JPS63317662A - Method for heating in vacuum - Google Patents

Method for heating in vacuum

Info

Publication number
JPS63317662A
JPS63317662A JP15199787A JP15199787A JPS63317662A JP S63317662 A JPS63317662 A JP S63317662A JP 15199787 A JP15199787 A JP 15199787A JP 15199787 A JP15199787 A JP 15199787A JP S63317662 A JPS63317662 A JP S63317662A
Authority
JP
Japan
Prior art keywords
vacuum
heating
patterns
shape
shapes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15199787A
Other languages
Japanese (ja)
Inventor
Takeshi Yamazaki
猛 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP15199787A priority Critical patent/JPS63317662A/en
Publication of JPS63317662A publication Critical patent/JPS63317662A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate miniaturization and use even if a large current is needed and to rapidly and exactly execute heating in a vacuum by forming metallized films which can be energized in patterns of wire shapes, etc., on the surface layer of ceramics parts (porcelain) having adequate shapes and using these films as a heat generating source. CONSTITUTION:Heaters 6 formed by using the metallized films in the wire or stripe pattern shapes formed on the surface layer or the intermediate layer of the porcelain essentially of alumina or silica, etc., and having a flat plate, curved plate shape or cylindrical, pot or other shapes in the respective parts of which have nearly a plate shape as heat generating elements is used for heating a crucible 3, etc., in a vacuum. The above-mentioned patterns are formed to such widths at which the patterns are denser in the outside circumferential part than in the central part. The heaters can be thereby formed to comply with the shape of the material to be heated such as crucible 3; in addition, the shape of the patterns of the heat generating elements is free and the temp. control is exactly and rapidly executable. The miniaturization is possible and the use is easy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、真空中における物体の加熱方法に関するもの
である。特に真空中において使用が容易であり、かつ、
熱効率のよいヒーターを用いた加熱方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of heating an object in a vacuum. It is easy to use, especially in a vacuum, and
This invention relates to a heating method using a heater with good thermal efficiency.

(従来の技術) 高真空中や、多少のガスを含む低真空中で、物体の加熱
を必要とすることは極めて多い。特に物質の融解や蒸発
などを含め、相当な高温を必要とすることも多く、この
場合加熱法に関しては、真空中なるが故の独得の問題も
少なくない。例えば、真空蒸着装置の蒸発源のヒーター
には、従来多くの場合、金属の線材、板材が用いられた
。すなわち、W、T a、M o等の高融点金属を籠状
あるいはボート状等の、蒸発物を1采持しつつ加熱でき
る形状にして、この中に蒸発物をそのまま直接入れるか
、あるいは、別の坩堝を介して間接に入れ、前記籠ある
いはボートに通電して、昇温蒸発させる。
(Prior Art) It is very often necessary to heat an object in a high vacuum or in a low vacuum containing some gas. In particular, considerable high temperatures are often required, including melting and evaporation of substances, and in this case, the heating method has many unique problems due to being in a vacuum. For example, metal wires or plates have conventionally been used in many cases as heaters for evaporation sources in vacuum evaporation apparatuses. That is, a high-melting point metal such as W, Ta, Mo, etc. is made into a cage-like or boat-like shape that can be heated while holding one container of evaporated material, and the evaporated material is directly placed therein, or, It is indirectly put into another crucible, and electricity is applied to the basket or boat to raise the temperature and evaporate it.

(本発明が解決しようとする問題点) しかし、ここに述べた従来の方法は、必ずしも満足でき
るものではなかった。例えば、直接金属を入れて加熱す
る場合、加熱溶融時に、溶融物と、ヒーターである籠あ
るいはボートの金属とが、合金(しし、ヒーター材が侵
食され、あるいは残留ガス等と反応し消耗し、材料の4
f1合わせによっては、1回の蒸発で使用不能となるこ
とも珍しくない。
(Problems to be Solved by the Present Invention) However, the conventional methods described herein were not necessarily satisfactory. For example, when heating metal directly, the molten material and the metal of the cage or boat that serves as the heater may erode the alloy, or react with residual gas, etc., and be consumed. , material 4
Depending on the f1 adjustment, it is not uncommon for the product to become unusable after one evaporation.

