JPS63318505A - Optical fiber characterized by low dispersion in wide wavelength range - Google Patents

Optical fiber characterized by low dispersion in wide wavelength range

Info

Publication number
JPS63318505A
JPS63318505A JP62153344A JP15334487A JPS63318505A JP S63318505 A JPS63318505 A JP S63318505A JP 62153344 A JP62153344 A JP 62153344A JP 15334487 A JP15334487 A JP 15334487A JP S63318505 A JPS63318505 A JP S63318505A
Authority
JP
Japan
Prior art keywords
refractive index
index difference
core
optical fiber
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62153344A
Other languages
Japanese (ja)
Inventor
Nobuo Kuwaki
伸夫 桑木
Masaharu Ohashi
正治 大橋
Sunao Uesugi
上杉 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62153344A priority Critical patent/JPS63318505A/en
Publication of JPS63318505A publication Critical patent/JPS63318505A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce bending loss without losing low dispersion characteristic in a wide wavelength range by forming an optimized side core having a refractive index higher than that of a clad between an intermediate layer and the clad. CONSTITUTION:The side core 4 having a refractive index higher than that of the clad 3 and lower than that of a core 1 is formed between the intermediate layer 2 and the clad 3. An optical fiber is formed so that the radius ratio of the side core 4 to the layer 2 is 1.3-1.7, the specific refractive index difference ratio of a specific refractive index difference (absolute value) between the layer 2 and the clad 3 to a specific refractive index difference DELTA1 between the core 1 and the clad 3 is 0.3-0.5 and the specific refractive index difference ratio of a specific refractive index difference between the side core 4 and the clad 3 and the specific refractive index difference DELTA1 between the core 1 and the clad 3 is 0.1-0.35. Consequently, bending characteristics can be improved so that no influence is exerted upon the low dispersion characteristics of the fiber in the wide wavelength area.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、広い波長域において低分散を実現し、かつケ
ーブル化におけるマイクロベンディングによる損失増の
影響が小さい光通信用の単一モード光ファイバに関する
ものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to a single mode optical fiber for optical communications that achieves low dispersion in a wide wavelength range and is less affected by increased loss due to microbending during cabling. It is related to.

(従来の技術) 一般に、単一モード光ファイバの伝送帯域は色分散によ
って制限されることが知られている。色分散はファイバ
材料に依存する材料分散とファイバの屈折率分布に依存
する構造分散との和で与えられる。石英系光ファイバの
材料分散は波長1.3μm付近において零になる。従来
の単一モード光ファイバは、構造分散がほぼ零に等しく
なる規格化周波数V値の大きい範囲で製造されているた
め、分散が零となる零分散波長は約1.3μmであり、
この波長において大容量伝送が可能であった。また、近
年、石英系ファイバの損失が最小となる波長1.5μm
付近において、負の大きな構造分散を実現することによ
り、材料分散を打ち消し、零分散波長を1.5μm帯に
シフトした分散シフト光ファイバが実用化されている。
(Prior Art) It is generally known that the transmission band of a single mode optical fiber is limited by chromatic dispersion. Chromatic dispersion is given by the sum of material dispersion that depends on the fiber material and structural dispersion that depends on the refractive index distribution of the fiber. The material dispersion of a silica-based optical fiber becomes zero near a wavelength of 1.3 μm. Conventional single mode optical fibers are manufactured in a large range of normalized frequency V values where the structural dispersion is approximately equal to zero, so the zero dispersion wavelength where the dispersion becomes zero is approximately 1.3 μm.
Large-capacity transmission was possible at this wavelength. In addition, in recent years, the wavelength of 1.5 μm, where the loss of silica fiber is the minimum, has been
Dispersion-shifted optical fibers have been put into practical use in which material dispersion is canceled by realizing a large negative structural dispersion in the vicinity, and the zero dispersion wavelength is shifted to the 1.5 μm band.

