JPS633198B2 - - Google Patents

Info

Publication number
JPS633198B2
JPS633198B2 JP56143898A JP14389881A JPS633198B2 JP S633198 B2 JPS633198 B2 JP S633198B2 JP 56143898 A JP56143898 A JP 56143898A JP 14389881 A JP14389881 A JP 14389881A JP S633198 B2 JPS633198 B2 JP S633198B2
Authority
JP
Japan
Prior art keywords
piece
throttle
pressure
labyrinth seal
seal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56143898A
Other languages
Japanese (ja)
Other versions
JPS5846265A (en
Inventor
Takeo Kanbe
Toyoo Takeshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14389881A priority Critical patent/JPS5846265A/en
Publication of JPS5846265A publication Critical patent/JPS5846265A/en
Publication of JPS633198B2 publication Critical patent/JPS633198B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/441Free-space packings with floating ring
    • F16J15/442Free-space packings with floating ring segmented

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Description

【発明の詳細な説明】 本発明は、ラビリンスシール装置に係り、特に
蒸気タービン等高温高圧の流体を扱う回転機械の
回転軸貫通部に好適なラビリンスシール装置の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a labyrinth seal device, and more particularly to an improvement of a labyrinth seal device suitable for a rotating shaft penetrating portion of a rotating machine such as a steam turbine that handles high-temperature, high-pressure fluid.

一般に、圧力流体を扱う回転機械の回転軸貫通
部には、その使用条件に応じたシール装置が使用
されている。ラビリンスシール装置は周知の通
り、非接触形シールで、対向する相手面に向つて
突設し流路方向に並設した複数枚のリング状絞り
片で形成した狭部と、この絞り片間に形成した膨
脹室とを交互に多数流路方向に設けたいわゆるラ
ビリンス流路における流路抵抗によつて、漏洩す
る流体の量を減少させる装置であるが、この絞り
片には前後の流体圧力の差に相当する流体圧力が
作用する。
2. Description of the Related Art Generally, a sealing device is used in a rotating shaft penetrating portion of a rotating machine that handles pressurized fluid, depending on the usage conditions. As is well known, the labyrinth seal device is a non-contact type seal that has a narrow portion formed by a plurality of ring-shaped throttle pieces that protrude toward the opposing surface and are arranged in parallel in the direction of the flow path, and a narrow part between the throttle pieces. This is a device that reduces the amount of fluid leaking by the flow path resistance in a so-called labyrinth flow path in which multiple expansion chambers are alternately provided in the flow path direction. A fluid pressure corresponding to the difference acts.

