ビシクロりンデセン―、
アルキルアミノシラン等があり、さらにこれらの
塩、䟋えば、酢酞塩、ギ酞塩、シナり酞塩、リン
酞塩、―゚チルヘキサン酞塩、プノヌル塩、
クレゟヌル塩、塩酞塩等も䜿甚できる。䞀方、ス
ズ化合物ずしおは、ゞブチルスズゞラりレヌト、
ゞブチルスズゞアセテヌトがある。その他の本発
明で䜿甚できる反応促進剀は、前述の著曞に蚘茉
されおいる化合物がある。 発泡剀ずしおは、氎の他、トリクロロフルオロ
メタン、メチレンクロラむドをはじめずする䜎沞
点有機液状化合物、アゟビスむ゜ブチロニトリル
等の分解しお窒玠ガスを発生する化合物等があ
る。この配合量を倉化させるこずにより、密床の
異なるフオヌムが埗られる。このうち特に䜎沞点
〜60℃のハロゲン化炭化氎玠は堅牢な衚皮
が埗られやすい性質を有するこずから、本発明に
おいお特に貎重な化合物である。 敎泡剀ずしおは、ポリゞメチルシロキサンのオ
キシアルキレン共重合䜓党般、フツ玠系の界面掻
性剀党般がある。 本発明で䜿甚するポリむ゜シアネヌト(C)は、奜
たしくは、ゞむ゜シアネヌト、トリむ゜シアネヌ
ト類であるが、これ以䞊の倚官胜む゜シアネヌト
類を含んだものであ぀おもよい。その具䜓䟋ずし
おは、ヘキサメチレンゞむ゜シアネヌト、―キ
シレンゞむ゜シアネヌト、―プニレンゞむ゜
シアネヌト、トリレンゞむ゜シアネヌト、MDI、
ポリプニルポリメチレンポリむ゜シアネヌト等
がある。このうち特に有効なポリむ゜シアネヌト
(C)は、䞋蚘の䞀般匏(3)で瀺されるMDI系のポリ
む゜シアネヌトである。 䜆し、0.2〜0.8 この理由は、反応性ず、埗られたフオヌムの耐
熱性が良奜な䞊、安䟡であるためである。 なお、ポリむ゜シアネヌト(C)の配合量は、
NCOOHモル比が0.9〜1.2ずなる量が奜たしい。 その他、本発明に䜿甚できる玠材ずしおは、充
おん剀、顔料、染料、難燃化剀、玫倖線吞収剀等
があり、これらに぀いおも前述の著曞に蚘茉され
おいる内容を含んでいる。 次に本発明の組成物を甚いお衚皮付き硬質ポリ
りレタンフオヌムを埗る方法に぀いお説明する。 䞊蚘フオヌムは、本発明の組成物を混合し、枩
床40〜80℃に保぀た密閉されたた型内に射出し、
発泡硬化させるこずにより補造するこずができ
る。䜆し、本発明の組成物は、プレポリマ化ポリ
オヌルずポリむ゜シアネヌト(C)を混合しおから、
ゲル化するたでの時間がきわめお短いため、フオ
ヌムの成圢にあた぀おは、プレポリマ化ポリオヌ
ル䞭に反応促進剀、発泡剀、敎泡剀、必芁に応じ
おその他の副玠材を混合した液ずポリむ゜シア
ネヌト(C)からなる液をあらかじめ補造しおお
き、䞡液を高圧衝突混合方匏の発泡機を甚いお混
合する必芁がある。 埓぀お、埓来の混合方法䜎圧発泡機を甚いる
混合方法では、混合に長時間を芁するこず、た
た混合効率が䜎いこずから、本発明の組成物を甚
いおも良奜な衚皮付きフオヌムは埗られない。 本発明の組成物は、あくたでも硬質の衚皮付き
ポリりレタンフオヌムを補造する堎合に特に有効
なものであり、埓来の均䞀のフオヌム䜓、半硬
質、軟質のフオヌム䜓を補造する堎合の経隓から
は本発明の意図するずころを掚察するこずはでき
ない。 以䞋、本発明の暹脂組成物を甚いお衚皮付き硬
質ポリりレタンフオヌムを補造する方法に぀い
お、図を参照しお、具䜓的に説明する。 図は、本発明の組成物を甚いお衚皮付き硬質ポ
リりレタンフオヌムを補造するための液状反応射
出成圢装眮の抂略説明図である。この装眮は、原
液を吐出しない堎合、原液タンクに貯蔵さ
れたプレポリマ化ポリオヌル、発泡剀、觊媒を䞻
成分ずする原液、ポリむ゜シアネヌトを䞻成分
ずする原液が高圧蚈量ポンプによりミキ
シングヘツドに茞送された埌、枩調噚に接
続された熱亀換噚を経由しお原液タンク
にもどり、䞀方、原液を吐出する堎合に
は、油圧ナニツトによりミキシングヘツドが
動䜜し、衝突混合された原液がクランピングナニ
ツトの間に眮かれた密閉型のキダビテむ
内に射出されるしくみにな぀おいる。 この様な装眮に本発明の暹脂組成物を甚いる
ず、密床0.1〜0.6cm3、厚さ〜30mmの衚皮付
き硬質ポリりレタンフオヌムが短時間で補造され
るこずができる。埗られたフオヌムは、特に、断
熱性、吞音性、軜量化などが芁求される各皮電気
機噚甚郚品、自動車甚郚品、音響機噚甚郚品の補
造に有効である。 以䞋に、本発明を実斜䟋に぀き、さらに具䜓的
に説明する。 なお、以䞋に述べる内容は、特にこずわりのな
い限り、第衚に瀺した蚭備、成圢条件、枬定方
法によ぀た堎合の䟋である。たた、フオヌム組成
物、プレポリマ化ポリオヌルの配合割合を瀺した
数倀の単䜍は、重量郚である。 最初にフオヌム補造実斜䟋に甚いるプレポリマ
化ポリオヌルの補造䟋に぀いお述べ、その次にフ
オヌム補造の実斜䟋に぀いお述べる。 プレポリマ化ポリオヌルの補造䟋 プレポリマ化ポリオヌルの補造 第衚の(ã‚€)欄に瀺したポリオヌル、すなわち、
4′―ゞアミノゞプニルメタンのPOプロピ
レンオキシド付加物OH䟡450
The present invention relates to a resin composition for producing a skinned rigid polyurethane foam. Polyurethane foam with a skin, which is obtained by mixing isocyanate, polyether containing active hydrogen, a blowing agent, a catalyst, etc., and then foaming and curing in a closed mold, is used in electrical and electronic equipment because of its excellent heat insulation, sound absorption, and strength. Suitable for use as parts materials and building materials. In recent years, with the development of reaction injection molding technology (RIM technology), the uses of the above-mentioned foam bodies are increasingly expanding. However, one factor limiting the industrial use of this aerated urethane product is the long molding cycle, especially the demolding time (from injecting the composition into the mold to ejecting the molded part). time) is long. That is, when the molded product is removed from the mold in a short period of time, the foam swells due to the foaming pressure, so the molded product must be held in the mold for a long time. Conventionally known methods for shortening demolding time include:
There are methods such as increasing the amount of catalyst blended, blending a highly active catalyst, and increasing the liquid temperature, but in these cases, the fluidity of the foam decreases and the surface properties of the foam deteriorate. There were flaws. Furthermore, it is known that by converting polyisocyanate into a prepolymer, heat generation during molding can be suppressed and demolding time can be shortened. However, this method has disadvantages in that the storage stability of the polyisocyanate decreases, the viscosity increases, and the heat resistance of the obtained foam decreases. The object of the present invention is to avoid the drawbacks of the above-mentioned prior art.
