JPS6331638A - Non-invasion biochemical substance measuring apparatus - Google Patents

Non-invasion biochemical substance measuring apparatus

Info

Publication number
JPS6331638A
JPS6331638A JP61176074A JP17607486A JPS6331638A JP S6331638 A JPS6331638 A JP S6331638A JP 61176074 A JP61176074 A JP 61176074A JP 17607486 A JP17607486 A JP 17607486A JP S6331638 A JPS6331638 A JP S6331638A
Authority
JP
Japan
Prior art keywords
sweat
biochemical substance
concentration
glucose
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61176074A
Other languages
Japanese (ja)
Other versions
JPH06121B2 (en
Inventor
渡辺 吉雄
宮城 宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61176074A priority Critical patent/JPH06121B2/en
Publication of JPS6331638A publication Critical patent/JPS6331638A/en
Publication of JPH06121B2 publication Critical patent/JPH06121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無侵襲生化学物質計測装置に係り、特に生体内
グルコースあるいは血糖値を生体表面から無侵襲計測す
るのに好適な無侵襲生化学物質計測装置に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a non-invasive biochemical substance measuring device, and particularly to a non-invasive biochemical substance measuring device suitable for non-invasively measuring in-vivo glucose or blood sugar levels from the surface of a living body. This invention relates to a substance measuring device.

〔従来の技術〕[Conventional technology]

従来の生体内グルコース濃度あるいは血糖値の連続測定
は、グルコースセンサを血管内あるいは組織内に挿入す
るかく特開昭59−8939号公報、特開昭59−89
69号公報、特開昭59−14843号公報。
Conventional continuous measurement of in vivo glucose concentration or blood sugar level involves inserting a glucose sensor into a blood vessel or tissue.
No. 69, JP-A-59-14843.

特開昭59−14857号公報)、血管内へ挿入したカ
テーテルから体外へ導いた血液にセンサを接する(特開
昭52−135599号公報、特開昭54−82885
号公報)かの方法がとられていた。また、間欠的なグル
コース濃度、血糖値の測定は、採血後にセンサで測定し
ていた。
(Japanese Unexamined Patent Publication No. 59-14857), a sensor is brought into contact with blood led outside the body from a catheter inserted into a blood vessel (Japanese Unexamined Patent Publications No. 52-135599, Unexamined Japanese Patent Application No. 54-82885)
(No. Publication) was used. In addition, intermittent glucose and blood sugar levels were measured using a sensor after blood was collected.

一方、生体内グルコースを生体表面がら無侵襲測定する
方法については、「臨床病理」33巻10号(1985
年)第1093頁から第1099頁において論じられて
いるが、これは、角質層を剥離し、間質液を生体表面に
吸引後、血液と類似の成分からなる間質液のグルコース
を内部減衰全反射法で測定している。
On the other hand, regarding a method for non-invasively measuring in-vivo glucose on the surface of a living body, "Clinical Pathology" Vol. 33, No. 10 (1985
2007), pages 1093 to 1099, this method involves exfoliating the stratum corneum and sucking the interstitial fluid onto the biological surface, and then internally attenuating the glucose in the interstitial fluid, which has components similar to blood. Measured using total internal reflection method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、採血針、カテーテルあるいはセンサを
生体内に挿入するもので、侵襲性の点については配慮が
なされておらず、感染、失血、患者の精神的および肉体
的苦痛、生体成分付着によるセンサの性能劣化および間
欠的測定による情報不足などの問題点があった。
The above conventional technology involves inserting a blood collection needle, catheter, or sensor into the living body, and does not take into account invasiveness, which can lead to infection, blood loss, mental and physical pain for the patient, and adhesion of biological components. There were problems such as deterioration of sensor performance and lack of information due to intermittent measurements.

また、吸引内部減衰全反射法は、侵襲度を低下させてい
るものの、角質層の剥離、生体表面の防圧にともなう侵
襲性は除去できないという問題があった。
In addition, although the suction internal attenuated total reflection method reduces the degree of invasiveness, it has the problem that the invasiveness associated with exfoliation of the stratum corneum and pressure-proofing of the biological surface cannot be eliminated.

