JPS63316494A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS63316494A
JPS63316494A JP15212187A JP15212187A JPS63316494A JP S63316494 A JPS63316494 A JP S63316494A JP 15212187 A JP15212187 A JP 15212187A JP 15212187 A JP15212187 A JP 15212187A JP S63316494 A JPS63316494 A JP S63316494A
Authority
JP
Japan
Prior art keywords
active layer
current
region
layer
current limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15212187A
Other languages
Japanese (ja)
Inventor
Kazuo Honda
本田 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP15212187A priority Critical patent/JPS63316494A/en
Publication of JPS63316494A publication Critical patent/JPS63316494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To avoid a reactive current and contrive less electricity consumption as well as lowered threshold current by making a region of current injection wide in the vicinity of an active layer. CONSTITUTION:An interval for arrangements of current limiting regions 6 at both sides of regions 7A and 7B is widened at a side which is close to an active layer 3 and reduces its width at respective parts which move away from the active layer 3 so that a wide region 7A and a narrow region 7B will be formed. Approach of current limiting regions 6 sufficiently close to the active layer 3 prevents effectively the crosswise spread of the current and can avoid a hindrance of characteristics of the active layer 3. The resulting amplification of light waves which is assigned to the prescribed parts of the active layer 3 and is effectively performed in this way makes it possible to realize lowered threshold current and less electricity consumption.

Description

【発明の詳細な説明】 〔産業上の利用分野」 本発明は半導体レーザー特に利得ガイド型半導体レーザ
ーに係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to semiconductor lasers, particularly gain-guided semiconductor lasers.

(発明の概要〕 本発明はクラッド層間に活性層を有するダブルヘテロ接
合型半導体レーザーにおける活性層への電流注入領域に
おいて活性層に近い側においては幅広とし遠い側におい
ては幅狭となすものであり、このようにして、この電流
注入領域を限定的に形成するための電流制限領域に因る
レーザー光発振部すなわち共振器部への影響を効果的に
回避し、しかも確実に活性層の共振器部に限定的に電流
の注入を行ってこれによる利得の局在化、即ち利得導波
作用が効果的に生じるようにして低消費電力。
(Summary of the Invention) The present invention is a double heterojunction semiconductor laser having an active layer between cladding layers, in which the current injection region into the active layer is wide on the side close to the active layer and narrow on the side far from the active layer. In this way, it is possible to effectively avoid the influence on the laser beam oscillation part, that is, the resonator part, due to the current limiting region for forming the current injection region in a limited manner, and also to ensure that the resonator in the active layer Low power consumption is achieved by injecting current in a limited manner to localize the gain, that is, effectively create a gain waveguide effect.

面発光効率の向上をはかる。Aiming to improve surface emitting efficiency.

〔従来の技術」 平導体レーザー、特に利得ガイド型のタプルへテロ接合
型半導体レーザーは、第5図にその路線的断面図を示す
ように例えばn型GaAs基体(11上に例えばn型の
A9 xGal−x Asよりなる第1のクラッドIn
 +21と、これの上にp型もしくはn型のA9 yG
at −y As(O≦y<x)よりなる活性1f41
31と、これの上にp型の例えばA9 xGal−x 
Asよりなる第2のクラッド層と、さらにこれの上に高
濃度のp型の例えばGaAsよりなるキャップ層(5)
が順次エピタキシャル成長されて成る。
[Prior Art] A flat conductor laser, particularly a gain-guided tuple heterojunction semiconductor laser, is based on an n-type GaAs substrate (for example, an n-type A9 First cladding In made of xGal-xAs
+21 and above this p-type or n-type A9 yG
Activity 1f41 consisting of at −y As (O≦y<x)
31, and on top of this a p-type e.g. A9 xGal-x
A second cladding layer made of As, and a cap layer (5) made of a high concentration p-type, for example, GaAs, on top of this.
are successively epitaxially grown.

そして、このキャップJtf (51上に、例えば、ス
トライブ状(第5図において紙面と直交する方向に延び
る)の電極g (20a )を有する絶縁1tit (
20)が形成され、この窓(20a)を通して一方の電
極(8)をキャンプ層(5)に、ストライプ状に限定的
にオーミックに被着して、この電極(8)のキャップ層
(5)へのストライプ状のオーミック被着部下において
限定的に活性層(3)に電流注入を行うfiIJ域(以
下電流注入領域という)(7)を形成する。(9)は基
体(11にオーミ7り被着される他方の電極を示す。
Then, on this cap Jtf (51), for example, an insulation 1tit (
20) is formed and through this window (20a) one electrode (8) is ohmically deposited on the camp layer (5) in a limited manner in a striped manner to form a cap layer (5) of this electrode (8). A fiIJ region (hereinafter referred to as current injection region) (7) in which current is injected into the active layer (3) in a limited manner is formed under the striped ohmic deposition. (9) shows the other electrode which is ohmicly attached to the substrate (11).

