JPS6331549B2 - - Google Patents

Info

Publication number
JPS6331549B2
JPS6331549B2 JP22239282A JP22239282A JPS6331549B2 JP S6331549 B2 JPS6331549 B2 JP S6331549B2 JP 22239282 A JP22239282 A JP 22239282A JP 22239282 A JP22239282 A JP 22239282A JP S6331549 B2 JPS6331549 B2 JP S6331549B2
Authority
JP
Japan
Prior art keywords
gas supply
particles
vapor deposition
vacuum container
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22239282A
Other languages
Japanese (ja)
Other versions
JPS59113172A (en
Inventor
Yoichi Oonishi
Tanejiro Ikeda
Masahide Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22239282A priority Critical patent/JPS59113172A/en
Publication of JPS59113172A publication Critical patent/JPS59113172A/en
Publication of JPS6331549B2 publication Critical patent/JPS6331549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、チタンカーバイトやシリコンカーバ
イト等の皮膜を被メツキ材表面に形成するための
反応性蒸着装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a reactive vapor deposition apparatus for forming a film of titanium carbide, silicon carbide, or the like on the surface of a material to be plated.

従来例の構成とその問題点 近年、チタンカーバイト(以下TiCと称す)や
シリコンカーバイト(以下SiCと称す)等の材質
を素材表面上に皮膜状に形成し、素材自身の性質
に、TiCやSiCの性質を付加した複合部品が注目
されてきた。例えば、素材材質が、鉄または、ア
ルミニウムである歯車のかみ合いや接触する部分
に材質がTiC等の皮膜を形成することにより、耐
摩耗性を改善し、大巾にその寿命を向上させた歯
車が実用化されるに至つた。歯車以外にも産業界
では、耐摩耗性や耐熱性を要求される部品の需要
は年々高まつている。一方、その製造方法におい
ては、素材表面上に、TiCやSiCの皮膜を形成す
る方法として、ChemiCal Vaper Deposition法
(以下CVD法と称す)とPhysical Vaper
Deposition法(以下PVD法と称す)とが発明さ
れ実施されている。この製造方法の近年の産業界
の動向は、CVD法では、Ticl4等の有毒ガスを大
量に使用する必要があり、付帯設備が安全衛生上
の観点から、高真空の雰囲気を利用し、より緻密
なTiCやSiC皮膜を得ることを目的として、PVD
法に移行しようとしている。このPVD法の一つ
として、反応性蒸着法が検討されている。
Structure of conventional examples and their problems In recent years, materials such as titanium carbide (hereinafter referred to as TiC) and silicon carbide (hereinafter referred to as SiC) have been formed in the form of a film on the surface of the material, and due to the properties of the material itself, TiC Composite parts with added properties of SiC and SiC have been attracting attention. For example, gears made of iron or aluminum have improved wear resistance and significantly extended life by forming a coating of TiC or other material on the meshing and contacting parts of gears made of iron or aluminum. It has now been put into practical use. In addition to gears, in industry, demand for parts that require wear resistance and heat resistance is increasing year by year. On the other hand, in terms of manufacturing methods, ChemiCal Vaper Deposition method (hereinafter referred to as CVD method) and Physical Vaper Deposition method are used to form a TiC or SiC film on the surface of the material.
A deposition method (hereinafter referred to as PVD method) has been invented and put into practice. Recent trends in the industry regarding this manufacturing method are that the CVD method requires the use of large amounts of toxic gases such as Ticl 4 , and that the ancillary equipment uses a high vacuum atmosphere from a health and safety perspective. PVD is used to obtain dense TiC and SiC films.
I'm trying to move into law. A reactive vapor deposition method is being considered as one of the PVD methods.

以下、図面を参照しながら従来の反応性蒸着法
およびその装置について説明する。
Hereinafter, a conventional reactive vapor deposition method and its apparatus will be explained with reference to the drawings.