しかしながら、これら光ファイバは、ひとつの波長にお
いて零分散を実現しているため、近い将来において実用
化が期待される波長多重大容量伝送方式には適さないと
いう欠点があった。このため、広い波長域において低分
散となる、広波長域低分散光ファイバの研究が精力的に
行なわれている。
However, since these optical fibers achieve zero dispersion at one wavelength, they have the disadvantage that they are not suitable for wavelength multiplexed capacity transmission systems that are expected to be put into practical use in the near future. For this reason, research is being actively conducted on wide wavelength range, low dispersion optical fibers that have low dispersion over a wide wavelength range.

第2図に従来の広波長域低分散光ファイバの一例として
、W形層折率分布光ファイバ(以下、W形光ファイバと
称す)の断面図を示し、第3図には、その屈折率分布を
示す。図中、1はコア、2は中間層、3はクラッドであ
る。また、第4図にW形光ファイバの分散波長特性を理
論計算により求めた一例を示す。尚、ここで行った分散
波長特性の理論計算は特開昭62−52508号公報に
開示されている方法、即ち、光ファイバの屈折率分布を
径方向に多層分割し、各層での電磁界分布を求め、各層
での電磁界成分の境界条件から伝搬定数を数値的に求め
る方法を用いた。W形光ファイバは、広波長域低分散を
実現しつつ、クラッド3のモードカットフィルタとして
の効果により、単一モードで動作するファイバである。
Fig. 2 shows a cross-sectional view of a W-shaped layered index-gradient optical fiber (hereinafter referred to as W-shaped optical fiber) as an example of a conventional wide wavelength range low dispersion optical fiber, and Fig. 3 shows its refractive index. Show the distribution. In the figure, 1 is a core, 2 is an intermediate layer, and 3 is a cladding. Further, FIG. 4 shows an example of the dispersion wavelength characteristics of a W-shaped optical fiber obtained by theoretical calculation. The theoretical calculation of the dispersion wavelength characteristics performed here was performed using the method disclosed in Japanese Patent Application Laid-Open No. 62-52508, in which the refractive index distribution of the optical fiber is divided into multiple layers in the radial direction, and the electromagnetic field distribution in each layer is calculated. We used a method to numerically determine the propagation constant from the boundary conditions of the electromagnetic field components in each layer. The W-type optical fiber is a fiber that operates in a single mode due to the effect of the cladding 3 as a mode cut filter while realizing low dispersion in a wide wavelength range.

第4図より、はぼ波長1.35〜l。6μmにおいて、
分散値σが±3 ps/ka+/na+以内を満足する
ことがわかる。
From FIG. 4, the wavelength is 1.35-1. At 6 μm,
It can be seen that the variance value σ satisfies within ±3 ps/ka+/na+.