このような構成によるレーザーは、電極(8)がキャッ
プ層(5)に、実質的にスI・ライブ状に被着すること
によって、活性I’m (3)にストライプ状に限定的
にni流注入密度の商い部分を形成して、このストライ
プ状の高い利得に沿って光波の増幅を進める4−11得
導波作川を生ぜしめ此処に発振部すなわち共振器を形成
するようにしている。ところが、この場合、電極(8)
の被着部が、Rj性層(3;から、少くとも第2のクラ
フト層(4)及びキャンプ層(5)の厚み分は離間して
いるために、電極(8)下から横方向(面方向)に電流
の広がりが生じ、闇値電流が屈折率ガイド型に比し高く
なってしまう。
The laser with such a configuration has the electrode (8) deposited on the cap layer (5) substantially in the form of a stripe, so that the active I'm (3) is selectively exposed in the form of a stripe. A 4-11 waveguide structure is formed in which the light wave is amplified along this striped high gain by forming a cross section of the current injection density, and an oscillation part, that is, a resonator is formed here. . However, in this case, the electrode (8)
Since the adhesion part is separated from the Rj layer (3) by at least the thickness of the second craft layer (4) and camp layer (5), it is separated from the Rj layer (3; The current spreads in the plane direction), and the dark value current becomes higher than that of the refractive index guided type.

このにうな電流の横方向の広がりを低減化するために、
第6図に不すように、例えば中央部をストライプ状に残
し、その両側において、キャップIn (5)から第2
のクラッド層(4)に亘るように、その両(IIIにプ
ロトンH1等のイオンのt]込みを高濃度に行なってそ
の打込みによるダメージににって高抵抗の電流制限領域
(6)を設け、これによって挟み込まれた領域にストラ
イプ状の電流注入領域(7)を形成するようにした半導
体レーザーの提案もなされている。
In order to reduce the lateral spread of this current,
As shown in FIG.
A high-resistance current-limiting region (6) is formed by implanting ions such as protons H1 in both layers (III) at a high concentration so as to cover the cladding layer (4) of the cladding layer (4). A semiconductor laser has also been proposed in which a striped current injection region (7) is formed in the sandwiched region.

この場合、このイオンの打込みによって形成される電流
制限領域(6)は、その電流の横方向の広がりをできる
だけ抑制するためには、できるだけ活性層(3)に近づ
けるべく深い位置にまで形成することが望まれる。とこ
ろが、この電流制限領域(6)を形成するイオンの打込
みが活性層(3)の近傍に及ぶことは活性層(3)の結
晶性を阻害するなど特性劣化を招来する。したかつてこ
の?ti流制限領域(6)すなわちイオンの打込みの深
さは、活性層(3)より充分離間した位置に選定される
In this case, the current limiting region (6) formed by this ion implantation should be formed as deep as possible as close to the active layer (3) as possible in order to suppress the lateral spread of the current as much as possible. is desired. However, implantation of ions forming the current limiting region (6) into the vicinity of the active layer (3) leads to deterioration of characteristics such as inhibiting the crystallinity of the active layer (3). Did you ever do this? The Ti flow restriction region (6), ie, the depth of ion implantation, is selected to be a sufficient distance from the active layer (3).

ところが、このように′di流制限領域(6)が、活性
1m +31より離1u1すれば、電流の横方向の広が
りが生じ、利得分布が急峻にならなくなって、利得導波
作用が低下し、発光効率の低下、消費電力の増大化、闇
値電流の増大化を招来するという問題点がある。
However, if the 'di current limiting region (6) is separated from the active area 1m+31 by 1u1, the current spreads in the lateral direction, the gain distribution becomes less steep, and the gain waveguide effect decreases. There are problems in that it causes a decrease in luminous efficiency, an increase in power consumption, and an increase in dark value current.