The resin composition for manufacturing hard polyurethane foam with a skin that can be demolded in a short time is characterized by the use of a polyol polymerized with polyisocyanate, which lowers the maximum exothermic temperature during molding and reduces the temperature during demolding. suppresses molded product blistering phenomenon,
The aim is to shorten demolding time. Specifically, the above resin composition is a prepolymerized polyol with an OH value of 350 to 800 KOH mg/g (this polyol is hereinafter referred to as polyol (A)), and a polyisocyanate (hereinafter referred to as polyisocyanate). , polyisocyanate (B)
) at an NCO/OH molar ratio of 0.05 to 0.3; a reaction accelerator for polyurethane production; a blowing agent; a foam stabilizer; and a polyisocyanate (hereinafter referred to as polyisocyanate). isocyanate (C)) as an essential component. This resin composition has good storage stability, and by using it, a rigid polyurethane foam with a skin that has excellent mechanical and thermal properties can be molded in a shorter time than ever before. It is something. Hereinafter, the resin composition of the present invention will be explained in more detail, and the process for producing the foam will be explained. Polyols (A) used in the present invention include polyether polyols and polyester polyols. Specific examples of these include glycerin, trimethylolpropane, ammonia, monoethanolamine, triethanolamine, pentaerythritol, sorbitol, sucrose, phenol,
Tolylene diamine, 4,4'-diaminodiphenylmethane, xylylene diamine, hydrogenated 4,4'-
There is a polyether polyol obtained by adding an alkylene oxide to diaminodiphenylmethane or the like. There is also a polyester polyol obtained by adding an alkylene oxide to an ester compound (carboxyl terminal) obtained by reacting phthalic anhydride with propylene glycol or ethylene glycol. Polyols other than those listed above include
“Polyurethanes” by J.Saunders, K.C.Frish
Chemistry and Technology, Part I
Chemistry, Part Technology” Robert E.
Krieger Publishing Company, Huntington,
New York 1978, “Analytical” by David Staly
Chemistry of the Polyurethanes,
Polyurethanes: Part” Robert E, Kriger
Publishing Company, Huntington, New
York1979, Keiji Iwata, “Plastic Material Structure”
There is a polyol described in "(2) Polyurethane Resin" Nikkan Kogyo Shinkaisha 1975. Particularly important among these are polyols obtained by adding alkylene oxide to aromatic amines represented by the following general formula (1). (However, R, R': H or an alkyl group, n: a natural number) Specific examples of the aromatic amine polyols include alkylene oxide adducts of 4,4'-diaminodiphenylmethane and alkylene oxide adducts of tolylene diamine. Considering the viscosity of the polyol, the heat resistance of the resulting molded product, and the balance of mechanical properties, the proportion of the aromatic amine polyol in the polyol (A) is preferably 20 to 80% by weight. desirable. Here, polyol (A)
The OH value needs to be 350 to 800 KOHmg/g. The reason is that the OH value is 350KOH.
If it is less than mg/g, the mechanical properties of the obtained molded product will be poor, and the foam will swell due to heat generated during molding, making it difficult to shorten the demolding time as intended by the present invention. This is because it disappears. On the other hand, OH
If the OH value is greater than 800 KOHmg/g, the obtained molded product will become brittle and an industrially effective product will not be obtained, so the OH value must be 800KOHmg/g or less. The polyol (A) may be a single polyol or a mixture of various polyols. In the case of a mixture, it is sufficient that its average OH value satisfies the above conditions. As a specific example of the polyisocyanate (B) used in the present invention, MDI (4,