従来は、この複数枚の絞り片に作用する流体圧
力は均等であるとし、入口側と出口側との流体圧
力の差を絞り片の枚数Nで等分した流体圧力が各
絞り片に作用するものとして、絞り片は設計製作
されていた。特に蒸気タービンにおいては、ター
ビンロータの熱応力を低減するため、ロータ側の
シール面には特別な細工を施さず平滑な面とした
直通形のラビリンスシール装置が使用されている
が、蒸気入口側の絞り片は強度不足のため欠損事
故を起すおそれがあつた。一方、各絞り片におけ
る流体圧力の分布の実測によれば、第5図の如き
関係がある。なお第5図は、ロータとラビリンス
パツキンとなる絞り片との隙間0.6mm、絞り片間
隔6mm、絞り片高さ6mm、絞り片枚数6としたと
き、一点鎖線は絞り片入口圧力を2.05Kg/cm2、鎖
線は同じく3.08Kg/cm2、実線は同じく4.12Kg/cm2
の場合の圧力減少状態を示したもので、入口側か
ら1枚目の絞り片には全圧力差の約35%の圧力が
かかつている。そこで、各絞り片の厚みをこの最
大の圧力差に従つて設定すれば、前記の欠損事故
を回避できると考えられる。しかし、このように
すると、シール装置の全長には自から制限がある
からど絞り片の枚数が少くなり、その結果シール
効果が減少して蒸気の漏洩量が多くなり、タービ
ンの効率の低下を招くと共に、出口側の絞り片の
厚みは必要以上に厚くなるので、材料的に不経済
である。
Conventionally, it is assumed that the fluid pressure acting on the plurality of throttle pieces is equal, and the fluid pressure that is obtained by equally dividing the fluid pressure difference between the inlet side and the outlet side by the number of throttle pieces N acts on each throttle piece. As such, the aperture piece was designed and manufactured. Particularly in steam turbines, in order to reduce thermal stress on the turbine rotor, a straight-through type labyrinth seal device is used, in which the sealing surface on the rotor side has a smooth surface without any special processing. There was a risk of a breakage accident due to the lack of strength of the drawing piece. On the other hand, according to actual measurements of the fluid pressure distribution in each throttle piece, there is a relationship as shown in FIG. In addition, in Fig. 5, when the gap between the rotor and the throttle piece that becomes the labyrinth seal is 0.6 mm, the interval between the throttle pieces is 6 mm, the height of the throttle piece is 6 mm, and the number of throttle pieces is 6, the dashed line indicates the pressure at the throttle piece inlet of 2.05 kg/ cm 2 , the chain line is the same 3.08Kg/cm 2 , the solid line is the same 4.12Kg/cm 2
This shows the pressure reduction state in the case of , and the first throttle piece from the inlet side is under pressure of about 35% of the total pressure difference. Therefore, if the thickness of each throttle piece is set according to this maximum pressure difference, it is thought that the above-mentioned breakage accident can be avoided. However, since there is a limit to the total length of the sealing device, the number of throttle pieces is reduced, which reduces the sealing effect and increases the amount of steam leakage, which reduces the efficiency of the turbine. At the same time, the thickness of the throttle piece on the exit side becomes thicker than necessary, which is uneconomical in terms of materials.

本発明の目的は、以上の欠点を解消し、欠損事
故を防止するに充分な厚みの絞り片を、できる限
り数多く並べて流体の漏洩量を減少させ、効率の
向上を図つたラビリンスシール装置を提供するこ
とにある。
The object of the present invention is to eliminate the above-mentioned drawbacks and provide a labyrinth seal device in which as many throttle pieces as possible are lined up with sufficient thickness to prevent breakage accidents, thereby reducing the amount of fluid leakage and improving efficiency. It's about doing.

この目的を達成するため、本発明によるラビリ
ンスシール装置は、絞り片の厚みを一律に同一と
せず、各絞り片に作用する流体圧力に対応する異
なる厚みに形成したことを特徴とするものであ
る。
In order to achieve this object, the labyrinth seal device according to the present invention is characterized in that the thickness of the throttle pieces is not uniform across the board, but is formed to have different thicknesses corresponding to the fluid pressures acting on each throttle piece. .

以下、本発明の一実施例を図面に基づいて説明
する。第1図は蒸気タービン発電設備の系統図
で、合せて蒸気タービンの縦断面を示している。
図において、ボイラー1の過熱器1aで過熱され
た高温高圧の蒸気は、配管8を経て高圧タービン
2に供給され、該タービン内の各段落を経て蒸気
の持つ熱エネルギを機械仕事に転換し、該高圧タ
ービン2と同軸の発電機5を回転させている。一
方、高圧タービン2を出た蒸気は再熱器1bで再
熱されて中圧タービン3、続いて低圧タービン4
に送られ、同軸の発電機5に回転力を与えた後、
復水器6で擬縮して水となり、給水ポンプ7を経
てボイラー1に戻される。
Hereinafter, one embodiment of the present invention will be described based on the drawings. FIG. 1 is a system diagram of a steam turbine power generation facility, and also shows a longitudinal section of the steam turbine.
In the figure, high-temperature, high-pressure steam superheated in a superheater 1a of a boiler 1 is supplied to a high-pressure turbine 2 through a pipe 8, and passes through each stage in the turbine to convert the thermal energy of the steam into mechanical work. A generator 5 coaxial with the high pressure turbine 2 is rotated. On the other hand, the steam leaving the high-pressure turbine 2 is reheated in the reheater 1b and then passed through the intermediate-pressure turbine 3 and then into the low-pressure turbine 4.
After applying rotational force to the coaxial generator 5,
The water undergoes pseudo-condensation in the condenser 6 and is returned to the boiler 1 via the water supply pump 7.

