JPS63319069A - Method for removing impurity from superconductive material - Google Patents

Method for removing impurity from superconductive material

Info

Publication number
JPS63319069A
JPS63319069A JP62154867A JP15486787A JPS63319069A JP S63319069 A JPS63319069 A JP S63319069A JP 62154867 A JP62154867 A JP 62154867A JP 15486787 A JP15486787 A JP 15486787A JP S63319069 A JPS63319069 A JP S63319069A
Authority
JP
Japan
Prior art keywords
superconductive
substance
superconducting
superconductive material
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62154867A
Other languages
Japanese (ja)
Inventor
Kenji Shimizu
清水 賢司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Original Assignee
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Valqua Industries Ltd, Nihon Valqua Kogyo KK filed Critical Nippon Valqua Industries Ltd
Priority to JP62154867A priority Critical patent/JPS63319069A/en
Publication of JPS63319069A publication Critical patent/JPS63319069A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/021Separation using Meissner effect, i.e. deflection of superconductive particles in a magnetic field

Abstract

PURPOSE:To isolate a pure superconductive material by impressing a magnetic field on a superconductive material placed in a cooling medium such as liquefied nitrogen or liquefied helium to separate the non-superconductive material contained in the superconductive material. CONSTITUTION:A magnetic field is impressed on the superconductive material placed in a cooling medium such as liquefied nitrogen or liquefied helium. Under such conditions, the superconductive substance is kept in a superconductive state, hence diamagnetism is produced against a magnetic flux, and the substance is floated up to the upper part of the vessel. Meanwhile, the non- superconductive material goes to the bottom since the cooling medium such as liquefied nitrogen has a sp.gr. of 0.8, and the superconductive substance and the non-superconductive material are separated. The non-superconductive material is removed by opening the bottom of the vessel, and the superconductive substance can be isolated. The superconductive substance has a critical temp. inherent in the substance, and the cooling medium is selected from liquefied nitrogen and liquefied helium in accordance with the desired superconductive substance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超電導線などに利用される超電導材料の不純
物除去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing impurities from superconducting materials used in superconducting wires and the like.

(従来技術) 超電導物質には、セラミック系、金属系、有機物系があ
り、これらのほとんどは合成技術によって作られている
。合成技術によるため超電導材料には、不純物すなわち
非超電導材料の含有を斥けることができずそのために、
超電導現象を示す温度(臨界1!度)を下げたり臨界電
流密度、臨界m場の臨界値以上になってしまい工業化へ
のネックとなっている。
(Prior Art) Superconducting materials include ceramic, metal, and organic materials, and most of these are made using synthetic technology. Because it is based on synthesis technology, superconducting materials cannot exclude impurities, that is, non-superconducting materials.
The temperature at which superconductivity occurs (critical 1! degree) is lowered, and the critical current density and critical m-field exceed the critical values, creating a bottleneck for industrialization.

(発明が解決しようとする問題点・目的)本発明は、超
電導材料中に含まれる非超電導材料を除去して、超電導
物質の固有の臨界値になったときに超電導状態を生じせ
しめる超電導材料の不純物除去方法である。
(Problems and Objectives to be Solved by the Invention) The present invention provides a superconducting material that produces a superconducting state when a critical value unique to the superconducting material is reached by removing non-superconducting materials contained in the superconducting material. This is an impurity removal method.

(問題点を解決するための手段) 本発明は、液体窒素又は液体ヘリウム等の冷却媒体中に
超電導vi料を入れて、この超電導材料に臨界を与えて
超電導材料中に含まれる非超電導材料を分離し、純粋な
超電導物質を得るものである。
(Means for Solving the Problems) The present invention involves placing a superconducting VI material in a cooling medium such as liquid nitrogen or liquid helium, and imparting criticality to the superconducting material to remove non-superconducting materials contained in the superconducting material. It separates and obtains pure superconducting material.