4'-diphenylmethane diisocyanate), but not only MDI alone, but also similar isocyanates, such as polyphenylene polymethylene polyisocyanate, carbociimidized MDI
can also be used. Furthermore, the same applies to xylene diisocyanate, isophorone diisocyanate, and tolylene diisocyanate (TDI), including the compounds described in the aforementioned literature. Among these, the particularly important polyisocyanate (B) is a TDI compound represented by the following general formula (2), and an MDI compound represented by the following general formula (3). (However, l: 0.2 to 0.8) The prepolymerized polyol in the present invention comprises the above polyol (A) and polyisocyanate (B).
It can be obtained by reacting at an NCO/OH molar ratio of 0.05 to 0.3. Specifically, polyol (A) is heated to 25 to 80°C, polyisocyanate (B) is added dropwise with good stirring, and after the dropwise addition is completed, the reaction is completed by further stirring for 1 to 6 hours. Obtainable. In this case, polyol (A)
Even if it contains water, there is no problem as long as the amount is 1.5% by weight or less. Furthermore, if necessary, various reaction accelerators may be added for the purpose of accelerating the prepolymerization reaction. The end point of the reaction is the point at which the isocyanate content in the polyol becomes zero, and this can be measured by applying commonly used analytical methods. Specific examples of the reaction accelerator, foaming agent, and foam stabilizer used in the present invention will be described below. First, examples of reaction accelerators include various tertiary amine compounds and tin compounds. Specific examples of tertiary amine compounds include triethylenediamine, dimethylethanolamine, morpholines, piperazines, imidazole compounds, DBU (1,8-diaza-bicyclo(5,4,0)undecene-7),
alkylaminosilane, etc., and their salts, such as acetate, formate, oxalate, phosphate, 2-ethylhexanoate, phenol salt,
Cresol salts, hydrochlorides, etc. can also be used. On the other hand, tin compounds include dibutyltin dilaurate,
Dibutyltin diacetate. Other reaction accelerators that can be used in the present invention include compounds described in the above-mentioned books. In addition to water, blowing agents include low-boiling organic liquid compounds such as trichlorofluoromethane and methylene chloride, and compounds that decompose to generate nitrogen gas such as azobisisobutyronitrile. By changing this amount, foams with different densities can be obtained. Among these, halogenated hydrocarbons having a particularly low boiling point (0 to 60°C) are particularly valuable compounds in the present invention because they have the property of easily forming a tough skin. Foam stabilizers include oxyalkylene copolymers of polydimethylsiloxane in general and fluorine-based surfactants in general. The polyisocyanate (C) used in the present invention is preferably a diisocyanate or a triisocyanate, but may also contain polyfunctional isocyanates higher than these. Specific examples include hexamethylene diisocyanate, m-xylene diisocyanate, m-phenylene diisocyanate, tolylene diisocyanate, MDI,
Examples include polyphenylpolymethylene polyisocyanate. Among these, particularly effective polyisocyanates
(C) is an MDI polyisocyanate represented by the following general formula (3). (However, l: 0.2 to 0.8) This is because the obtained foam has good reactivity and heat resistance, and is also inexpensive. In addition, the blending amount of polyisocyanate (C) is