これらはヒーター材が蒸着材料や蒸発させている時の雰
囲気に直接裸で晒されていることによる。
These problems are caused by the fact that the heater material is directly exposed to the vapor deposition material and the atmosphere during vaporization.

同じ理由で、ヒータ材が蒸発物に混入し、製品を劣化さ
せることもある。
For the same reason, heater materials can also mix with the evaporated material and degrade the product.

これらの欠点を除くために、ヒータ材に化学的に安定な
高融点物質をコーティングした例もあるが、真空中で高
温に上げるため、熱の放散が悪く、局部的に高温になり
易くコーティング層に割れ、はがれ等が起り易かった。
In order to eliminate these drawbacks, there are examples in which the heater material is coated with chemically stable high-melting-point substances, but since the temperature is raised to high temperatures in a vacuum, heat dissipation is poor and localized high temperatures tend to occur. It was easy to crack, peel, etc.

真空中で、高温に上げることを目的とするため、多量の
絶縁物などの構造材料を使用することは不利なので、ヒ
ーター自体で、高温時でも機械的強度を保つことが要求
される。しかし、抵抗値を大きくすることが困難であり
、しかも、蒸発させるため大きな電力が必要であるので
1Ω以下の抵抗に10OAあるいは数10OAの大電流
になることが多く、電源は大型になり、結線等も容易で
はない。
Since the purpose is to raise the temperature to a high temperature in a vacuum, it is disadvantageous to use a large amount of structural materials such as insulators, so the heater itself is required to maintain mechanical strength even at high temperatures. However, it is difficult to increase the resistance value, and moreover, a large amount of power is required to evaporate it, so a resistance of 1 Ω or less often requires a large current of 10 OA or several 10 OA, resulting in a large power supply and wiring. etc. is not easy.

籠やボートなどの中へ別の坩堝をいれて、間接に加熱す
る場合、ヒーターと蒸発物との触れ合いを減少させるこ
とができる。しかし、真空中であるため、熱の伝導が悪
いこともあり、ヒーターに対する負荷は増すことになる
。またヒーター線と坩堝の保持機構は複雑になり、絶縁
部品の破損、絶縁不良等が起り易く、信頼性に欠ける。
When heating indirectly by placing a separate crucible in a basket or boat, contact between the heater and the evaporated material can be reduced. However, since it is in a vacuum, heat conduction may be poor, which increases the load on the heater. Furthermore, the holding mechanism for the heater wire and the crucible becomes complicated, and damage to insulating parts and poor insulation are likely to occur, resulting in a lack of reliability.

更に熱効率の問題や不必要なガス放出の回避、真空容器
を小さくし、ポンプによる被排気ガス量の減少、などの
理由で小型化が望ましいが、組立、保守作業の面から小
型化は非常に困難である。
Furthermore, downsizing is desirable for reasons such as thermal efficiency issues, avoiding unnecessary gas emissions, and reducing the amount of gas exhausted by the pump by making the vacuum container smaller, but downsizing is extremely difficult in terms of assembly and maintenance work. Have difficulty.

第2図は従来使われている間接加熱方式による真空蒸着
装置の蒸発源の1例である。ヒーター線1はコイル状で
、絶縁物の支持体2に支えられ坩堝3の周囲に配置され
ている。この型の蒸発源は、電力を有効に利用するため
と、不必要な範囲まで加熱して、余分なガス放出を起こ
さないようにヒーターの外周を熱反射板4で囲んでいる
。なお、図中5は、坩堝3の温度を測るための熱電対で
ある。
FIG. 2 shows an example of a conventional evaporation source for a vacuum evaporation apparatus using an indirect heating method. The heater wire 1 has a coil shape, is supported by an insulating support 2, and is arranged around the crucible 3. In this type of evaporation source, the outer periphery of the heater is surrounded by a heat reflecting plate 4 in order to use electric power effectively and to prevent heating to an unnecessary extent and causing excess gas release. Note that 5 in the figure is a thermocouple for measuring the temperature of the crucible 3.