第5図に波長1.5〜1.8μmにおいて分散値σが±
2 ps/km/nm以内であるW形光ファイバのモー
ドフィールド径2vと許容曲げ半径Rの関係を示す。こ
こで許容曲げ半径Rは、一様曲げ損失が0.01dB/
kmとなる曲げ径を表す。実用的な光ファイバにおいて
、モードフィールド径2w及び許容曲げ半径Rはm要な
パラメータである。モードフィールド径2Wついては、
低損失接続を可能とするためには、現時点では8μm以
上の値が必要であると考られている。また、許容曲げ半
径Rついては、現在使用されているケーブル構造におい
て、ケーブル化、布設時の損失増を抑えるためには、許
容曲げ半径Rは約6cm以下の値が必要であり、W形光
ファイバのパラメータは、モードフィールド径2W8μ
mにおいて許容曲げ半径Rが最小となるものを選定して
いた。また、第5図のデータを得るために用いたW形光
ファイバは、第3図に示すパラメータがコア1の半径a
lが4.3μm1コア1のクラッド3に対する比屈折率
差Δlが0゜46%、コア1の半径alと中間層2の半
径a2との半径比(al/a2)が0.7、更に中間層
2のクラッド3に対する比屈折率差Δ2と前記コア1の
比屈折率差Δlとの比屈折率差比(Δ2/Δl)が0.
8である従来のものでは最適のものである。
Figure 5 shows that the dispersion value σ is ± at wavelength 1.5 to 1.8 μm.
The relationship between the mode field diameter 2v of a W-shaped optical fiber and the allowable bending radius R, which is within 2 ps/km/nm, is shown. Here, the allowable bending radius R is such that the uniform bending loss is 0.01 dB/
Represents the bending diameter in km. In a practical optical fiber, the mode field diameter 2w and the allowable bending radius R are essential parameters. Regarding mode field diameter 2W,
At present, it is believed that a value of 8 μm or more is required to enable low-loss connections. Regarding the allowable bending radius R, in order to suppress the increase in loss during cable formation and installation in the currently used cable structure, the allowable bending radius R must be approximately 6 cm or less, and W-type optical fiber The parameters are mode field diameter 2W8μ
The one with the minimum allowable bending radius R at m was selected. In addition, the W-shaped optical fiber used to obtain the data in FIG. 5 has the parameters shown in FIG.
The relative refractive index difference Δl of the core 1 with respect to the cladding 3 is 0°46%, the radius ratio (al/a2) between the radius al of the core 1 and the radius a2 of the intermediate layer 2 is 0.7, and the intermediate The relative refractive index difference ratio (Δ2/Δl) between the relative refractive index difference Δ2 of the layer 2 with respect to the cladding 3 and the relative refractive index difference Δl of the core 1 is 0.
The conventional one having a value of 8 is the optimum one.

(発明が解決しようとする問題点) しかしながら、上記W形光ファイバは、第5図より明ら
かな様に、モードフィールド径8μmにおいて、許容曲
げ半径Rが約7 cmとなってしまうため曲げ損失が大
きく実用化するには大きな問題点となっていた。
(Problems to be Solved by the Invention) However, as is clear from FIG. 5, in the W-shaped optical fiber, the allowable bending radius R is approximately 7 cm when the mode field diameter is 8 μm, resulting in bending loss. There were major problems in putting it into practical use.

本発明の目的は、上記問題点に鑑み、モードフィールド
径を大きくしても曲げ損失が小さい広波長域低分散光フ
ァイバを提供することにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a wide wavelength range low dispersion optical fiber that exhibits low bending loss even when the mode field diameter is increased.

(問題点を解決するための手段) 本発明は上記目的を達成するため、コアとクラッドとの
間にクラッドの屈折率よりも低い屈折率を有する中間層
を備えた広波長域低分散光ファイバにおいて、中間層と
クラッドとの間にクラッドの屈折率よりも高い屈折率を
有するサイドコアを設け、サイドコアと中間層との半径
比がり、S〜1.7、中間層のクラッドに対する比屈折
率差(絶対値)とコアのクラッドに対する比屈折率差と
の比屈折率差比が0.3〜065、更に、サイドコアの
クラッドに対する比屈折率差と前記コアの比屈折率差と
の比屈折率差比が0.1−0.35となるように形成し
た。
(Means for solving the problems) In order to achieve the above object, the present invention provides a wide wavelength range low dispersion optical fiber comprising an intermediate layer having a refractive index lower than the refractive index of the cladding between the core and the cladding. , a side core having a refractive index higher than that of the cladding is provided between the intermediate layer and the cladding, the radius ratio of the side core and the intermediate layer is S ~ 1.7, and the relative refractive index difference of the intermediate layer with respect to the cladding is (absolute value) and the relative refractive index difference of the core with respect to the cladding is 0.3 to 065, and furthermore, the relative refractive index difference of the side core with respect to the cladding and the relative refractive index difference of the core is 0.3 to 065. It was formed so that the difference ratio was 0.1-0.35.

(作用) 本発明によれば、中間層とクラッドとの間にクラッドの
屈折率よりも高い屈折率を有し最適化されたサイドコア
を設けることにより、広波長域低分散性を損なうことな
く、大きなモードフィールド径でも曲げ損失を小さくで
きる。
(Function) According to the present invention, by providing an optimized side core having a refractive index higher than the refractive index of the cladding between the intermediate layer and the cladding, without impairing low dispersion in a wide wavelength range, Bending loss can be reduced even with a large mode field diameter.