(発明が解決しようとする問題点J 本発明は上述した問題点の解決をはかり、確実に利得導
波作用が生じ、活性層の所定部に限定的に光波の増幅が
効率よく生じ、閾値′d1流の低減化。
(Problem to be Solved by the Invention J) The present invention aims to solve the above-mentioned problems, ensures that a gain waveguide effect occurs, efficiently amplifies light waves in a limited manner in a predetermined portion of the active layer, and achieves a threshold value of Reduction of d1 flow.

発光効率の向上、低消費電力化をはかるようにした半導
体レーザーを提供する。
Provided is a semiconductor laser with improved luminous efficiency and reduced power consumption.

〔問題点を解決するための手段J 本発明においては、第1図にボずように第1および第2
のクラッド層(2)および+43間に活性1m +3)
を有するダブルヘテロ型半導体レーデ−において、その
活性層(3)への電流注入領域(7)が活性層(3)に
近い部分で幅広の領域(7^)を有し、これよりも速い
部分で幅狭の領域(7B)とを有する構成とする。
[Means for Solving the Problems J] In the present invention, the first and second
Active 1m between cladding layer (2) and +43 +3)
In a double hetero type semiconductor radar having a current injection region (7) to the active layer (3), the current injection region (7) has a wide region (7^) near the active layer (3), and the current injection region (7) is faster than this region. and a narrow region (7B).

五い換れば、このように幅広の領域(7八) と幅狭の
領域(7B)が形成されるようにその両側の電流制御!
li!領域(6)の配置関係を活性In (31に近い
側においてはその間隔を広げ、活性層(3)より遠ざか
る部分においてその間隔を狭めるようにする。
In other words, the current is controlled on both sides so that a wide area (78) and a narrow area (7B) are formed like this!
li! The arrangement of the regions (6) is such that the spacing is widened on the side closer to the active layer (31), and the spacing is narrowed on the side farther away from the active layer (3).

〔作用〕[Effect]

上述した構成によれば、電流注入領域(7)の特に幅狭
の領域(’/B)によって主として電流の注入領域が規
定され、これによって活性h4 (31における注入領
域を集中させて利得分布を急峻にする。このようにして
利得導波作用が生ずるようになすものであるが、幅広の
領域(7A)の存在によってしたがって電流制限領域(
6)が4q性層(3)に近づく側において活性層(3)
における共振器ないしは導波部即ち発振部より遠ざけら
れた位置に存在するようにしたので、この電流制御領域
(6)の存在による発振部への影響が低められる。云い
換えればこの電流制限領域(6)を充分凸性層(3)に
近づけることができることによって電流の横方向の広が
りを効果的に回避し、しかも活性tri (31の特性
の111害を回避できる。
According to the above-mentioned configuration, the current injection region is mainly defined by the particularly narrow region ('/B) of the current injection region (7), thereby concentrating the injection region in the active h4 (31) to improve the gain distribution. In this way, the gain waveguiding effect occurs, but the presence of the wide region (7A) therefore makes the current limiting region (
On the side where 6) approaches the 4q layer (3), the active layer (3)
Since the current control region (6) is located at a position distant from the resonator or waveguide section, that is, the oscillation section, the influence of the presence of the current control region (6) on the oscillation section is reduced. In other words, by making this current limiting region (6) sufficiently close to the convex layer (3), it is possible to effectively avoid the lateral spread of the current, and also avoid the 111 harm of the characteristics of active tri (31). .