図においては、詳細にわたる具体的な部分は省略されて
いるが、ヒーター線の形状を高温時でも保ち、ヒーター
材料の再結晶温度を越えた以後の変形に耐え、更にヒー
ター線間や、絶縁物を固定するための金属どの間の短絡
を防ぐなど種々の工夫が凝らされている。図中では、そ
の一部として熱反射板4の構造が示されている。この構
造からも容易に想像されるように、吸着ガスなどの放出
は、ある程度は避けられず、熱反射板4はあまり小さく
はできない。このように複雑であり、大きくなり易いた
め組立、保守、使用時の操作も不便であった。
Although detailed specific parts are omitted in the figure, the shape of the heater wire is maintained even at high temperatures, it is resistant to deformation after the recrystallization temperature of the heater material is exceeded, and the shape of the heater wire is Various measures have been taken to prevent short circuits between the metal parts used to fix the parts. In the figure, the structure of the heat reflecting plate 4 is shown as a part thereof. As can be easily imagined from this structure, release of adsorbed gas and the like is unavoidable to some extent, and the heat reflecting plate 4 cannot be made very small. Since it is complicated and tends to be large, it is also inconvenient to assemble, maintain, and operate during use.

また、大気中における加熱手段として、セラミックを基
板とし、それに誘電体を焼き付けてなる発熱体に間して
特開昭49−43239号公報所載の発明が知られてい
る。
Furthermore, as a heating means in the atmosphere, an invention disclosed in Japanese Patent Application Laid-open No. 49-43239 is known, which uses a heating element made of a ceramic substrate and a dielectric material baked thereon.

しかし、真空中においては対流による熱放散とヒーター
板面内の温度分布向上が期待できない為、上記発明に係
る第2図に示すようにパターン巾が均一な場合、これを
真空中において使用したとき大幅に耐熱性が低下すると
いう問題がある。
However, in a vacuum, heat dissipation due to convection and improvement in temperature distribution within the surface of the heater plate cannot be expected, so when the pattern width is uniform as shown in Figure 2 according to the above invention, when this is used in a vacuum. There is a problem that heat resistance is significantly reduced.

(発明の目的) 本発明の目的は、大電流を必要とし、しかも装置の寿命
の短くなりがちな真空中加熱法を改善し、更に小型化が
容易で、組立、保守まで含めて操作の容易な真空中加熱
法を提供することにある。
(Objective of the Invention) The object of the present invention is to improve the heating method in vacuum, which requires a large current and tends to shorten the life of the device, and to facilitate miniaturization and ease of operation including assembly and maintenance. The object of the present invention is to provide a method of heating in vacuum.

(発明の構成) この目的を達成するために本発明においては、平板、湾
曲した板状、あるいは筒形、壺形など、各部分がほぼ板
状をなすセラミック部品の表面層あるいは中間層に付け
られ、線状あるいは縞模様状のパターンであってそのパ
ターン巾を当該パターンの中心部より外周部の方が密に
なるように形成した通電可能なメタライズ膜を発熱源と
して使用している。
(Structure of the Invention) In order to achieve this object, in the present invention, a ceramic component is attached to a surface layer or an intermediate layer of a ceramic component having a substantially plate shape, such as a flat plate, a curved plate shape, a cylinder shape, or a pot shape. As a heat source, a metallized film that can conduct electricity is used as a heat source.The metallized film is formed in a linear or striped pattern so that the width of the pattern is denser at the outer periphery than at the center of the pattern.

すなわち、アルミナやシリカあるいはチタニャやジルコ
ニヤナイトライドあるいはこれらの混合組成物を主成分
とする磁器の表面に線状あるいは縞模様のメタライズ膜
をつけ、本発明にとって必ずしも不可欠ではないが、普
通は更にメタライズ膜の上を絶縁物層で覆う。これをヒ
ーターとして利用し真空中における加熱に使用する。
That is, a linear or striped metallized film is applied to the surface of porcelain whose main component is alumina, silica, titania, zirconia nitride, or a mixed composition thereof, and although it is not necessarily essential to the present invention, it is usually further metalized. Cover the membrane with an insulating layer. This is used as a heater for heating in a vacuum.