第2図は、第1図のE部詳細図で、高圧外部ケ
ーシング10の中に高圧内部ケーシング11があ
り、該高圧内部ケーシング11の内部にはノズル
ボツクス12が固定されていて、該ノズルボツク
ス12の出口には高圧初段ノズル13が設けられ
ている。14は前記高圧内部ケーシング11内に
収納され、軸受で軸支されたロータで、15は該
ロータに設けられた動翼である。一方、16はダ
イヤフラムで、前記高圧内部ケーシング11の内
壁に熱膨脹に対応できる構造で固定されている。
17は前記ダイヤフラム16に設けられたノズル
翼で、内部ダイヤフラム16aの内面にはダイヤ
フラムパツキン18がばね力によつてロータ軸1
4aに向つて押された状態で備えられている。
(前記ロータ14の軸受、内部ケーシング11内
壁の熱膨脹に対応できる構造、及びダイヤフラム
パツキン18のばね等は、図示されていない。) 第3図は、ダイヤフラムパツキン18の詳細を
示したもので、ロータ軸14aが貫通するMo鋼
製の静止する支持体18aの内周面には、ロータ
軸14aの外周面に向つて複数枚のリング状の
15Cr―Mo鋼製絞り片18bが突設され、ロータ
軸方向に並設されている。絞り片18bは支持体
18bに植込まれ、ロータ軸14a外周面との間
に僅かな間隙δを形成し、直通形のラビリンス装
置を形成している。
FIG. 2 is a detailed view of section E in FIG. 1, in which there is a high-pressure inner casing 11 inside the high-pressure outer casing 10, and a nozzle box 12 is fixed inside the high-pressure inner casing 11. A high-pressure first-stage nozzle 13 is provided at the outlet of the nozzle 12 . 14 is a rotor housed in the high-pressure inner casing 11 and supported by a bearing, and 15 is a rotor blade provided on the rotor. On the other hand, a diaphragm 16 is fixed to the inner wall of the high-pressure inner casing 11 in a structure that can accommodate thermal expansion.
Reference numeral 17 denotes a nozzle blade provided on the diaphragm 16, and a diaphragm packing 18 is attached to the inner surface of the internal diaphragm 16a by a spring force.
It is provided in a state where it is pushed toward 4a.
(The bearing of the rotor 14, the structure that can accommodate thermal expansion of the inner wall of the internal casing 11, the spring of the diaphragm packing 18, etc. are not shown.) FIG. 3 shows the details of the diaphragm packing 18, and On the inner circumferential surface of the stationary support 18a made of Mo steel through which the shaft 14a passes, there are a plurality of ring-shaped rings extending toward the outer circumferential surface of the rotor shaft 14a.
15Cr—Mo steel throttle pieces 18b are provided in a protruding manner and are arranged in parallel in the rotor axial direction. The throttle piece 18b is embedded in the support body 18b and forms a slight gap δ between it and the outer peripheral surface of the rotor shaft 14a, forming a direct labyrinth device.