本発明の目的は、生体内のグルコース濃度あるいは血糖
値を生体表面から無侵襲に測定することができる無侵襲
生化学物質計測装置を堤供することにある。
An object of the present invention is to provide a non-invasive biochemical substance measuring device that can non-invasively measure glucose concentration or blood sugar level in a living body from the surface of a living body.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、生体表面から発汗を起こさせるための加温
手段と、この加温手段によって生じた汗の生化学物質の
濃度を測定する計測手段と、上記加温手段によって生ず
る発汗の速度を測定する発汗速度計測手段と、上記計測
手段によって測定した上記汗の生化学物質濃度と上記発
汗速度計測手段によって測定した発汗速度とから血液中
の必要生化学物質濃度を演算して表示する演算・表示手
段とより構成して達成するようにした。
The above purpose is to provide a heating means for causing sweating from the surface of a living body, a measuring means for measuring the concentration of biochemical substances in the sweat produced by the heating means, and a measuring means for measuring the rate of sweat produced by the heating means. a sweating rate measuring means, and calculation/display for calculating and displaying the concentration of necessary biochemical substances in the blood from the biochemical substance concentration in the sweat measured by the measuring means and the sweating rate measured by the sweating rate measuring means. I tried to achieve it by structuring the means.

〔作用〕[Effect]

まず、生化学物質の1つであるグルコース濃度測定につ
いて説明する。加温手段により皮膚は局所的に加熱され
て発汗する。汗のグルコース濃度は血液中の濃度とよく
相関することは「糖尿病」28巻11号(1985年)
第1271頁がら第1273頁に示されている。したが
って、汗のグルコース濃度を測定すれば、血液中のグル
コース濃度を経皮的に測定できる。ただし、汗のグルコ
ース濃度は。
First, measurement of glucose concentration, which is one of the biochemical substances, will be explained. The heating means locally heats the skin and causes sweating. ``Diabetes'' Vol. 28, No. 11 (1985) states that the glucose concentration in sweat correlates well with the concentration in blood.
It is shown on pages 1271 to 1273. Therefore, by measuring the glucose concentration in sweat, the glucose concentration in blood can be measured transcutaneously. However, the glucose concentration in sweat.

測定する。すなわち、光源からの光は、汗と接した内部
減衰全反射プリジム中で汗のグルコースに特徴的な吸収
を生じるから、この吸収スペクトルを光検出器で経時的
に測定するようにする。したがって、血液中のグリコー
ス濃度を継続的、無侵襲的に計測することができる。
Measure. That is, since the light from the light source causes absorption characteristic of glucose in sweat in the internally attenuated total reflection prism that comes into contact with sweat, this absorption spectrum is measured over time with a photodetector. Therefore, the glucose concentration in blood can be measured continuously and non-invasively.

また、グルコース以外の生化学物質も汗の値と血液の値
が対応して変化すると考えられるから、無侵襲に測定で
きる。
Furthermore, biochemical substances other than glucose can be measured non-invasively, since sweat values and blood values are thought to change correspondingly.

次に、血糖値測定について説明する。血糖値を一定に保
ったときの汗のグルコース濃度と発汗速度との関係は第
4図に示すようになるから、血糖値は汗のグリコース濃
度と発汗速度との積に比例することが考えられ、50g
経口糖負荷試験時の血糖値、汗のグリコース濃度、発汗
速度および汗のグルコース濃度と発汗速度との積である
汗の中のグルコース量の経時変化は第5図に示すように
なり、汗のグルコース濃度よりも汗中グルコース量、萱
なわち、汗のグルコース濃度と発汗速度とによって生体
表面上に浸出した汗のグルコース濃度は、グルコースセ
ンサ101で測定し、発汗速度は1発汗速度センサ10
2で測定し1両センサ101.102の出力を演算・標
示回路103に入力し、汗のグルコース濃度と発汗速度
との積を求め、血糖値を表示するようにすれば、これに
より、血糖値を連続的、無侵襲的に計測することができ
る。
Next, blood sugar level measurement will be explained. The relationship between the glucose concentration in sweat and the rate of sweating when the blood sugar level is kept constant is shown in Figure 4, so it can be considered that the blood sugar level is proportional to the product of the glucose concentration in sweat and the rate of sweating. ,50g
Figure 5 shows the changes over time in the blood glucose level during the oral glucose tolerance test, the glucose concentration in sweat, the sweating rate, and the amount of glucose in sweat, which is the product of the glucose concentration in sweat and the sweating rate. The amount of glucose in sweat is higher than the glucose concentration, that is, the glucose concentration of sweat leached onto the surface of the living body depending on the glucose concentration of sweat and the sweat rate is measured by the glucose sensor 101, and the sweat rate is measured by the sweat rate sensor 10.
2 and input the outputs of the two sensors 101 and 102 into the calculation/display circuit 103, calculate the product of the glucose concentration of sweat and the sweating rate, and display the blood sugar level. can be measured continuously and non-invasively.