超電導物質は、超電導現象を生じる臨界温度以下におい
ては、臨界をかけると磁束を排斥する性質(反磁性)を
生じ、一方非超電導材料は。
Superconducting materials exhibit the property of rejecting magnetic flux (diamagnetism) when critical temperature is applied below the critical temperature at which superconductivity occurs, whereas non-superconducting materials exhibit the property of rejecting magnetic flux (diamagnetism).

反磁性を生じないので本発明においては、この性質を利
用して、超電導材料中の不純物を除去するものである。
Since diamagnetism does not occur, this property is utilized in the present invention to remove impurities in the superconducting material.

超電導材料としては、従来知られているイツトリウム系
(イツトリウム−Cu−Ba−Mi。
The conventionally known superconducting material is yttrium-based (yttrium-Cu-Ba-Mi).

臨界温度95°K)、ランタン系(ランタン−CLJ−
Ba (Sr)−1素、臨界温度38 K)などのセラ
ミック系超電導材料、Nb−Ti(臨界温度8〜10’
  K) 、 、Nb−T iにタンタル、バナジウム
、ハウニウム等の第3元素を添加したもの、Nb−Zr
、Nb−8u、V−Caなどの金属系超電導材料、およ
び(TMTSF)2X(但しXはAsF6 、ClO2
などの無機陰イオン)などの有機物系超電導材料が対蒙
となる。
critical temperature 95°K), lanthanum series (lanthanum-CLJ-
Ceramic superconducting materials such as Ba (Sr)-1 (critical temperature 38 K), Nb-Ti (critical temperature 8-10'
K), , Nb-Ti added with a third element such as tantalum, vanadium, haunium, etc., Nb-Zr
, Nb-8u, V-Ca, and (TMTSF)2X (where X is AsF6, ClO2
Organic superconducting materials such as inorganic anions (such as inorganic anions) are suitable.

超電導材料は、粉体状であり、これを多孔構造又は細か
い網目状の容器に入れ、この容器を冷fiIti1体例
えば、液体窒素の温度−197℃のタンクに入れる。つ
いで、このタンクの中または外側から容器中の超電導材
料に対して磁界をかける。この状態においては、超電導
物質は超電導状態になると共に磁束に対して反磁性を生
じて容器の上方へ浮いて行き、一方非超電導材料は、冷
却媒体例えば液体窒素の比重が0.8であるから、容器
の底へ沈んでいき、超電導物質と非超電導材料とが分離
した状態となる。ついで容器の底を開いて、非超電導材
料を除去づることによって超電導物質を単離することが
できる。
The superconducting material is in the form of a powder, and is placed in a porous or fine mesh container, and this container is placed in a cold tank, for example, at a temperature of liquid nitrogen of -197°C. Then, a magnetic field is applied to the superconducting material in the container from inside or outside the tank. In this state, the superconducting material becomes superconducting and becomes diamagnetic with respect to the magnetic flux, floating upwards in the container, while the non-superconducting material becomes superconducting because the specific gravity of the cooling medium, such as liquid nitrogen, is 0.8. , it sinks to the bottom of the container, and the superconducting material and non-superconducting material become separated. The superconducting material can then be isolated by opening the bottom of the container and removing the non-superconducting material.

本発明においては、超電導物質は、その物質固有の臨界
温度をもっており、その目的とする超電導物質によって
、液体窒素、液体ヘリウム等の冷却媒体を選択する。
In the present invention, a superconducting material has its own critical temperature, and a cooling medium such as liquid nitrogen or liquid helium is selected depending on the intended superconducting material.

(発明の効果) 液体窒素又は液体ヘリウム等の冷却媒体の中に超電導材
料を入れて、磁界を与え、超電導物質の反磁性を利用し
て、超電導材料から非超電導材料を分離づるものである
から純粋な超電物質が単離することができる。
(Effect of the invention) This is because a superconducting material is placed in a cooling medium such as liquid nitrogen or liquid helium, a magnetic field is applied, and non-superconducting materials are separated from superconducting materials by utilizing the diamagnetic properties of the superconducting material. Pure superelectric materials can be isolated.