第2図において、蒸気入口Aから流入した高温
高圧の蒸気は、前記ノズルボツクス12の高圧初
段ノズル13から動翼15に吹付けられるので、
ロータ14は回転する。動翼15を通過した蒸気
は更にダイヤフラム16に設けられたノズル翼1
7を介して次の段のロータ動翼に吹付けられ、順
次B方向に流れる。一方、途中の漏洩蒸気はaか
らbに抜けるが、ダイヤフラムパツキン18の絞
り片18bを通過するとき、この絞り片18bで
形成された前記ラビリンス流路の流路抵抗のた
め、蒸気はそのエネルギを消耗して漏洩量が少く
なる。
In FIG. 2, high-temperature, high-pressure steam that flows in from the steam inlet A is blown onto the rotor blades 15 from the high-pressure first-stage nozzle 13 of the nozzle box 12.
The rotor 14 rotates. The steam that has passed through the rotor blades 15 is further transferred to the nozzle blades 1 provided on the diaphragm 16.
7 to the rotor blades of the next stage, and sequentially flows in the direction B. On the other hand, the leaked steam on the way escapes from a to b, but when passing through the throttle piece 18b of the diaphragm packing 18, the steam loses its energy due to the flow path resistance of the labyrinth passage formed by this throttle piece 18b. As it wears out, the amount of leakage decreases.

次に絞り片の厚みについて説明する。この実施
例では、蒸気入口側の一枚目の絞り片は、蒸気入
口と出口との蒸気圧力差の35%相当の圧力を受け
てもこれに耐える強度を有する厚み2.4mmとした。
そして2枚目は、原則としては、これが受ける圧
力に対応して1枚目よりも薄い絞り片で強度上充
分なはずであるが、実際には、1枚目の絞り片が
蒸気流中に含まれる固体流子によつて浸食を受け
て欠損した場合、2枚目は1枚目の絞り片と同じ
圧力を受けることになるので、2枚目も1枚目と
同じ2.4mmとした。また、3枚目以降は、原則的
には、これらが受ける圧力に対応して順次薄い絞
り片が使用されるのであるが、実際には製作時の
変形等を考慮して、最小厚みの1.6mmに抑えられ
ている。
Next, the thickness of the drawing piece will be explained. In this example, the first restrictor piece on the steam inlet side was 2.4 mm thick and strong enough to withstand pressure equivalent to 35% of the steam pressure difference between the steam inlet and outlet.
As for the second piece, in principle, a thinner piece than the first piece should be sufficient in terms of strength to accommodate the pressure it is subjected to, but in reality, the first piece should be strong enough to handle the pressure it receives. If the second piece is damaged due to erosion due to the solid flow particles contained therein, the second piece will be subject to the same pressure as the first piece, so the second piece was set to have the same diameter as the first piece, 2.4 mm. Additionally, from the third sheet onwards, in principle, thinner drawing pieces are used in order to accommodate the pressure they are subjected to, but in reality, taking into account deformation during manufacturing, etc., the minimum thickness is 1.6 mm. It is suppressed to mm.

従つて、この実施例におけるラビリンスシール
装置の絞り片は、各絞り片に作用する流体圧力に
応じた厚みを有するから、欠損事故を起すことが
ない。また、支持体18aの絞り片植込み部長さ
を75mmとし、総ての絞り片を同じ2.4mm厚みで構
成するものとしたら絞り片枚数は15枚となるが、
これに対し、この実施例では17枚とすることがで
きるので、それだけシール効果が高まり、タービ
ン効率を向上させることができる。
Therefore, since the throttle pieces of the labyrinth seal device in this embodiment have a thickness corresponding to the fluid pressure acting on each throttle piece, breakage accidents will not occur. Furthermore, if the length of the aperture piece embedded part of the support body 18a is 75 mm, and all the aperture pieces are constructed with the same thickness of 2.4 mm, the number of aperture pieces will be 15.
In contrast, in this embodiment, the number can be 17, which increases the sealing effect and improves the turbine efficiency.