また、血糖値以外の必要生化学物質濃度も汗の濃度と発
汗速度との演算値が血液の必要生化学物質値と対応して
変化するものと考えられるから、無侵襲に1ilN定で
きる。
In addition, the concentration of necessary biochemical substances other than the blood sugar level can be non-invasively determined at 1 ilN since the calculated value of sweat concentration and sweating rate is considered to change in correspondence with the value of necessary biochemical substances in blood.

〔実施例〕〔Example〕

以下本発明を第1図〜第3図に示した実施例を用いて詳
細に説明する。
The present invention will be explained in detail below using the embodiments shown in FIGS. 1 to 3.

第1図は本発明の無侵襲生化学物質計測装置の一実施例
を示す一部断面構成図であり、生体表面に装着する部分
は断面図で示しである。この計測装置は、ヒータ10、
温度センサ11を含む温度色 制御回路12、白金電極13、銀電極14、襦緑物貿1
5.電解液16.妨害物質除去膜17.固定化グルコー
スオキシダーゼ[18、多孔質物質19からなるグルコ
ースセンサ、ガス流入口20、ガス流出口21、温度セ
ンサ22、気化室23からなる発汗速度センサ、グルコ
ースセンサ、ヒータ1oを覆い皮膚9への伝熱効率を高
くする断熱材24.上記両センサの出力をディジタル変
換するA−D変換器25、その出力を演算するCPTJ
26、演算された血糖値の表示部27、記憶部28から
構成しである。
FIG. 1 is a partially sectional configuration diagram showing an embodiment of the non-invasive biochemical substance measuring device of the present invention, and the portion to be attached to the surface of a living body is shown in a sectional view. This measuring device includes a heater 10,
Temperature color control circuit 12 including temperature sensor 11, platinum electrode 13, silver electrode 14, green material trade 1
5. Electrolyte 16. Interfering substance removal membrane 17. immobilized glucose oxidase [18, a glucose sensor consisting of a porous material 19, a sweating rate sensor consisting of a gas inlet 20, a gas outlet 21, a temperature sensor 22, a vaporization chamber 23, a glucose sensor that covers the heater 1o, Insulating material that increases heat transfer efficiency 24. An A-D converter 25 that digitally converts the outputs of both the sensors, and a CPTJ that calculates the outputs.
26, a display section 27 for displaying the calculated blood sugar level, and a storage section 28.

温度制御回路12により43℃前後に加温された生体表
面に浸出した汗は多孔質物質19に吸収され、常に新し
い汗をグルコースセンサ表面に維持する。グルコースセ
ンサでは、よく知られているように、グルコース(Cs
 Hz x○6)、酸素、水が固定化グルコースオキシ
ダーゼ膜18の中で酵素の働きによりグルコン酸(Ce
 Hi 207)と過酸化水素(HzC)z)を生じ、
これらは平衡状態にある。
Sweat seeped onto the surface of the living body heated to around 43° C. by the temperature control circuit 12 is absorbed by the porous material 19, and fresh sweat is constantly maintained on the surface of the glucose sensor. As is well known, glucose sensors use glucose (Cs
Hz x○6), oxygen, and water are converted into gluconic acid (Ce
produces Hi 207) and hydrogen peroxide (HzC)z),
These are in equilibrium.

CeHz20e+○z十Hzo−)CsHtz○7+H
2O2白金電極13、銀電極14、絶縁物質15、電解
液16からなるポーラログラフ電極では、発生する過酸
化水素あるいは消費される酸素に比例した電流を得る。
CeHz20e+○z10Hz-)CsHtz○7+H
A polarographic electrode consisting of a 2O2 platinum electrode 13, a silver electrode 14, an insulating material 15, and an electrolyte 16 generates a current proportional to hydrogen peroxide generated or oxygen consumed.

したがって、グルコース濃度に比例した電流が得られる
。なお、妨害物質除去膜17は、尿素、アスコルビン酸
などの妨害物質を除去する反面、測定対象物質を通す。
Therefore, a current proportional to the glucose concentration is obtained. Note that while the interfering substance removal membrane 17 removes interfering substances such as urea and ascorbic acid, it allows the substance to be measured to pass through.