(実施例) 第1図は、本発明による広波長域低分散光ファイバの断
面図を示し、第6図はその半径方向を拡大した屈折率分
布を示す図であって、従来と同一構成のものは同一符号
を以って表わす。即ち、1はコア、2は中間層、3はク
ラッドである。4は中間層2とクラッド3との間に設け
られたサイドコアである。また、コア1の屈折立設をn
l、中間層2の屈折率をn 2 、クラッド3の屈折率
をR3、サイドコア4の屈折率をI4とすると、各々の
屈折率は下記(1)式の関係を満足している。
(Example) Fig. 1 shows a cross-sectional view of a wide wavelength range low dispersion optical fiber according to the present invention, and Fig. 6 shows a refractive index distribution enlarged in the radial direction. Objects are represented by the same symbols. That is, 1 is a core, 2 is an intermediate layer, and 3 is a cladding. 4 is a side core provided between the intermediate layer 2 and the cladding 3. In addition, the bent vertical position of core 1 is set to n
When the refractive index of the intermediate layer 2 is n 2 , the refractive index of the cladding 3 is R3, and the refractive index of the side core 4 is I4, each refractive index satisfies the relationship of equation (1) below.

nl >I4 >R3>R2・・・(1)また、第6図
に示すようにコア1、中間層2及びサイドコア4のクラ
ッド3に対する比屈折率差(絶対値)はそれぞれΔl、
Δ2及びΔ4であり、コア1、中間層2及びサイドコア
4の半径はal。
nl >I4 >R3>R2 (1) Also, as shown in FIG. 6, the relative refractive index differences (absolute values) of the core 1, intermediate layer 2, and side core 4 with respect to the cladding 3 are Δl,
Δ2 and Δ4, and the radius of the core 1, intermediate layer 2, and side core 4 is al.

I2.I4である。I2. It is I4.

ここで、第6図に示すファイバの構造パラメータのうち
半径について、コア1の半径alと中間層2の半径a2
との半径比をR1,サイドコア4の半径a4と中間層2
の半径a2との半径比をR4として下記の(2) 、 
(3)式のように定義する。
Here, regarding the radius among the structural parameters of the fiber shown in FIG. 6, the radius al of the core 1 and the radius a2 of the intermediate layer 2 are
R1 is the radius ratio between the radius a4 of the side core 4 and the intermediate layer 2.
Assuming the radius ratio of radius a2 to R4, the following (2),
Define as shown in equation (3).

RL −al /a2     =−(2)R4−I4
 /a2    −(3) 更に、各部のクラッド3に対する比屈折率差について、
中間層2の比屈折率差Δ2とコア1の比屈折率差Δlと
の比屈折率差比をI2、サイドコア4の比屈折率差Δ4
とコア1の比屈折率差Δlとの比屈折率差比を14とし
て下記の(4) 、 (5)式のように定義する。
RL-al/a2=-(2)R4-I4
/a2-(3) Furthermore, regarding the relative refractive index difference of each part with respect to the cladding 3,
The relative refractive index difference ratio between the relative refractive index difference Δ2 of the intermediate layer 2 and the relative refractive index difference Δl of the core 1 is I2, and the relative refractive index difference Δ4 of the side core 4
The ratio of the relative refractive index difference Δl of the core 1 to the relative refractive index difference Δl of the core 1 is defined as 14 as shown in the following equations (4) and (5).