従って、超電導物質の固有の臨界温度で超電導現象を生
じることができると共に、超電導線における安定化材と
の複合が容易になり2勺法を小さくづることも可能であ
る。
Therefore, a superconducting phenomenon can occur at the specific critical temperature of the superconducting material, and it is also easy to combine with a stabilizing material in a superconducting wire, making it possible to reduce the size of the two-layer method.

Claims (1)

【特許請求の範囲】[Claims] 液体窒素又は液体ヘリウム等の冷却媒体中に入れた超電
導材料に磁界を与えて超電導材料中に含まれる非超電導
材料を分離することを特徴とする超電導材料の不純物除
去方法
A method for removing impurities from a superconducting material, which comprises applying a magnetic field to a superconducting material placed in a cooling medium such as liquid nitrogen or liquid helium to separate non-superconducting materials contained in the superconducting material.
JP62154867A 1987-06-22 1987-06-22 Method for removing impurity from superconductive material Pending JPS63319069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154867A JPS63319069A (en) 1987-06-22 1987-06-22 Method for removing impurity from superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154867A JPS63319069A (en) 1987-06-22 1987-06-22 Method for removing impurity from superconductive material

Publications (1)

Publication Number Publication Date
JPS63319069A true JPS63319069A (en) 1988-12-27

Family

ID=15593654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154867A Pending JPS63319069A (en) 1987-06-22 1987-06-22 Method for removing impurity from superconductive material

Country Status (1)

Country Link
JP (1) JPS63319069A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430659A (en) * 1987-07-24 1989-02-01 Sumitomo Heavy Industries Screening method for superconductive material
US5049540A (en) * 1987-11-05 1991-09-17 Idaho Research Foundation Method and means for separating and classifying superconductive particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430659A (en) * 1987-07-24 1989-02-01 Sumitomo Heavy Industries Screening method for superconductive material
JPH0312940B2 (en) * 1987-07-24 1991-02-21 Sumitomo Heavy Industries
US5049540A (en) * 1987-11-05 1991-09-17 Idaho Research Foundation Method and means for separating and classifying superconductive particles

Similar Documents

Publication Publication Date Title
Schooley et al. Superconductivity in Semiconducting SrTi O 3
Sterne et al. Higher Tc through metallic inter-layer coupling in Bi2Sr2CaCu2O8
US5149684A (en) Production of a superconductor powder having a narrow melting transition width using a controlled oxygen atmosphere
Forro Out-of-plane resistivity of Bi2Sr2CaCu2O8+ x high temperature superconductor
JPS63319069A (en) Method for removing impurity from superconductive material
Nembach et al. Martensitic transformation in V3Ga foils at low temperatures
US3327370A (en) Process for manufacture of coated superconductive ribbons
Morton High-temperature superconductivity and electron paramagnetic resonance spectroscopy
Sathyamurthy et al. Processing of polycrystalline HTS for high current transport applications
Li et al. Variations of normal state resistivity and Cu2+ localized spin moment in the single crystal Bi2Sr2 CaCU2O8+ x
KR940011363A (en) Improved Manufacturing Method of YBa₂Cu₃O_7-X Superconductor
JPH01100818A (en) High temperature superconducting material
US3262024A (en) Superconductive device
JPH0244057A (en) Ductile superconductive material
US3360485A (en) Superconductor having variable transition temperature
JPH05208898A (en) Production of high-temperature superconductive component
US3351437A (en) Superconductive body of niobium-tin
Schaf et al. Magnetic irreversibility in YBa2Cu3O7− δ/Ag nonrandom composites
JPH01107857A (en) Separation of superconductive material
Ford Landmark Advances and the Current Status of High Temperature Superconductors
Godin et al. Melt-textured ceramic superconductors: Fast-melt/fast-quench process in a solar furnace
Yamada Bi-based bulk current leads and their applications
Shakhray et al. Superconductivity of Cu/CuOx interface formed by shock-wave pressure
Barbisch et al. Two New Metallic Materials With High Specific Heat for Superconductor Stabilization
WEBB et al. Chemical vapor deposition of high T sub c superconductors[Final Report, 1 May 1975- 31 Dec. 1978]