次に1発汗法度センサの動作は、論文集「電子通信学会
技術研究報告J BME85−17 (1000年)に
論じられているように、乾燥した窒素ガスをガス流入口
20から気化室23を経由してガス流出口21に流すこ
とにより、発汗速度に対応した湿気が気化室23内で得
られ、それを温度センサ22で検出することにより発汗
速度が計測される。
Next, the operation of the perspiration level sensor 1 is as discussed in the collection of papers "IEICE technical research report J BME85-17 (1000)," in which dry nitrogen gas is passed from the gas inlet 20 through the vaporization chamber 23. By causing the gas to flow through the gas outlet 21, moisture corresponding to the sweating rate is obtained in the vaporization chamber 23, and by detecting this with the temperature sensor 22, the sweating rate is measured.

このようにして得られたグルコースセンサおよび発汗速
度センサの出力をA−D変換器25でディジタル化し、
CPtJ26で演算し、その結果得られた血糖値を表示
部27に表示したり、記憶部28に保存する。
The outputs of the glucose sensor and sweat rate sensor thus obtained are digitized by the A-D converter 25,
The CPtJ 26 calculates and the resulting blood sugar level is displayed on the display section 27 or stored in the storage section 28.

第2図は本発明の他の実施例を示す第1図に相当する一
部断面構成図で、第1図と同一部分は同じ符号で示し、
ここでは説明を省略する。第2図におイテハ、光rA2
9、光路30.ATR(内部減衰全反射)プリズム31
、光検出器32、多孔質物質19からなる内部減衰全反
射法によるグルコース測定装置が設けてあり、これが第
1図の白金電極13、銀電極14、絶縁物質15、電解
液1Gからなるポーラログラフ電極に対応しており、さ
らに、皮膚9への伝熱をよくする熱の良導体33が設け
である。
FIG. 2 is a partial cross-sectional configuration diagram corresponding to FIG. 1 showing another embodiment of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals.
The explanation will be omitted here. Figure 2 shows Iteha, Hikari rA2
9. Optical path 30. ATR (internally attenuated total reflection) prism 31
, a photodetector 32, and a porous material 19. A glucose measuring device using an internally attenuated total reflection method is provided, which is a polarographic electrode shown in FIG. In addition, a good heat conductor 33 is provided to improve heat transfer to the skin 9.

温度制御回路12により加温されて生体表面に浸出した
汗は、第1図に示した実施例と同様に、多孔質物質19
に吸収され、常に新しい汗をATRプリズム31表面に
維持する。汗の成分によ゛り光の吸収スペクトルは異な
り、グルコースでは赤外領域の1000c++−”近傍
で特徴的な吸収を示すが。
Sweat heated by the temperature control circuit 12 and leached onto the surface of the living body is absorbed into the porous material 19 as in the embodiment shown in FIG.
The sweat is absorbed by the ATR prism 31, and new sweat is always maintained on the surface of the ATR prism 31. The absorption spectrum of light differs depending on the components of sweat, and glucose exhibits a characteristic absorption near 1000c++-'' in the infrared region.

これはグルコース分子中のピラン環および環状へジアセ
タールの振動に起因すると考えられている。
This is thought to be due to the vibration of the pyran ring and cyclic hediacetal in the glucose molecule.

グルコースを測定対象とするときは、光源29として炭
酸ガスレーザを使用する。赤外線は光路30にしたがい
、生体表面上のATRプリズムた 31中で汗のグルコース濃度にビた吸収を受け、へ 光検出器32に到達する。光検出器32としては、例え
ば、フーリエ変換型赤外分光器を使用すれば、多数回の
測定データを積算してランダt1ノイズを低減すること
が可能である。得られた吸収スペクトルからは区間精算
法などによりグルコース濃度が求められるが、これにつ
いては、雑誌「臨床病理」33巻10号(1985年)
第1093頁から第1099頁に詳しく述べられている
。このようにして得られた汗のグルコース濃度と発汗速
度はA−D変換器25に入力され、前述の実施例と同様
に処理される。
When measuring glucose, a carbon dioxide laser is used as the light source 29. The infrared rays follow the optical path 30, are absorbed by the glucose concentration of sweat in the ATR prism 31 on the surface of the living body, and reach the photodetector 32. If, for example, a Fourier transform infrared spectrometer is used as the photodetector 32, it is possible to reduce the random t1 noise by integrating measurement data from a large number of times. Glucose concentration can be determined from the obtained absorption spectrum using the interval calculation method, etc., as described in the magazine "Clinical Pathology", Vol. 33, No. 10 (1985).
It is described in detail on pages 1093 to 1099. The sweat glucose concentration and sweat rate thus obtained are input to the A/D converter 25 and processed in the same manner as in the previous embodiment.