The amount is preferably such that the NCO/OH molar ratio is from 0.9 to 1.2. Other materials that can be used in the present invention include fillers, pigments, dyes, flame retardants, ultraviolet absorbers, etc., and these also include the contents described in the above-mentioned book. Next, a method for obtaining a hard polyurethane foam with a skin using the composition of the present invention will be explained. The above foam is prepared by mixing the composition of the present invention and injecting it into a sealed mold kept at a temperature of 40 to 80°C.
It can be manufactured by foaming and curing. However, in the composition of the present invention, after mixing the prepolymerized polyol and the polyisocyanate (C),
Since the time until gelation is extremely short, when molding the foam, an R liquid containing a reaction accelerator, a blowing agent, a foam stabilizer, and other auxiliary materials as necessary is mixed into the prepolymerized polyol. It is necessary to prepare a P liquid made of polyisocyanate (C) in advance, and mix both liquids using a high-pressure collision mixing type foaming machine. Therefore, since the conventional mixing method (mixing method using a low-pressure foaming machine) requires a long time for mixing and has low mixing efficiency, it is not possible to obtain a good skinned foam using the composition of the present invention. I can't. The composition of the present invention is particularly effective when producing a hard skinned polyurethane foam, and from the experience of producing conventional uniform foam bodies, semi-rigid foam bodies, and soft foam bodies, the present invention It is not possible to guess what is intended. Hereinafter, a method for manufacturing a hard polyurethane foam with a skin using the resin composition of the present invention will be specifically explained with reference to the drawings. The figure is a schematic explanatory diagram of a liquid reaction injection molding apparatus for producing a skinned rigid polyurethane foam using the composition of the present invention. In this device, when the stock solution is not discharged, the stock solution A containing prepolymerized polyol, a blowing agent, and a catalyst as the main components, and the stock solution B containing polyisocyanate as the main components stored in the stock solution tanks 1 and 3 are pumped through a high-pressure metering pump 6, 6 to the mixing head 8, it returns to the stock solution tanks 1 and 3 via the heat exchangers 5 and 5 connected to the temperature controller 11. On the other hand, when discharging the stock solution, the hydraulic unit 7 The mixing head 8 is operated, and the collided mixed stock solution is transferred to the cavity 2 of the closed type 10 placed between the clamping units 9.
It is designed to be ejected within 0. When the resin composition of the present invention is used in such an apparatus, a hard polyurethane foam with a skin having a density of 0.1 to 0.6 g/cm 3 and a thickness of 3 to 30 mm can be produced in a short time. The obtained foam is particularly effective for manufacturing various electrical equipment parts, automobile parts, and audio equipment parts that require heat insulation, sound absorption, weight reduction, and the like. The present invention will be explained in more detail below with reference to Examples. The contents described below are examples based on the equipment, molding conditions, and measuring methods shown in Table 1, unless otherwise specified. Further, the unit of the numerical value showing the blending ratio of the foam composition and the prepolymerized polyol is parts by weight. First, an example of manufacturing a prepolymerized polyol used in a foam manufacturing example will be described, and then an example of foam manufacturing will be described. Production example of prepolymerized polyol Production of prepolymerized polyol a The polyol shown in column (a) of Table 2, that is,
PO (propylene oxide) adduct of 4,4'-diaminodiphenylmethane (OH value: 450