〔実施例〕〔Example〕

本発明による半導体レーザーの一例を第2図を参照して
その製造方法の一例と共に説明する。この例においても
例えはn型のGaAsよりなる基i+13上にn型のA
Q xGas −x Asよりなる第1のクラッド層(
2)を形成しAl! yGat −y As (0≦y
<x)よりなる活性層(3)と、史にこれの上にAQx
Gal−x Asよりなるp型の例えば厚さ 1.5μ
−の第2のクラッド層(4)と、更に低比抵抗の面不純
@濃度の例えば厚さ 0.5μ鋼のp型のGaAsキャ
ップjm (51を順次エピタキシャル成長する。そし
て、このキャップFi4 (5)上に第2図Aに示すよ
うに金属例えばAuあるいはAQより成り、中央に所定
の狭い幅、例えば6〜8μ鴎の幅Wsを有するスI・ラ
イブ状の膜厚が大なる部分(IOA)を有し、他部にお
いてこれより充分薄い厚さのマスク+=(to)を形成
する。そして、このマスク層(10)上から例えばホロ
ンイオンB4の打込みを1丁う、このようにしてマスク
層(10)のIQI−’JLが大なる部分(IOA)の
直下を除いてその1114側にキャップ層(5)を横切
る深さを有するも活性層(3)より充分例えば1.2μ
#1llIIt間した深さの第1の電流制限領域(6B
)を形成する。次に必要に応じてマスクIts(10)
を−且除去し、同様のAuあるいはAQよりなる金属層
ににり幅Wsより大なる幅WL例えば15〜30μmを
もって、先に形成した電流制限領域(6B)の相対向す
る各側縁上を含んで厚さの大なる部分(IIA)を有す
る第2のマスク1m(11)を被着し、このマスク層(
11)上より、前述の領域(6B)を形成するためのイ
オン例えばBoに比し軽い原子例えばH9あるいはHe
の打込みを行って、領域(6B)より深い深さの例えば
活性1m (31までの距離が0.5μ−に近接する位
置まで第2の電流制限領域(6A)を形成する。このよ
うにして両電流制限領域(6B)および(6A)ににる
電流制限領域(6)によって挟みこまれた幅狭の領域(
7B)と幅広の領域(’/A)を有する電流注入領域(
7)を構成する。
An example of a semiconductor laser according to the present invention will be described with reference to FIG. 2, along with an example of its manufacturing method. In this example as well, an n-type A is placed on a group i+13 made of n-type GaAs.
The first cladding layer made of QxGas-xAs (
2) to form Al! yGat −y As (0≦y
<x) and an active layer (3) consisting of AQx
For example, a p-type layer made of Gal-x As, with a thickness of 1.5μ
-, and a p-type GaAs cap jm (51) made of 0.5μ steel with a low resistivity and surface impurity concentration, for example, are epitaxially grown in sequence. Then, this cap Fi4 (5 ), as shown in FIG. ), and a mask +=(to) having a thickness sufficiently thinner than this is formed in other parts.Then, one implantation of, for example, holon ions B4 is performed from above this mask layer (10), in this way. The mask layer (10) has a depth that crosses the cap layer (5) on the 1114 side of the mask layer (1114), except for the part (IOA) where the IQI-'JL is large, and is deeper than the active layer (3), for example, by 1.2μ.
The first current limiting region (6B
) to form. Then mask Its (10) if necessary
- and remove it, and apply a similar metal layer made of Au or AQ onto each opposing side edge of the previously formed current limiting region (6B) with a width WL larger than the width Ws, for example, 15 to 30 μm. A second mask 1 m (11) is applied, which has a large part of the thickness (IIA) containing this mask layer (
11) From above, atoms lighter than ions, such as Bo, to form the above-mentioned region (6B), such as H9 or He.
A second current limiting region (6A) is formed to a depth deeper than the region (6B), for example, to a position where the distance to the active region (31) is close to 0.5 μ-. A narrow region (
7B) and a current injection region with a wide region ('/A) (
7).

その後必要に応じてマスク+=(0)を除去してキャッ
プIj* 151と基& (11の裏面とにそれぞれ#
4114 (8)および(9)をオーミックに被着して
第1図に示す目的とする本発明による半導体レーザーを
得る。
After that, remove the mask +=(0) as necessary and mark # on the back side of the cap Ij* 151 and the base & (11), respectively.
4114 (8) and (9) are ohmically deposited to obtain the intended semiconductor laser according to the present invention as shown in FIG.

又上述した例においては、2回のイオン打込み工程によ
って部分(6A)および(6B)を有する電流制限領域
(6)を形成してそれぞれ幅広部分(7A)と幅狭部分
(7B)とを有する電流注入領域(7)を形成するよう
にした場合であるが、例えば第3図にネオようにイオン
↑1込みのマスク層(12)として所要の幅Wsの最も
厚いストライプ部分(12A)と、その両側より突出し
て所要の全幅WLを有する次に厚い部分(12B)と、
更にその外側にこれより薄いか、股厚ゼロのマスク層(
12C)を形成してこれの上から一回のイオン注入によ
って部分(12A)の直下においては電流制限領域が形
成されず領域(12C)およびこれの外側においてのみ
その深さが異なる領域(6B)おにび(6A)を有する
電流制限領域を形成することもできる。
Further, in the example described above, the current limiting region (6) having portions (6A) and (6B) is formed by two ion implantation steps, each having a wide portion (7A) and a narrow portion (7B). In the case where the current injection region (7) is formed, for example, as shown in FIG. the next thickest part (12B) protruding from both sides and having the required full width WL;
Furthermore, on the outside, there is a mask layer that is thinner than this or has zero crotch thickness (
12C), and by performing ion implantation from above once, no current limiting region is formed directly under the portion (12A), and a region (6B) whose depth differs only in the region (12C) and outside this is formed. It is also possible to form a current limiting region with 6A.