第3図は第2図の内部減衰全反射法によるグルコース測
定装置を単独で用いる場合の一実施例を示す一部断面構
成図で、生体物質測定の場合を示しである。第3図にお
いて、29は光源、30は光路、31は内部減衰全反射
プリズム、32は光検出器で、これらが主要構成要素と
なっていることは第2図と同様である。ところで、第3
図においては、内部減衰全反射プリズム31の下の皮膚
9を加温して局所的に発汗させる目的で、加温用ヒータ
33と温度制御用温度センサ34を熱伝導率の高い材料
35で囲い、これで内部減衰全反射プリズム31を覆う
構造とし、プリズム31と皮膚9との間に汗保持材36
を設置しである。
FIG. 3 is a partial cross-sectional configuration diagram showing an embodiment of the glucose measuring device based on the internally attenuated total reflection method shown in FIG. 2 used alone, and shows the case of biological substance measurement. In FIG. 3, 29 is a light source, 30 is an optical path, 31 is an internally attenuated total reflection prism, and 32 is a photodetector, which are the main components as in FIG. 2. By the way, the third
In the figure, a heating heater 33 and a temperature control temperature sensor 34 are surrounded by a material 35 with high thermal conductivity in order to heat the skin 9 under the internally attenuated total reflection prism 31 and cause local sweating. This structure covers the internally attenuated total reflection prism 31, and a sweat retaining material 36 is placed between the prism 31 and the skin 9.
It is installed.

て、内部減衰全反射プリズム31と一体化している加温
用ヒータ33とサーミスタなどからなる温度センサ34
は、温度制御回路に組み込んであり、熱伝導率の高い材
料35を介して皮膚9の表面を43℃程度に加温する。
A temperature sensor 34 consisting of a heating heater 33 integrated with the internally attenuated total reflection prism 31 and a thermistor, etc.
is incorporated in the temperature control circuit, and heats the surface of the skin 9 to about 43° C. via the material 35 having high thermal conductivity.

この温熱により、汗腺は局所的に発汗を生じ、血液中の
成分が汗の成分となり、生体表面に浸出してくる。浸出
した汗は、薄い(10μm〜1m)ステンレス鋼のメツ
シュや多孔体などの汗保持材36に吸収され、常に新し
い汗をプリズム31の表面に維持する。これにより、血
液と相関がよい汗の成分を安定に測定することができる
。汗の成分により光の吸収スペクトルが異なり、グルコ
ースでは赤外領域の1000dll −’近傍で特徴的
な吸収を示すが、これはグルコース分子中のピラン環お
よび環状へジアセタールの振動に起因すると考えられて
おり、グルコースを測定対象とするときは、光源29と
して炭酸ガスレーザを使用する。赤外光は光路30にし
たがい、生体表面上の内部減衰全反射プリズム31の中
で汗のグルコース濃度に応じた吸収を受け、光検出器3
2に到達し、光検出器32としては、例えば、フーリエ
変換型赤外分光器を使用すれば、多数回の測定データを
積算してランダムノイズを低減することが可能であり、
得られた吸収スペクトルからは、区間積算法などにより
グルコース濃度が求められることは第2図と同様である
This heat causes the sweat glands to locally sweat, and components in the blood become sweat components and ooze out onto the surface of the body. The leached sweat is absorbed by a sweat retaining material 36 such as a thin (10 μm to 1 m) stainless steel mesh or a porous body, and new sweat is constantly maintained on the surface of the prism 31. This makes it possible to stably measure sweat components that have a good correlation with blood. The light absorption spectrum differs depending on the components of sweat, and glucose exhibits a characteristic absorption near 1000 dll-' in the infrared region, which is thought to be caused by the vibrations of the pyran ring and cyclic hediacetal in the glucose molecule. However, when glucose is to be measured, a carbon dioxide laser is used as the light source 29. The infrared light follows an optical path 30 and is absorbed in an internally attenuated total reflection prism 31 on the surface of the living body according to the glucose concentration of sweat, and is detected by a photodetector 3.
2, and if a Fourier transform infrared spectrometer is used as the photodetector 32, for example, it is possible to integrate the measurement data of many times and reduce random noise.
As in FIG. 2, the glucose concentration can be determined from the obtained absorption spectrum by the interval integration method or the like.