(実施例) 本発明の構成を更に理解するし易くするために、以下、
図面によって説明する。
(Example) In order to further facilitate understanding of the structure of the present invention, the following will be described.
This will be explained using drawings.

第1図に、本発明の一実施例に使用されたヒーターを含
む機構部分を示す。図において坩堝3と熱反射板4との
間に示される6がメタライズ膜を発熱体としている円筒
形のヒーターである。すなわちヒーター6は円筒形のセ
ラミックの表面に折線状のメタライズ膜をつけ、更にそ
の上にセラミック層を施しである。前記折線の両端は端
子7.7゛に導かれる。この第1図の構造を見る時、同
じ目的で作られている第2図に示された従来使われてい
る型のヒータ一部に較べ、いかに簡単になっているかを
知ることが出来る。この簡単になった原因はすべてセラ
ミック円筒によるヒーターの利用にある。
FIG. 1 shows a mechanical part including a heater used in one embodiment of the present invention. In the figure, 6 shown between the crucible 3 and the heat reflecting plate 4 is a cylindrical heater whose heating element is a metallized film. That is, the heater 6 is made of a cylindrical ceramic with a metallized film in the form of broken lines on the surface, and a ceramic layer on top of the metallized film. Both ends of the folded wire are led to terminals 7.7'. When looking at the structure of FIG. 1, it can be seen how much simpler it is compared to the part of the heater of the conventional type shown in FIG. 2, which is made for the same purpose. This simplicity is all due to the use of ceramic cylinder heaters.

また、発熱体のパターンの形状は自由に変えることがで
き、例えばそのパターン巾を上記パターンの中心部より
外周部の方が密になるように形成する。
Further, the shape of the pattern of the heating element can be freely changed, for example, the width of the pattern is formed so that it is denser at the outer periphery than at the center of the pattern.

この実施例は分子線エピタキシャル結晶成長の蒸発源に
応用したもので加熱の目的は坩堝であるが、本発明は低
真空高真空中における物体の加熱全般に利用することも
できる。
Although this embodiment is applied to an evaporation source for molecular beam epitaxial crystal growth and the purpose of heating is a crucible, the present invention can also be used for general heating of objects in low vacuum and high vacuum.

(発明の効果) 本発明によれば、 (イ)発熱体を絶縁することができ、被加熱物が導電体
てあフても接触保持でき、熱の伝達が良い。
(Effects of the Invention) According to the present invention: (a) The heating element can be insulated, and even if the object to be heated is touched by a conductor, it can be kept in contact with the object, and heat transfer is good.

(ロ)形状が自由で板状、円筒状、椀状その細波加熱物
の形状に合わせられる。
(b) The shape is free and can be matched to the shape of the thin wave heated object, such as a plate, cylinder, or bowl.

(ハ)発熱体のパターンの形状も自由で、発熱体のパタ
ーンの巾において上記パターンの中心部より外周部の方
が密になるように形成したので発熱体の耐熱性を向上さ
せることができる。また多層にすることも可能であるの
で加熱の範囲、温度分布を目的に応じて設計でき、電流
を小さくすることも容易である。
(c) The shape of the pattern of the heating element is also free, and the width of the pattern of the heating element is formed so that the outer periphery of the pattern is denser than the center, so the heat resistance of the heating element can be improved. . Furthermore, since it is possible to have multiple layers, the heating range and temperature distribution can be designed according to the purpose, and it is also easy to reduce the current.

(ニ)上記(イ)〜(ハ)の理由により温度制御を正確
かつ迅速に行うことが容易である。
(d) For the reasons (a) to (c) above, it is easy to accurately and quickly control the temperature.