第4図は、本発明の他の実施例を示している。
この実施例が前記第3図の実施例と異なる点は、
絞り片18bが支持体18bからこれと一体に削
り出しにより形成されている点である。従つて、
この実施例においても前記同様の作用と効果とを
達成することができる。
FIG. 4 shows another embodiment of the invention.
This embodiment differs from the embodiment shown in FIG.
The point is that the aperture piece 18b is formed by cutting out integrally with the support body 18b. Therefore,
In this embodiment as well, the same functions and effects as described above can be achieved.

以上は静止体側に絞り片を設けた場合について
述べたが、回転軸側に絞り片を設けても、各絞り
片における圧力分布の関係は全く同じであるか
ら、絞り片の厚みを作用する流体圧力に対応して
異なる厚みとすれば、前記同様の作用と効果とを
達成することができることは明らかである。
The above description has been about the case where the throttle piece is provided on the stationary body side, but even if the throttle piece is provided on the rotating shaft side, the relationship between the pressure distribution in each throttle piece is exactly the same, so the thickness of the throttle piece is It is clear that the same effects and effects as described above can be achieved by having different thicknesses depending on the pressure.

また、以上は直通形のラビリンスシール装置に
ついて説明したが、喰違い形のラビリンスシール
装置についても、絞り片が受ける圧力に対応した
厚みの絞り片を配設すれば、前記と同様の作用と
効果とを達成することができる。
In addition, although the above description has been about a direct-through type labyrinth seal device, the same effect and effect as described above can be achieved with a staggered type labyrinth seal device as well, if a restricting piece is provided with a thickness that corresponds to the pressure that the restricting piece receives. and can be achieved.

以上説明したように、本発明によるラビリンス
シール装置においては、絞り片がその強度不足の
ため欠損事故を起すおそれは全くない。また、絞
り片の枚数を増加することができるので、シール
効果が高まり漏洩量が減少するので、効率の向上
を図ることができる。
As explained above, in the labyrinth seal device according to the present invention, there is no possibility that the aperture piece will break due to insufficient strength. Furthermore, since the number of throttle pieces can be increased, the sealing effect is enhanced and the amount of leakage is reduced, so that efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蒸気タービン発電設備の系統図で、合
せて蒸気タービンの縦断面図を示し、第2図は第
1図のE部詳細図、第3図は本発明の一実施例で
ある直通形ラビリンスシール装置の詳細断面図、
第4図は本発明の他の実施例で第3図に対応する
図、第5図は直通形ラビリンスシール装置の各絞
り片における流体圧力分布実測値のグラフを示
す。 14a…ロータ軸、18a…ダイヤフラムパツ
キン支持体(静止体)、18b…絞り片。
Fig. 1 is a system diagram of a steam turbine power generation facility, and also shows a vertical cross-sectional view of the steam turbine, Fig. 2 is a detailed view of section E in Fig. 1, and Fig. 3 is a direct connection diagram of an embodiment of the present invention. Detailed cross-sectional view of the labyrinth seal device,
FIG. 4 shows another embodiment of the present invention and corresponds to FIG. 3, and FIG. 5 shows a graph of actual measured values of the fluid pressure distribution in each throttle piece of the direct labyrinth seal device. 14a...Rotor shaft, 18a...Diaphragm packing support (stationary body), 18b...Aperture piece.

Claims (1)