上記した実施例によれば、簡便な方法により体内のグル
コース濃度を生体表面から無侵襲に測定できるので、感
染、患者の精神的・肉体的苦痛、失血を除くことができ
、また、センサに血液や組織の生体成分が付着しないの
で、性能劣化が少なく、長期に亘すグルコース濃度を安
定に測定できる。また、グルコース濃度を常に知ること
により血糖値を生理的に正常な値に保てるので、高血糖
による合併症や低血糖の事故を防ぐことができ、血糖測
定装置や人工膵臓のセンサとして利用できる。
According to the above embodiment, the glucose concentration in the body can be measured non-invasively from the surface of the body using a simple method, thereby eliminating infection, mental and physical pain of the patient, and blood loss. Since biocomponents of tissues and tissues do not adhere to the sensor, there is little performance deterioration and glucose concentration can be measured stably over a long period of time. Furthermore, by constantly knowing the glucose concentration, the blood sugar level can be maintained at a physiologically normal value, thereby preventing complications due to hyperglycemia and accidents due to hypoglycemia, and can be used as a sensor for blood sugar measuring devices and artificial pancreas.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、簡便な方法によ
り血糖値を生体表面から無侵襲に計測できるので、感染
、失血、患者の精神的・肉体的苦痛を除くことができ、
しかも、センサに血液や組織の生体成分が付着しないの
で、性能劣化が少なく、長期に亘すグルコース濃度を安
定に測定できる。また、グルコース濃度を常に知ること
により。
As explained above, according to the present invention, blood sugar levels can be measured non-invasively from the surface of a living body using a simple method, thereby eliminating infections, blood loss, and mental and physical pain for patients.
Moreover, since biological components such as blood and tissue do not adhere to the sensor, there is little performance deterioration and glucose concentration can be stably measured over a long period of time. Also, by always knowing your glucose concentration.

血糖値を生理的に正常な値に保てるので、高血糖による
合併症や低温糖の事故を防ぐことができるという効果が
ある。
Since it can maintain blood sugar levels at physiologically normal levels, it has the effect of preventing complications caused by hyperglycemia and accidents caused by low-temperature sugar.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の無侵襲生化学物質計測装置の一実施例
を示す一部断面構成図、第2図は本発明の他の実施例を
示す第1図に相当する一部断面構成図、第3図は第2図
の内部減衰全反射法によるグリコース測定装置を単独で
用いる場合の一実施例を示す一部断面構成図、第4図は
空腹時の汗のグルコース濃度と発汗速度との関係線図、
第5図は50g経口糖負荷試験時の血糖値、汗のグルコ
ース濃度1発汗速度、汗中グルコース量の経時変化を示
す線図、第6図は無侵襲生化学物質針?111I装置の
基本構成図である。 10・・・ヒータ、11・・・温度センサ、12・・・
温度制御回路、13・・・白金電極、14・・・銀電極
、15・・・絶縁物質、16・・・電解液、17・・・
妨害物質除去膜、18・・固定化グルコースオキシダー
ゼ膜、19・・・多孔質物質、2o・・・ガス流入口、
21・・・ガス流出浸− 口、22・・・せ度センサ、23・・・気化室、24・
・・断熱材、25・・・A−D変換器、26・・・CP
U、27・・・表示部、28・・記憶部、29・・・光
源、3o・・・光路、31・・・ATRプリズム、32
・・・光検出器。
FIG. 1 is a partial cross-sectional configuration diagram showing one embodiment of the non-invasive biochemical substance measuring device of the present invention, and FIG. 2 is a partial cross-sectional configuration diagram corresponding to FIG. 1 showing another embodiment of the present invention. , FIG. 3 is a partially cross-sectional configuration diagram showing an example of the case where the glucose measuring device using the internally damped total reflection method shown in FIG. 2 is used alone, and FIG. relationship diagram,
Figure 5 is a diagram showing the blood glucose level during a 50g oral glucose tolerance test, glucose concentration in sweat, sweat rate, and glucose amount in sweat over time, and Figure 6 is a non-invasive biochemical needle? 111I is a basic configuration diagram of an 111I device. 10... Heater, 11... Temperature sensor, 12...
Temperature control circuit, 13... Platinum electrode, 14... Silver electrode, 15... Insulating material, 16... Electrolyte, 17...
Interference substance removal membrane, 18...immobilized glucose oxidase membrane, 19...porous material, 2o...gas inlet,
21... Gas outflow immersion port, 22... Temperature sensor, 23... Vaporization chamber, 24...
...Insulating material, 25...A-D converter, 26...CP
U, 27...Display unit, 28...Storage unit, 29...Light source, 3o...Optical path, 31...ATR prism, 32
...Photodetector.