I2−Δ2/Δl     ・・・(4)I4−Δ4/
Δl     ・・・(5)第7図は、波長1.55μ
mにおいて許容曲げ半径Rが6c+a以下となる本発明
によるファイバの上記(3) 、 (5)式で定義した
サイドコア4と中間層2との半径比R4とサイドコア4
とコア1との比屈折率差比I4との関係を示したもので
あり、縦軸は半径比R4、横軸は比屈折率差比14を表
わしている。また、このファイバのモードフィールド径
2vは波長1.55μmにおいて8μm1分散値は波長
1.5 um−1,8amにおいて±2 ps/km/
nm以内としである。また前記(2)式で定義したコア
lと中間層2との半径比R1は0.5に設定してあり、
図中、斜線Aで示す領域は中間層2とコア1との比屈折
率差比12とサイドコア4とコア1との比屈折率差比■
4との和が0.5、斜線Bで示す領域は比屈折率差比1
2と比屈折率差比■4との和が0.7となる領域を示し
ており、ここで設定した値は理論的に最適な値として求
められたものである。
I2-Δ2/Δl...(4) I4-Δ4/
Δl...(5) In Figure 7, the wavelength is 1.55μ
The radius ratio R4 between the side core 4 and the intermediate layer 2 defined by the above equations (3) and (5) of the fiber according to the present invention, in which the allowable bending radius R is 6c+a or less at m, and the side core 4
The graph shows the relationship between the relative refractive index difference ratio I4 and the core 1, with the vertical axis representing the radius ratio R4 and the horizontal axis representing the relative refractive index difference ratio 14. In addition, the mode field diameter 2v of this fiber is 8 μm at a wavelength of 1.55 μm, and the dispersion value is ±2 ps/km/
It is within nm. Furthermore, the radius ratio R1 between the core l and the intermediate layer 2 defined by the above equation (2) is set to 0.5,
In the figure, the area indicated by diagonal lines A is the relative refractive index difference ratio 12 between the intermediate layer 2 and the core 1 and the relative refractive index difference ratio ■ between the side core 4 and the core 1.
The sum of 4 and 4 is 0.5, and the area indicated by diagonal line B has a relative refractive index difference ratio of 1.
2 and the relative refractive index difference ratio ■4 is 0.7, and the value set here was determined as the theoretically optimum value.

第7図から明らかなように、クラッド3に対するサイド
コア4の比屈折率差Δ4とコア1の比屈折率差Δ1との
比屈折率差比I4  (Δ4/Δl)の値を0.1〜0
.35、サイドコア4の半径a4と中間層2の半径a2
との半径比R4(a4/a2)の値を1.3〜1.7の
間に設定することにより許容曲げ半径Rを波長1.55
μmにおいて6cm以下とすることが可能である。また
比屈折率差比■2とI4との和が0.5及び0.7であ
る斜線領域A及びBの比屈折率差比14の値がほぼ0.
1〜0.2及び0.2〜0.35であることから、クラ
ッド3に対する中間層2の比屈折率差Δ2とコアlの比
屈折率差△lとの比屈折率差比12の値を0,3〜0.
5の間に設定すれば良いことがわかる。
As is clear from FIG. 7, the value of the relative refractive index difference ratio I4 (Δ4/Δl) between the relative refractive index difference Δ4 of the side core 4 with respect to the cladding 3 and the relative refractive index difference Δ1 of the core 1 is set to 0.1 to 0.
.. 35. Radius a4 of side core 4 and radius a2 of intermediate layer 2
By setting the value of the radius ratio R4 (a4/a2) between 1.3 and 1.7, the allowable bending radius R can be adjusted to a wavelength of 1.55.
It is possible to make it 6 cm or less in μm. Further, the value of the relative refractive index difference ratio 14 in the shaded areas A and B, where the sum of the relative refractive index difference ratio 2 and I4 is 0.5 and 0.7, is approximately 0.
1 to 0.2 and 0.2 to 0.35, the value of the relative refractive index difference ratio 12 between the relative refractive index difference Δ2 of the intermediate layer 2 with respect to the cladding 3 and the relative refractive index difference Δl of the core I. 0.3~0.
It turns out that it is best to set it between 5 and 5.