また本発明は、棟々のダブルヘテしJ接合型半導体レー
ザーに通用することができるものであり、各植半導体材
料によるレーザーや、種々の導波路構造のもの、例えば
凸部に光波を閉じ込めるリフ専波路型レーザー、回折格
子を組込んだ分布帰還型レーザー(DFB型レーザー)
等において、電流注入領域をも設ける構成を採る場合に
通用することができる。第4図へ及びBはD F B型
レーザーに本発明を通用した場合である。第4図A及び
Bにおいて、第1図〜第3図と対応するaIS分には同
一符号を付して止複説明を省略するが、この例において
は、活性層(3)と第2のクラッド+= (41との間
にAQ zGal−z Asより成るガイド層(30)
を設け、これと活性層(3)との界面に回折格子(31
)より成る分布帰還手段を配置した構造を採る場合で、
この場合においても回折格子(31)が配された導波路
すなわち共振器を形成する部分の近傍上においては、活
性層(3)より丸分離間して電流制限領域(6B)を配
しその両側方においてはン占性In (31に近接する
電流制限領域(6^)を設ける。
Furthermore, the present invention can be applied to double-hetero J-junction type semiconductor lasers, and can be applied to lasers made of various implanted semiconductor materials and those with various waveguide structures, such as riff-only lasers that confine light waves in convex portions. Wavepath type laser, distributed feedback laser incorporating a diffraction grating (DFB type laser)
The present invention can be applied to cases where a configuration in which a current injection region is also provided is adopted. Figures 4 and 4B show the case where the present invention is applied to a D F B type laser. In FIGS. 4A and 4B, the aIS parts corresponding to those in FIGS. 1 to 3 are given the same reference numerals and repeated explanations are omitted. A guide layer (30) made of AQ zGal-z As between the clad += (41)
A diffraction grating (31) is provided at the interface between this and the active layer (3).
), when adopting a structure in which distributed feedback means consisting of
In this case as well, in the vicinity of the waveguide where the diffraction grating (31) is arranged, that is, the part forming the resonator, a current limiting region (6B) is arranged at a circular distance from the active layer (3), and the current limiting region (6B) is arranged on both sides thereof. On the other hand, a current limiting region (6^) close to the exclusive In(31) is provided.

なお、図示した各別における各J−の4電型はそれぞれ
逆4’4型に選定することもできる。
It should be noted that each of the J- 4-electrotypes shown in the figures can also be selected as an inverted 4'4-type.

L発明の効果〕 上述の本発明によれば、両側に電流制限領域(6)が設
けられて中央に11流注入領域(7)を有し、これによ
って活性層(3)にストライプ状に限定的にキャリアの
注入を行って利得の大なる部分を形成して利得導波作用
が生じるようになすものであるが、特に本発明において
は、活性層(3)に近い部分において電流注入m域を幅
広としたことによって活性層の実質的動作部即ち光発振
部に対する電流制限領域(6)の影響を効果的に回避で
きる。つまり、この電流制限領域(6A)を活性層(3
)に充分近つける位置まで形成することができ、これに
よって横方向に広がる電流の制限を効果的に行うことが
できるので無効電流の回避、従って、低消費電力化、低
閾値電流化を達成でき実用に供してその利益は人である
[Effects of the Invention] According to the above-mentioned invention, the current limiting regions (6) are provided on both sides and the 11 current injection region (7) is provided in the center, thereby limiting the current to the active layer (3) in a stripe shape. In this invention, carriers are injected to form a large part of the gain and a gain waveguiding effect occurs. In particular, in the present invention, the current injection is performed in the region near the active layer (3). By making the width of the current limiting region (6) wide, it is possible to effectively avoid the influence of the current limiting region (6) on the substantial operating portion of the active layer, that is, the optical oscillation portion. In other words, this current limiting region (6A) is connected to the active layer (3
), and as a result, it is possible to effectively limit the current spreading in the lateral direction, thereby avoiding reactive current and thus achieving low power consumption and low threshold current. The benefits of putting it into practical use are people.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による半導体レーザーの一例の路線的拡
大断面図、第2図AおよびBはその製造方法の一例の各
工程の路線的拡大…τ面図、第3図は他の製造方法の一
工程における路線的拡大11を面図、第4図A及びBは
本発明ににる半導体レーザーの他の例の路線的拡大断面
図及びその13−B線上の路線的拡大断面図、第5図及
び第6図は従来の半導体レーザーの一例の路線的拡大断
面図である。 (L)は基体、(2)および(4)は第1および第2の
クランド層、(3)は活性1ii、(5)はキャップ層
、(7)は電流注入領域、(7A)はその幅広fti域
、(7B)はその幅狭領域、(6)は電流制限領域、(
8)および(9)は電極である。
FIG. 1 is an enlarged linear cross-sectional view of an example of a semiconductor laser according to the present invention, FIGS. 2 A and B are enlarged linear views of each step of an example of its manufacturing method... τ plane, and FIG. 3 is another manufacturing method. FIGS. 4A and 4B are enlarged linear sectional views of another example of the semiconductor laser according to the present invention, and FIGS. 5 and 6 are enlarged cross-sectional views of an example of a conventional semiconductor laser. (L) is the base, (2) and (4) are the first and second ground layers, (3) is the active 1ii, (5) is the cap layer, (7) is the current injection region, and (7A) is the Wide fti region, (7B) its narrow region, (6) current limit region, (
8) and (9) are electrodes.