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 KOHmg40重量郚に、グリセリンのPO付加
物OH䟡600KOHmg60重量郚を混合
し、混合液平均OH䟡540KOHmgを60
℃に保持しお、そこにMDI系む゜シアネヌト
0.6NCO含有率30.5重量パヌセント
を、良く撹拌しながら13重量郚加えお、その状態
で時間撹拌しお、プレポリマ化ポリオヌルを
補造した。NCOOHモル化は0.1である。
Siggiaらの方法参考文献A.FarkasJ.Am.
Chem.Soc.826421960によりプレポリマ化
ポリオヌル䞭のむ゜シアネヌトを分析したが、
残存するむ゜シアネヌトは怜出されなか぀た。 プレポリマ化ポリオヌルb1b2b3の補
造 第衚の(ロ)(ハ)(ニ)(ホ)(ヘ)欄に瀺したよ
う
に、それぞれのポリオヌルに、プレポリマ化ポリ
オヌルの堎合ず同䞀の方法で、ポリむ゜シアネ
ヌトを加え、プレポリマ化ポリオヌルb1b2
b3を補造した。b1b2b3の
NCOOH配合モル比は、それぞれ0.06、0.15、
0.20、0.15、0.28である。これらのプレポリマ化
ポリオヌル䞭には、残存するむ゜シアネヌトはな
か぀た。 プレポリマ化ポリオヌルの補造 第衚の(ã‚€)欄に瀺した混合ポリオヌル100重量
郚を60℃に保持しお、そこにTDI系む゜シアネヌ
トNCO含有率48重量パヌセントを8.4重量
郚加えお、時間撹拌しおプレポリマ化ポリオヌ
ルを補造した。NCOOH配合モル比は0.1で
ある。前蚘のSiggiaらの方法により、プレポリマ
化ポリオヌル䞭のむ゜シアネヌトを分析した
が、残存するむ゜シアネヌトは怜出されなか぀
た。 フオヌム補造実斜䟋 実斜䟋  第衚の実斜䟋の欄に瀺した組成を甚いお、
第衚に瀺した蚭備、成圢条件で、密床0.35
cm3の衚皮付き硬質ポリりレタンフオヌムを補造し
た。
[Table] Mix 60 parts by weight of glycerin PO adduct (OH value: 600KOHmg/g) with 40 parts by weight (KOHmg/g), and mix 60 parts by weight of the mixed solution (average OH value: 540KOHmg/g).
℃ and added MDI isocyanate (l=0.6; NCO content: 30.5% by weight)
13 parts by weight of was added to the mixture while stirring well, and the mixture was stirred for 3 hours to produce prepolymerized polyol a. NCO/OH moleization is 0.1.
The method of Siggia et al. (References: A. Farkas, J. Am.
Chem.Soc.82, 642 (1960)) was used to analyze isocyanates in prepolymerized polyol a.
No residual isocyanate was detected. Production of prepolymerized polyols b 1 , b 2 , b 3 , C, and d As shown in columns (b), (c), (d), (e), and (f) of Table 2, each polyol In the same manner as for prepolymerized polyol a, polyisocyanate is added to prepolymerized polyols b 1 , b 2 ,
b 3 , c, and d were produced. b 1 , b 2 , b 3 , c, d
The NCO/OH blending molar ratio is 0.06, 0.15, and
They are 0.20, 0.15, and 0.28. There was no residual isocyanate in these prepolymerized polyols. Production of prepolymerized polyol e 100 parts by weight of the mixed polyol shown in column (a) of Table 2 was maintained at 60°C, and 8.4 parts by weight of TDI isocyanate (NCO content: 48% by weight) was added thereto. , and stirred for 6 hours to produce prepolymerized polyol e. The NCO/OH blending molar ratio is 0.1. Isocyanate in prepolymerized polyol e was analyzed by the method of Siggia et al., but no residual isocyanate was detected. Foam Manufacturing Examples Example 1 Using the composition shown in the Example 1 column of Table 3,
With the equipment and molding conditions shown in Table 1, the density is 0.35g/
A rigid polyurethane foam with a skin of cm 3 was produced.