本実施例によれば、中間層2とクラッド3との間にクラ
ッド3の屈折率よりも高く、コア1よりも低い屈折率を
有するサイドコア4を設け、サイドコア4と中間層2と
の半径比がR4が1.3〜1.7、中間層2のクラッド
3に対する比屈折率差Δ2 (絶対値)とコア1のクラ
ッド3に対する比屈折率差Δlとの比屈折率差比I2が
0,3〜0.5、更に、サイドコア4のクラッド3に対
する比屈折率差Δ4と前記コア1の比屈折率差Δ1との
比屈折率差比■4が0.1−0.35となるように形成
することにより、ファイバの広波長域低分散性に影響を
与えないように曲げ特性を改善でき、波長多重大容量伝
送方式に適用できる実用的な広波長域低分散光ファイバ
を実現できる。
According to this embodiment, a side core 4 having a refractive index higher than that of the cladding 3 and lower than that of the core 1 is provided between the intermediate layer 2 and the cladding 3, and the radius ratio of the side core 4 and the intermediate layer 2 is R4 is 1.3 to 1.7, and the relative refractive index difference ratio I2 between the relative refractive index difference Δ2 (absolute value) of the intermediate layer 2 with respect to the cladding 3 and the relative refractive index difference Δl of the core 1 with respect to the cladding 3 is 0, 3 to 0.5, and further so that the relative refractive index difference ratio 4 between the relative refractive index difference Δ4 of the side core 4 with respect to the cladding 3 and the relative refractive index difference Δ1 of the core 1 is 0.1 to 0.35. By forming this, the bending characteristics can be improved so as not to affect the wide wavelength range low dispersion property of the fiber, and a practical wide wavelength range low dispersion optical fiber that can be applied to a wavelength division multiplexing capacity transmission system can be realized.

(発明の効果) 以上説明したように、本発明によれば、広波長域低分散
性を損なうことなく、広いモードフィールド径において
、曲げ特性を大幅に改善できるので、波長多重大容量伝
送方式に適用できる実用的な広波長域低分散光ファイバ
を実現できる利点がある。
(Effects of the Invention) As explained above, according to the present invention, the bending characteristics can be significantly improved in a wide mode field diameter without impairing the low dispersion property in a wide wavelength range. It has the advantage of realizing a practical wide wavelength range low dispersion optical fiber that can be applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による広波長域低分散光ファイバを示す
断面図、第2図は従来の広波長域低分散光ファイバの断
面図、第3図は従来の光ファイバの屈折率分布を示す図
、第4図は従来の光ファイバの分散波長特性を示す図、
第5図は従来の光ファイバのモードフィールド径と許容
曲げ半径の関係を示す図、第6図は本発明による光ファ
イバの屈折率分布を示す図、第7図は本発明による光フ
ァイバの許容曲げ半径が6 am以下となる比屈折率差
比と半径比の関係を示す図である。 図中、1・・・コア、2・・・中間層、3・・・クラッ
ド、4・・・サイドコア。
Fig. 1 is a cross-sectional view showing a wide wavelength range low dispersion optical fiber according to the present invention, Fig. 2 is a cross sectional view of a conventional wide wavelength range low dispersion optical fiber, and Fig. 3 shows the refractive index distribution of the conventional optical fiber. Figure 4 is a diagram showing the dispersion wavelength characteristics of a conventional optical fiber.
FIG. 5 is a diagram showing the relationship between the mode field diameter and the allowable bending radius of a conventional optical fiber, FIG. 6 is a diagram showing the refractive index distribution of the optical fiber according to the present invention, and FIG. 7 is a diagram showing the allowable bending radius of the optical fiber according to the present invention. FIG. 3 is a diagram showing the relationship between the relative refractive index difference ratio and the radius ratio so that the bending radius is 6 am or less. In the figure, 1...core, 2...middle layer, 3...cladding, 4...side core.