Claims (1)

【特許請求の範囲】 1、生体表面から発汗を起こさせるための加温手段と、
該加温手段によつて生じた汗の生化学物質の濃度を測定
する計測手段と、前記加温手段によつて生ずる発汗の速
度を測定する発汗速度計測手段と、前記計測手段によつ
て測定した前記汗の生化学物質濃度と前記発汗速度計測
手段によつて測定した発汗速度とから血液中の必要生化
学物質濃度を演算して表示する演算、表示手段とを備え
たことを特徴とする無侵襲生化学物質計測装置。 2、前記計測手段は、白金電極と、銀電極と、絶縁物質
と、電解液とからなるポーラログラフ電極と、尿素、ア
スコルビン酸などの妨害物質を除去して測定対象物質の
みを通す妨害物質除去膜と固定化酵素膜および汗を吸収
する多孔質物質よりなる特許請求の範囲第1項記載の無
侵襲生化学物質計測装置。 3、前記計測手段は、光源と、該光源からの光を入射す
る汗を吸収する多孔質物質上に設けた内部減衰全反射プ
リズムと、該プリズムからの光を検出する光検出器とよ
りなる特許請求の範囲第1項記載の無侵襲生化学物質計
測装置。 4、前記生化学物質濃度はグルコース濃度であり、前記
必要生化学物質濃度は血糖値である特許請求の範囲第1
項または第2項または第3項記載の無侵襲生化学物質計
測装置。
[Claims] 1. A heating means for causing sweating from the surface of a living body;
a measuring means for measuring the concentration of biochemical substances in sweat produced by the heating means; a sweating rate measuring means for measuring the rate of sweat produced by the heating means; The invention is characterized by comprising calculation and display means for calculating and displaying the necessary biochemical substance concentration in the blood from the biochemical substance concentration of the sweat and the sweating rate measured by the sweating rate measuring means. Non-invasive biochemical substance measuring device. 2. The measurement means includes a polarographic electrode consisting of a platinum electrode, a silver electrode, an insulating material, and an electrolytic solution, and an interfering substance removal membrane that removes interfering substances such as urea and ascorbic acid and allows only the substance to be measured to pass through. 2. The non-invasive biochemical substance measuring device according to claim 1, comprising: an immobilized enzyme membrane; and a porous material that absorbs sweat. 3. The measurement means includes a light source, an internally attenuated total reflection prism provided on a porous material that absorbs the sweat incident on the light from the light source, and a photodetector that detects the light from the prism. A non-invasive biochemical substance measuring device according to claim 1. 4. Claim 1, wherein the biochemical substance concentration is glucose concentration, and the necessary biochemical substance concentration is blood sugar level.
The non-invasive biochemical substance measuring device according to item 1 or 2 or 3.
JP61176074A 1986-07-26 1986-07-26 Non-invasive biochemical substance measuring device Expired - Lifetime JPH06121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61176074A JPH06121B2 (en) 1986-07-26 1986-07-26 Non-invasive biochemical substance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61176074A JPH06121B2 (en) 1986-07-26 1986-07-26 Non-invasive biochemical substance measuring device

Publications (2)

Publication Number Publication Date
JPS6331638A true JPS6331638A (en) 1988-02-10
JPH06121B2 JPH06121B2 (en) 1994-01-05

Family

ID=16007265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61176074A Expired - Lifetime JPH06121B2 (en) 1986-07-26 1986-07-26 Non-invasive biochemical substance measuring device

Country Status (1)