【衚】【table】

【衚】 すなわち、プレポリマ化ポリオヌルa113重量
郚に、発泡剀ずしおトリクロロフルオロメタン10
重量郚、H2O 0.5重量郚、敎泡剀ずしおアルキレ
ンオキシド倉成ポリゞメチルシロキサン2.0重量
郚、反応促進剀ずしおトリ゚チレンゞアミン3.0
重量郚、DBU〔―ゞアザ―ビシクロ
りンデセン―〕0.1重量郚を加えお、
宀枩にお良く撹拌しお液を䜜぀た。䞊蚘液ず
4′―ゞプニルメタンゞむ゜シアネヌト
NCO含有率31重量パヌセント0.6か
らなる液を第衚に瀺した蚭備、成圢条件で混
合、発泡、硬化しお密床0.35cm3、厚さcmの
平板を成圢した。液ず液の配合比重量比
は、100114で行぀た。 成圢時の最高発熱枩床、脱型時間、機械的特性
は、第衚の実斜䟋の欄に瀺すような倀であ぀
た。すなわち、最高発熱枩床は、145℃ず䜎く、
脱型時間は120秒ず短い倀を瀺した。たた、曲げ
匷さ、およびアむゟツト衝撃倀ノツチなし
は、それぞれ180Kgcm2、8.0Kg・cmcm2
[Table] That is, 113 parts by weight of prepolymerized polyol a and 10 parts by weight of trichlorofluoromethane as a blowing agent.
parts by weight, 0.5 parts by weight of H 2 O, 2.0 parts by weight of alkylene oxide modified polydimethylsiloxane as a foam stabilizer, 3.0 parts by weight of triethylenediamine as a reaction accelerator.
Parts by weight, DBU [1,8-diazabicyclo(5,
4,0) Undecene-7] Add 0.1 part by weight,
The R solution was prepared by stirring well at room temperature. The above R liquid and P liquid consisting of 4,4'-diphenylmethane diisocyanate (NCO content: 31% by weight; l = 0.6) are mixed, foamed, and hardened under the equipment and molding conditions shown in Table 1 to obtain a density. A flat plate with a weight of 0.35 g/cm 3 and a thickness of 2 cm was molded. Blending ratio (weight ratio) of R liquid and P liquid
was performed with R:P=100:114. The maximum exothermic temperature during molding, demolding time, and mechanical properties were as shown in the column of Example 1 in Table 4. In other words, the maximum exothermic temperature is as low as 145℃.
The demolding time was as short as 120 seconds. Also, bending strength and Izotsu impact value (without notch)
are 180Kg/cm 2 and 8.0Kg・cm/cm 2 respectively.