Claims (1)

【特許請求の範囲】 コアとクラッドとの間にクラッドの屈折率よりも低い屈
折率を有する中間層を備えた広波長域低分散光ファイバ
において、 中間層とクラッドとの間にクラッドの屈折率よりも高い
屈折率を有するサイドコアを設け、サイドコアと中間層
との半径比が1.3〜1.7、中間層のクラッドに対す
る比屈折率差(絶対値)とコアのクラッドに対する比屈
折率差との比屈折率差比が0.3〜0.5、更に、サイ
ドコアのクラッドに対する比屈折率差と前記コアの比屈
折率差との比屈折率差比が0.1〜0.35となるよう
に形成した ことを特徴とする広波長域低分散光ファイバ。
[Claims] In a wide wavelength range low dispersion optical fiber comprising an intermediate layer between a core and a cladding having a refractive index lower than that of the cladding, the refractive index of the cladding is between the intermediate layer and the cladding. A side core having a higher refractive index than that of The relative refractive index difference ratio between the side core and the cladding is 0.3 to 0.5, and the relative refractive index difference ratio between the side core and the cladding is 0.1 to 0.35. A wide wavelength range low dispersion optical fiber characterized by being formed so as to have the following characteristics.
JP62153344A 1987-06-22 1987-06-22 Optical fiber characterized by low dispersion in wide wavelength range Pending JPS63318505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153344A JPS63318505A (en) 1987-06-22 1987-06-22 Optical fiber characterized by low dispersion in wide wavelength range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153344A JPS63318505A (en) 1987-06-22 1987-06-22 Optical fiber characterized by low dispersion in wide wavelength range

Publications (1)

Publication Number Publication Date
JPS63318505A true JPS63318505A (en) 1988-12-27

Family

ID=15560419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153344A Pending JPS63318505A (en) 1987-06-22 1987-06-22 Optical fiber characterized by low dispersion in wide wavelength range

Country Status (1)

Country Link
JP (1) JPS63318505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848266A1 (en) * 1996-12-12 1998-06-17 Sumitomo Electric Industries, Ltd Single-mode optical fiber
EP0856754A1 (en) * 1997-01-29 1998-08-05 Sumitomo Electric Industries, Ltd. Single-mode optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848266A1 (en) * 1996-12-12 1998-06-17 Sumitomo Electric Industries, Ltd Single-mode optical fiber
EP0856754A1 (en) * 1997-01-29 1998-08-05 Sumitomo Electric Industries, Ltd. Single-mode optical fiber

Similar Documents

Publication Publication Date Title
US5553185A (en) Controlled dispersion optical waveguide
CA2157828C (en) Dispersion compensating optical fiber for wavelength division multiplex transmission
EP0674193B1 (en) Dispersion compensating optical fiber and optical transmission system including such fiber
JP3320745B2 (en) Dispersion flat optical fiber
JP4847659B2 (en) Chromatic dispersion compensating optical fiber
JP4065716B2 (en) Positive dispersion optical fiber with wide effective area
US7519255B2 (en) Optical fiber
US5732178A (en) Single-mode optical fiber
JPH0318161B2 (en)
KR20010088808A (en) Dispersion compensating fiber
KR19990087046A (en) Single mode optical waveguide with large effective area
JP2001116947A (en) Optical fiber and optical transmission system
JP2988571B2 (en) Dispersion compensating optical fiber
JP2002522812A (en) Dispersion shifted single mode optical fiber with outer ring
JP4252894B2 (en) Dispersion and dispersion slope compensating optical fiber and transmission link including the same
US5913005A (en) Single-mode optical fiber
JP5112582B2 (en) Fiber for chromatic dispersion compensation of NZ-DSF fiber with positive chromatic dispersion
US6612756B1 (en) Dispersion shifted fiber for wavelength division multiplex fiber optic transmission systems
JP3932246B2 (en) Waveguide fiber with high zero dispersion.
JP2000206355A (en) Optical fiber with low wave-length dispersion gradient
JPS63318505A (en) Optical fiber characterized by low dispersion in wide wavelength range
KR20030026340A (en) Optical fiber with large effective area, low dispersion and low dispersion slope
JP2002526807A (en) Optical fiber usable for wavelength division multiplex transmission system
EP1156350A1 (en) Optical fiber, dispersion compensator comprising the same, optical transmission line, and optical transmission system
JP3808290B2 (en) Dispersion-shifted optical fiber