Country Link
JP (1) JPH06121B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236168A (en) * 1989-03-09 1990-09-19 New Japan Radio Co Ltd Contact type sample collector and analyser
US5050604A (en) * 1989-10-16 1991-09-24 Israel Reshef Apparatus and method for monitoring the health condition of a subject
US5890489A (en) * 1996-04-23 1999-04-06 Dermal Therapy (Barbados) Inc. Method for non-invasive determination of glucose in body fluids
JP2006043120A (en) * 2004-08-04 2006-02-16 Nippon Telegr & Teleph Corp <Ntt> Animate sensor and method of measuring
JP2007532183A (en) * 2004-04-07 2007-11-15 センシス メディカル インク A compact instrument for non-invasive measurement of glucose by near infrared spectroscopy
JP2008504881A (en) * 2004-07-01 2008-02-21 ヴィヴォメディカル, インコーポレイテッド Noninvasive glucose measurement
JP2010172588A (en) * 2009-01-30 2010-08-12 Omron Healthcare Co Ltd Blood component concentration change measuring instrument
JP2014001946A (en) * 2012-06-15 2014-01-09 Seiko Epson Corp Concentration measurement device and control method for the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4073713A (en) * 1975-09-24 1978-02-14 The Yellow Springs Instrument Company, Inc. Membrane for enzyme electrodes
JPS5766741A (en) * 1980-10-11 1982-04-23 Aloka Co Ltd Analysing device for biochemical component through lasre

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4073713A (en) * 1975-09-24 1978-02-14 The Yellow Springs Instrument Company, Inc. Membrane for enzyme electrodes
JPS5766741A (en) * 1980-10-11 1982-04-23 Aloka Co Ltd Analysing device for biochemical component through lasre

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236168A (en) * 1989-03-09 1990-09-19 New Japan Radio Co Ltd Contact type sample collector and analyser
US5050604A (en) * 1989-10-16 1991-09-24 Israel Reshef Apparatus and method for monitoring the health condition of a subject
US5890489A (en) * 1996-04-23 1999-04-06 Dermal Therapy (Barbados) Inc. Method for non-invasive determination of glucose in body fluids
JP2007532183A (en) * 2004-04-07 2007-11-15 センシス メディカル インク A compact instrument for non-invasive measurement of glucose by near infrared spectroscopy
JP2008504881A (en) * 2004-07-01 2008-02-21 ヴィヴォメディカル, インコーポレイテッド Noninvasive glucose measurement
JP2006043120A (en) * 2004-08-04 2006-02-16 Nippon Telegr & Teleph Corp <Ntt> Animate sensor and method of measuring
JP2010172588A (en) * 2009-01-30 2010-08-12 Omron Healthcare Co Ltd Blood component concentration change measuring instrument
JP2014001946A (en) * 2012-06-15 2014-01-09 Seiko Epson Corp Concentration measurement device and control method for the same

Also Published As

Publication number Publication date
JPH06121B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
CA2256915C (en) Cardiac output measurement with metabolizable analyte containing fluid
Schoemaker et al. The SCGM1 System: subcutaneous continuous glucose monitoring based on microdialysis technique
US7630747B2 (en) Apparatus for ascertaining blood characteristics and probe for use therewith
US20070027383A1 (en) Patches, systems, and methods for non-invasive glucose measurement
US20100049021A1 (en) Devices, systems, methods and tools for continuous analyte monitoring
US20090131778A1 (en) Devices, systems, methods and tools for continuous glucose monitoring
JP2005528156A (en) Apparatus for contacting a tissue surface within a patient&#39;s body to measure the patient&#39;s physiological parameters and method for measuring the patient&#39;s physiological parameters
JP2005237688A (en) Blood sugar level measuring device
MXPA06014896A (en) Non-invasive glucose measurement.
US20100010328A1 (en) Probes and sensors for ascertaining blood characteristics and methods and devices for use therewith
Tamada et al. Keeping watch on glucose
JPS6331638A (en) Non-invasion biochemical substance measuring apparatus
JP2012019834A (en) Concentration determination apparatus, probe, concentration determination method, and program
Ricci et al. Ex vivo continuous glucose monitoring with microdialysis technique: The example of GlucoDay
Mendelson et al. Noninvasive transcutaneous monitoring of arterial blood gases
JPS6272321A (en) Method for detecting organic substance in blood and concentration of electrolyte in blood and percataneous sensor used therein
JPS61115538A (en) Subcataneous sensor
JP2005160782A (en) Blood sugar level measuring instrument
JPS62133937A (en) Percataneous sensor
JPS63135131A (en) Percataneous sensor
CN219183764U (en) Blood glucose detecting system and blood glucose meter based on laser reflection
EP3939505A1 (en) Device for obtaining an indicator of a microcirculatory condition
EP3939504A1 (en) Device for obtaining an indicator of a microcirculatory condition
JPS6125541A (en) Subcateneous glucose sensor
Irfani et al. Continuous and Non-Invasive Blood Glucose Measurements: A Narrative Review