【衚】 ず、いずれも高い倀を瀺した。 実斜䟋  第衚の、実斜䟋〜の各欄に瀺した組成を
甚いお、実斜䟋ず同様の方法で衚皮付き硬質ポ
リりレタンフオヌムを成圢した。 埗られた成圢品の密床、成圢時の最高発熱枩
床、脱型時間、曲げ匷さ、アむゟツト衝撃倀は、
第衚の、〜の各欄に瀺すようなものであ぀
た。すなわち、いずれの組成を甚いた堎合にも、
成圢時の最高発熱枩床は䜎く、脱型時間は短かか
぀た。たた、曲げ匷さ、アむゟツト衝撃倀は、ず
もに良奜な倀を瀺した。 実斜䟋  プレポリマ化ポリオヌルe100重量郚にトリクロ
ロモノフルオロメタン10重量郚、H2O0.5重量郚、
アルキレンオキシド倉性ポリゞメチルシロキサン
2.0重量郚、トリ゚チレンゞアミン1.0重量郚、ゞ
ブチルスズゞラりレヌト0.1重量郚、カヌボンブ
ラツク1.0重量郚を加えおよく混合しお液を補
造した。この液ず第衚に瀺した液を配合比
重量比100116で、第衚に瀺した蚭備、成
圢条件で衚皮付き硬質ポリりレタンフオヌムを成
圢した。 埗られた成圢品の密床は0.35cm3であり、成
圢時の最高発熱枩床は、149℃であ぀た。脱型時
間は、125秒ず短く、成圢品の曲げ匷さ、アむゟ
ツト衝撃倀は、それぞれ175Kgcm2、7.5Kg・cm
cm2ず、良奜な倀を瀺した。 比范䟋 実斜䟋ず同䞀条件で衚皮付き硬質ポリりレタ
ンフオヌムを成圢した。䜆し、ポリオヌルはプレ
ポリ化しおいないものを甚いた。 その結果、成圢時の最高発熱枩床が実斜䟋に
比べお高く、脱型時間は実斜䟋に比范しお長か
぀た。 以䞋にその内容を詳现に説明する。 4′―ゞアミノゞプニルメタンのPO付加
物40重量郚ず、グリセリンPO付加物60重量郚か
らなるポリオヌルに、発泡剀ずしおトリクロロフ
ルオロメタン10重量郚、H2O 0.5重量郚、敎泡剀
ずしおアルキレンオキシド倉性ポリゞメチルシロ
キサン2.0重量郚、反応促進剀ずしおトリ゚チレ
ンゞアミン3.0重量郚、DBU・プノヌル塩0.1重
量郚を加えお液ずした。この液ず4′―ゞ
プニルメタンゞむ゜シアネヌトMDI系
NCO含有率31重量パヌセント0.6か
ら成る液を甚いお第衚に瀺した蚭備、成圢条
件で、密床0.35cm3の衚皮付き硬質ポリりレタ
ンフオヌムを成圢した。液ず液の配合比重
量比は、100126である。 この堎合の、成圢時の最高発熱枩床は160℃ず
高く、脱型時間は200秒ず長か぀た。成圢品の曲
げ匷さ、およびアむゟツト衝撃倀は、それぞれ
168Kgcm2、7.2Kg・cmcm2であり、いずれも実斜
䟋に比范しお䜎い倀しか瀺さなか぀た。 以䞊、実斜䟋、比范䟋で具䜓的に述べた様に、
本発明の組成物を甚いるこずにより、機械的特性
に優れた衚皮付き硬質ポリりレタンフオヌムが短
時間で成圢できるものである。 埓぀お、成圢サむクルが埓来に比范しお倧幅に
短瞮できるようになり、生産の効率が飛躍的に向
䞊できる効果を奏する。
[Table] Both showed high values. Examples 2, 3, 4, 5, 6, 7, 8 A hard polyurethane foam with a skin was produced in the same manner as in Example 1 using the compositions shown in the columns of Examples 2 to 8 in Table 3. Molded. The density, maximum heat generation temperature during molding, demolding time, bending strength, and Izot impact value of the obtained molded product are as follows:
They were as shown in columns 2 to 8 of Table 4. That is, no matter which composition is used,
The maximum exothermic temperature during molding was low and demolding time was short. Furthermore, both bending strength and Izot impact value showed good values. Example 9 100 parts by weight of prepolymerized polyol e, 10 parts by weight of trichloromonofluoromethane, 0.5 parts by weight of H 2 O,
Alkylene oxide modified polydimethylsiloxane
2.0 parts by weight of triethylenediamine, 1.0 parts by weight of triethylenediamine, 0.1 parts by weight of dibutyltin dilaurate, and 1.0 parts by weight of carbon black were added and mixed well to prepare R liquid. A hard polyurethane foam with a skin was molded using the R liquid and the P liquid shown in Table 3 at a blending ratio (weight ratio) of 100:116 using the equipment and molding conditions shown in Table 2. The density of the obtained molded article was 0.35 g/cm 3 and the maximum exothermic temperature during molding was 149°C. The demolding time is as short as 125 seconds, and the bending strength and Izotsu impact value of the molded product are 175Kg/cm 2 and 7.5Kg・cm/, respectively.
cm 2 , a good value. Comparative Example A hard polyurethane foam with a skin was molded under the same conditions as in Example 1. However, the polyol used was one that had not been prepolymerized. As a result, the maximum exothermic temperature during molding was higher than in Example 1, and the demolding time was longer than in Example 1. The contents will be explained in detail below. A polyol consisting of 40 parts by weight of PO adduct of 4,4'-diaminodiphenylmethane and 60 parts by weight of glycerin PO adduct, 10 parts by weight of trichlorofluoromethane as a blowing agent, 0.5 part by weight of H 2 O, and a foam stabilizer. 2.0 parts by weight of alkylene oxide-modified polydimethylsiloxane, 3.0 parts by weight of triethylenediamine as a reaction accelerator, and 0.1 part by weight of DBU/phenol salt were added to prepare an R liquid. Using this R liquid and P liquid consisting of 4,4'-diphenylmethane diisocyanate (MDI) system (NCO content: 31% by weight; l = 0.6), the density A rigid polyurethane foam with a skin of 0.35 g/cm 3 was molded. The blending ratio (weight ratio) of R liquid and P liquid was 100:126. In this case, the maximum exothermic temperature during molding was as high as 160°C, and the demolding time was as long as 200 seconds. The bending strength and Izod impact value of the molded product are respectively
168 Kg/cm 2 and 7.2 Kg·cm/cm 2 , both of which were lower than those of Example 1. As specifically stated above in the Examples and Comparative Examples,
By using the composition of the present invention, a hard skinned polyurethane foam with excellent mechanical properties can be molded in a short time. Therefore, the molding cycle can be significantly shortened compared to the conventional method, and production efficiency can be dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の組成物を甚いお衚皮付き硬質ポ
リりレタンフオヌム補造甚の液状反応射出成圢装
眮の抂略説明図である。   原液タンク、  ミキシングヘツ
ド、  枩調噚、  密閉型。
The figure is a schematic illustration of a liquid reaction injection molding apparatus for producing a skinned rigid polyurethane foam using the composition of the present invention. 1, 3... Stock solution tank, 8... Mixing head, 11... Temperature controller, 10... Closed type.