(ホ)機械的強度やヒーター間あるいは外部との絶縁は
セラミックにより保たれ、小型化も可能であり、使用が
容易であり、信頼性に富む。
(e) Mechanical strength and insulation between heaters or with the outside are maintained by ceramic, miniaturization is possible, easy to use, and highly reliable.

(へ)容器が小型化されたことにより、その表面積も大
幅に低下できるため、ガス放出なども減少される などの特徴を有し、真空中の物体の温度を上昇させる際
に極めて有効である。
(f) As the container has become smaller, its surface area has been significantly reduced, which reduces gas emissions, making it extremely effective in raising the temperature of objects in vacuum. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の真空中加熱法に使用された装置を示す
。第2図は従来の真空中加熱法で使用された加熱部を示
す断面図。 3・・ ・坩堝、6・・争ヒータ。
FIG. 1 shows an apparatus used in the vacuum heating method of the present invention. FIG. 2 is a sectional view showing a heating section used in a conventional vacuum heating method. 3... Crucible, 6... War heater.

Claims (1)

【特許請求の範囲】[Claims] 平板、湾曲した板状、あるいは筒形、壺形など、各部分
がほぼ板状をなすセラミック部品の表面層あるいは中間
層に付けられ、線状あるいは縞模様状のパターンであっ
てそのパターン巾を当該パターンの中心部より外周部の
方が密になるように形成した通電可能なメタライズ膜を
発熱源として使用することを特徴とする真空中加熱法。
It is attached to the surface layer or intermediate layer of a ceramic component whose parts are approximately plate-shaped, such as a flat plate, a curved plate, a cylinder, or a pot. A vacuum heating method characterized in that an electrified metallized film formed so that the outer periphery of the pattern is denser than the center is used as a heat source.
JP15199787A 1987-06-18 1987-06-18 Method for heating in vacuum Pending JPS63317662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15199787A JPS63317662A (en) 1987-06-18 1987-06-18 Method for heating in vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15199787A JPS63317662A (en) 1987-06-18 1987-06-18 Method for heating in vacuum

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16296880A Division JPS5787086A (en) 1980-11-19 1980-11-19 Method of heating in vacuum

Publications (1)

Publication Number Publication Date
JPS63317662A true JPS63317662A (en) 1988-12-26

Family

ID=15530808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15199787A Pending JPS63317662A (en) 1987-06-18 1987-06-18 Method for heating in vacuum

Country Status (1)

Country Link
JP (1) JPS63317662A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142142A (en) * 1974-10-05 1976-04-09 Tdk Electronics Co Ltd HATSUNET SUTAI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142142A (en) * 1974-10-05 1976-04-09 Tdk Electronics Co Ltd HATSUNET SUTAI

Similar Documents

Publication Publication Date Title
US5031229A (en) Deposition heaters
US6242719B1 (en) Multiple-layered ceramic heater
US7364624B2 (en) Wafer handling apparatus and method of manufacturing thereof
KR100709536B1 (en) Systems for heating wafers
JP3856293B2 (en) Heating device
US5157240A (en) Deposition heaters
JP2004353084A (en) Evaporator fixation member
JP4028149B2 (en) Heating device
KR100597923B1 (en) Vaporizing apparatus
JPS6344269B2 (en)
TW541638B (en) Heater member for mounting heating object and substrate processing apparatus using the same
US5126533A (en) Substrate heater utilizing protective heat sinking means
JPS63317662A (en) Method for heating in vacuum
JP2004353082A (en) Evaporator
JP2004353085A (en) Evaporation apparatus
KR100363062B1 (en) wafer heater
JP2005158270A (en) Heater member for placing object to be heated on, and heating treatment apparatus
JP4000236B2 (en) Ceramic heater
JP2001338862A (en) Wafer heating apparatus
US4113978A (en) Evaporation source for vacuum deposition
JPH0322525A (en) Heat treatment equipment
JP2005063691A (en) Heating apparatus
JP2004228565A (en) Component for semiconductor manufacturing equipment and semiconductor manufacturing equipment
JPH0590880U (en) Multilayer ceramic heater
JPS5919314A (en) Device for heating in vacuum