【特許請求の範囲】 1 回転軸外周面と該回転軸が貫通する静止体の
内周面との対向する二面間において、該対向する
両面の双方の面又は何れか一面から対向面に向け
て突設し軸方向に並設した複数枚のリング状絞り
片が、対向面との間に僅かな間隙を形成して成る
ラビリンスシール装置において、前記絞り片の厚
みを夫々に作用する流体圧力に対応し、流体圧力
の高い程、肉厚を厚く形成したことを特徴とする
ラビリンスシール装置。 2 前記絞り片は、前記回転軸又は静止体に植設
されていることを特徴とする特許請求の範囲第1
項記載のラビリンスシール装置。 3 前記絞り片は、前記回転軸又は静止体と一体
に削成されていることを特徴とする特許請求の範
囲第1項記載のラビリンスシール装置。
[Claims] 1. Between the two opposing surfaces of the outer circumferential surface of the rotating shaft and the inner circumferential surface of the stationary body through which the rotating shaft passes, from both or any one of the opposing surfaces toward the opposing surface. In a labyrinth seal device in which a plurality of ring-shaped throttle pieces protruding from each other and arranged in parallel in the axial direction form a small gap between them and the opposing surfaces, the fluid pressure acting on each of the ring-shaped throttle pieces changes the thickness of the respective ring-shaped throttle pieces. This labyrinth seal device is characterized by a wall that is thicker as the fluid pressure increases. 2. Claim 1, wherein the throttle piece is implanted in the rotating shaft or the stationary body.
The labyrinth seal device described in section. 3. The labyrinth seal device according to claim 1, wherein the throttle piece is cut integrally with the rotating shaft or the stationary body.
JP14389881A 1981-09-14 1981-09-14 Labyrinth seal Granted JPS5846265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14389881A JPS5846265A (en) 1981-09-14 1981-09-14 Labyrinth seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14389881A JPS5846265A (en) 1981-09-14 1981-09-14 Labyrinth seal

Publications (2)

Publication Number Publication Date
JPS5846265A JPS5846265A (en) 1983-03-17
JPS633198B2 true JPS633198B2 (en) 1988-01-22

Family

ID=15349617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14389881A Granted JPS5846265A (en) 1981-09-14 1981-09-14 Labyrinth seal

Country Status (1)

Country Link
JP (1) JPS5846265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499897U (en) * 1991-02-06 1992-08-28

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106104A (en) * 1990-10-11 1992-04-21 General Electric Company Constant pressure drop multiple stage brush seal
JP7281991B2 (en) * 2019-07-23 2023-05-26 三菱重工業株式会社 sealing member and rotary machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS436830Y1 (en) * 1967-07-18 1968-03-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS436830Y1 (en) * 1967-07-18 1968-03-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499897U (en) * 1991-02-06 1992-08-28

Also Published As

Publication number Publication date
JPS5846265A (en) 1983-03-17

Similar Documents

Publication Publication Date Title
EP0976913B1 (en) Steam turbine having a brush seal assembly
US6578849B2 (en) Sealing configuration, in particular for a rotary machine
US6345952B1 (en) Steam turbine
US5259727A (en) Steam turbine and retrofit therefore
JP2001123803A (en) Sealing device, steam turbine having the device, and power generating plant
CN106437857B (en) The equipment of screw path type steam turbine and application screw path type steam turbine
US4545725A (en) Stress corrosion cracking proof steam turbine
US5026075A (en) Radial seal
Bhatt et al. Performance enhancement in coal fired thermal power plants. Part II: steam turbines
JPS633198B2 (en)
US3915588A (en) Two-shell axial-plane split casing structure for high-capacity low-pressure sections of a steam turbine
US5577885A (en) Condensing turbine having at least two seals for sealing off the turbine casing
PL183594B1 (en) Method of and apparatus for compensating axial forces in a rotor-type machine
US6851927B2 (en) Fluid-flow machine with high-pressure and low-pressure regions
Kostyuk et al. Influence of the operational wear of the stator parts of shroud seals on the economic efficiency of the steam turbines
JPS6259208B2 (en)
US20150167486A1 (en) Axially faced seal system
JPS5974310A (en) Steam turbine plant
WO2019135838A1 (en) Controlled flow guides for turbines
Campbell et al. The Eddystone superpressure unit
Lisyanskii et al. Practical experience with the introduction of honeycomb shroud seals on 250–800 MW supercritical pressure units
US1543172A (en) Elastic-fluid turbine
US20210180468A1 (en) Stress mitigating arrangement for working fluid dam in turbine system
US4832566A (en) Axial flow elastic fluid turbine with inlet sleeve vibration inhibitor
US2300758A (en) Blading and balancing piston arrangement