Claims (1)

【特蚱請求の範囲】  プレポリマ化ポリオヌルずしお、OH䟡350
〜800KOHmg平均分子量に換算しお210〜
480のポリオヌルからなるポリオヌル(A)ず、ポ
リむ゜シアネヌト(B)ずをNCOOHモル比0.05〜
0.3の割合で反応させお埗られるもの ポリりレタン生成甚反応促進剀 発泡剀 敎泡剀および ポリむ゜シアネヌト(C) を必須成分ずするこずを特城ずする衚皮付き硬質
ポリりレタンフオヌム補造甚暹脂組成物。  前蚘のポリオヌル(A)の20〜80重量パヌセント
は、次の䞀般匏(1)で瀺される芳銙族アミンにアル
キレンオキシドを付加しお埗られるポリオヌルで
ある特蚱請求の範囲第項蚘茉の衚皮付き硬質ポ
リりレタンフオヌム補造甚暹脂組成物。 䜆し、R′たたはアルキル基 自然数  前蚘のポリむ゜シアネヌト(B)は、䞋蚘の䞀般
匏(3)で瀺される4′―ゞプニルメタンゞむ゜
シアネヌトMDI系化合物、 䜆し、0.2〜0.8 である特蚱請求の範囲第項蚘茉の衚皮付き硬質
ポリりレタンフオヌム補造甚暹脂組成物。  前蚘のポリむ゜シアネヌト(C)は、䞋蚘の䞀般
匏(3)で瀺される4′―ゞプニルメタンゞむ゜
シアネヌトMDI系化合物、 䜆し、0.2〜0.8 である特蚱請求の範囲第項蚘茉の衚皮付き硬質
ポリりレタンフオヌム補造甚暹脂組成物。
[Claims] 1. As a prepolymerized polyol, an OH value of 350
~800KOHmg/g (210~ in terms of average molecular weight)
Polyol (A) consisting of polyol (480) and polyisocyanate (B) at an NCO/OH molar ratio of 0.05 to
A resin for producing a rigid polyurethane foam with a skin, characterized in that the essential components are: a product obtained by reacting at a ratio of 0.3; a reaction accelerator for polyurethane production; a foaming agent; a foam stabilizer; and polyisocyanate (C). Composition. 2. The skin according to claim 1, wherein 20 to 80 weight percent of the polyol (A) is a polyol obtained by adding alkylene oxide to an aromatic amine represented by the following general formula (1). Resin composition for manufacturing hard polyurethane foam. However, R, R': H or alkyl group n: natural number 3 The polyisocyanate (B) is a 4,4'-diphenylmethane diisocyanate (MDI) compound represented by the following general formula (3), (However, l: 0.2 to 0.8) The resin composition for producing a hard polyurethane foam with a skin according to claim 1. 4 The above polyisocyanate (C) is a 4,4'-diphenylmethane diisocyanate (MDI) compound represented by the following general formula (3), (However, l: 0.2 to 0.8) The resin composition for producing a hard polyurethane foam with a skin according to claim 1.
JP57036361A 1982-03-10 1982-03-10 Resin composition for producing skinned rigid polyurethane foam Granted JPS58154714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57036361A JPS58154714A (en) 1982-03-10 1982-03-10 Resin composition for producing skinned rigid polyurethane foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57036361A JPS58154714A (en) 1982-03-10 1982-03-10 Resin composition for producing skinned rigid polyurethane foam

Publications (2)

Publication Number Publication Date
JPS58154714A JPS58154714A (en) 1983-09-14
JPS6332085B2 true JPS6332085B2 (en) 1988-06-28

Family

ID=12467687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57036361A Granted JPS58154714A (en) 1982-03-10 1982-03-10 Resin composition for producing skinned rigid polyurethane foam

Country Status (1)

Country Link
JP (1) JPS58154714A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196442A (en) * 1984-03-15 1985-10-04 Toyoda Gosei Co Ltd Impact absorbing material
DE4200157A1 (en) * 1992-01-07 1993-07-08 Bayer Ag LIQUID, LIGHT, POLYISOCYANATE MIXTURES, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE IN THE PRODUCTION OF LIGHT, HARD POLYURETHANE FOAMS
US6218443B1 (en) 1997-12-30 2001-04-17 Basf Corporation Pentafluoropropane blowing agent-containing resin blend for use in making integral skin foams
US6010649A (en) * 1997-12-30 2000-01-04 Basf Corporation Method of making a low density, molded integral skin polyurethane foam

Also Published As

Publication number Publication date
JPS58154714A (en) 1983-09-14

Similar Documents

Publication Publication Date Title
JP3926841B2 (en) Novel polyether polyols, polyol formulations containing these polyether polyols, and their use to produce rigid polyurethane foams
EP0935630B2 (en) Amine-initiated polyether polyols and a process for their production
US4444704A (en) Process for producing integral skin polyurethane foam
EP2106415B1 (en) Tertiary amines blocked with polymer acids
KR960005794B1 (en) Process for producing polyurethane foam
JP2613441B2 (en) Manufacturing method of foamed polyurethane
JPS6356252B2 (en)
JPS6084319A (en) Resin composition
JP2001122941A (en) Rigid polyurethane foam and refrigerator using the same
JPS6332085B2 (en)
JPH0134253B2 (en)
JPS6121563B2 (en)
JP3367090B2 (en) Water foaming self-skinning polyurethane foam
WO2017074758A1 (en) Polyurethane foam from high functionality polyisocyanate
JP4614041B2 (en) Rigid polyurethane slab foam composition and method for producing rigid polyurethane slab foam
JPS60181115A (en) Production of polyurethane
JPS61163918A (en) Stable dispersion, its production and use thereof in production of polyurethane
JPH0138129B2 (en)
US5454994A (en) Process for the production of molded parts and fillings made of rigid and flexible polyurethane foams using differential activator concentrations
JP3046343B2 (en) Catalyst for polyurethane production
JPS6015417A (en) Composition for production of skinned rigid polyurethane foam
JP4747766B2 (en) Method for producing rigid polyurethane foam
JPH04279619A (en) Production of rigid polyurethane foam composite material
JP4130357B2 (en) Polyurethane foam with integral skin and method for producing the same
JP4178384B2 (en) Rigid polyurethane foam molding composition and method for producing rigid polyurethane foam using the composition