Claims (1)

【特許請求の範囲】 クラッド層間に活性層を有するダブルヘテロ接合型半導
体レーザーにおいて、 上記活性層への電流注入領域が、上記活性層に近い幅広
の領域とこれよりも遠く幅狭の領域とを有することを特
徴とする半導体レーザー。
[Claims] In a double heterojunction semiconductor laser having an active layer between cladding layers, the current injection region into the active layer includes a wide region close to the active layer and a narrow region further away from the active layer. A semiconductor laser comprising:
JP15212187A 1987-06-18 1987-06-18 Semiconductor laser Pending JPS63316494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15212187A JPS63316494A (en) 1987-06-18 1987-06-18 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15212187A JPS63316494A (en) 1987-06-18 1987-06-18 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63316494A true JPS63316494A (en) 1988-12-23

Family

ID=15533519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15212187A Pending JPS63316494A (en) 1987-06-18 1987-06-18 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63316494A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227894A (en) * 2006-01-26 2007-09-06 Nichia Chem Ind Ltd Nitride semiconductor laser element, and manufacturing method therefor
JP2013008743A (en) * 2011-06-22 2013-01-10 Denso Corp Surface-emitting laser element
JPWO2018096850A1 (en) * 2016-11-24 2019-10-17 ソニー株式会社 Surface emitting laser and electronic equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227894A (en) * 2006-01-26 2007-09-06 Nichia Chem Ind Ltd Nitride semiconductor laser element, and manufacturing method therefor
JP2013008743A (en) * 2011-06-22 2013-01-10 Denso Corp Surface-emitting laser element
JPWO2018096850A1 (en) * 2016-11-24 2019-10-17 ソニー株式会社 Surface emitting laser and electronic equipment

Similar Documents

Publication Publication Date Title
US4371966A (en) Heterostructure lasers with combination active strip and passive waveguide strip
US4328469A (en) High output power injection lasers
EP0000412B1 (en) Semiconductor injection laser or intensifier
US3969686A (en) Beam collimation using multiple coupled elements
US4280106A (en) Striped substrate planar laser
JPS63316494A (en) Semiconductor laser
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
JPH0518473B2 (en)
US6108361A (en) Semiconductor laser and method for producing the same
JPS597237B2 (en) Injection type semiconductor laser device
JPS6396988A (en) Semiconductor laser
JPH0864899A (en) Manufacture of semiconductor laser and the same laser
JPS6237829B2 (en)
CA1215160A (en) Stripe-geometry solid-state laser with light guidance by transverse refractive-index gradient
JPH0632333B2 (en) Semiconductor laser
KR920006392B1 (en) Manufacturing method of semiconductor
JPH0553316B2 (en)
JPS61150392A (en) Manufacture of semiconductor laser
CA1166337A (en) High output power injection lasers
JPH01214188A (en) Semiconductor laser
KR960003870B1 (en) Laser diode
JPH07115242A (en) Device and fabrication for semiconductor laser
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
JPH11243248A (en) Ridge type semiconductor laser and manufacture thereof
JPH0377390A (en) Semiconductor laser