第1図は、従来の反応性蒸着装置を示すもの
で、1はTiCやSiC等の皮膜が形成される素材と
なる被メツキ材である。2は皮膜組成の一成分と
なり、加熱により蒸発する蒸発材料である。3は
蒸発材料2を保持するためのるつぼ、4は蒸発材
料2を加熱し、蒸気化するための加熱装置であ
る。5は減圧状態を維持可能な真空容器、6は真
空容器5内を真空状態にするための真空ポンプで
ある。7は蒸発材料2の蒸気粒子と反応して化合
し、皮膜組成の一成分を少なくとも1つ含むガス
を導入するためのガス供給管で、ステンレスで構
成されている。8は被メツキ材1を加熱するため
のヒータである。
FIG. 1 shows a conventional reactive vapor deposition apparatus, and numeral 1 indicates a material to be plated, on which a film of TiC, SiC, etc. is formed. 2 is an evaporation material that becomes one of the components of the film composition and evaporates when heated. 3 is a crucible for holding the evaporation material 2, and 4 is a heating device for heating and vaporizing the evaporation material 2. 5 is a vacuum container capable of maintaining a reduced pressure state, and 6 is a vacuum pump for making the inside of the vacuum container 5 into a vacuum state. Reference numeral 7 denotes a gas supply pipe for introducing a gas that reacts with vapor particles of the evaporation material 2 and contains at least one component of the film composition, and is made of stainless steel. 8 is a heater for heating the material 1 to be plated.

以下上記構成における動作について説明する。 The operation in the above configuration will be explained below.

まず、真空ポンプ6により、真空容器5内を
10-3〜10-7Torr真空度にした後、ガス供給管7
より所定のガス、例えばメタンを一定流量に制御
して真空容器5内に導入する。この状態で真空容
器5内は、任意の設定した真空度(10-2〜10-6
Torr)に維持される。一方、ヒータ8に通電し、
被メツキ材1を所定の温度(500〜1000℃)に保
持する。次に加熱装置4より、蒸発材料2に供給
される電子ビームによつて、例えば材質がチタン
(Ti)であるところの蒸発材料2が溶融し、界面
より、蒸気化する。蒸気化したチタンの粒子は、
被メツキ材1方向に進行する。この進行途中また
は、被メツキ材1界面でTi粒子は、ガス供給管
7より供給されたメタンガス粒子と化学反応して
TiCの化合物粒子となる。蒸気化したTi粒子とメ
タンガス粒子は、被メツキ材1表面または、表面
付近で所定の温度に保たれた被メツキ材1から供
給される熱によつて、化学反応が促進され、最終
的に化合物皮膜の形態で被メツキ材表面に形成さ
れる。また蒸気化したチタン粒子又はTiCの化合
物粒子はその蒸気分布が一般に放物状となるた
め、被メツキ材1表面以外の真空容器5内に飛散
し、真空容器5内の構成部品表面上に付着する。
従つて従来の反応性蒸着装置には、真空容器5内
に防着板を設け、真空容器5内のメンテナンスの
効率向上を図つていた。しかし、反応性蒸着装置
のガス供給管7の噴出孔9部分の防着方法は、所
望のガス分布を得るために構成上非常に困難であ
り、防着板を一般には設置していない。そのた
め、噴出孔9へのチタン粒子の付着により、その
噴出孔9の径が、減少する。そこで、噴出孔9の
径変化に依存する真空容器5内ガス分布の変化を
極小にするため、処理毎に、毎回噴出孔9のメン
テナンスを実施する必要がある。しかし、噴出孔
9を含むガス供給管7と、例えば到達飛来したチ
タン粒子が堆積した付着層との界面の密着力は強
固のため、そのメンテナンスに多大の労力が必要
である。特に噴出孔9のメンテナンスが困難であ
るという反応性蒸着装置特有の欠点を有してい
た。
First, the inside of the vacuum container 5 is pumped by the vacuum pump 6.
After creating a vacuum of 10 -3 to 10 -7 Torr, open the gas supply pipe 7.
A predetermined gas, for example methane, is introduced into the vacuum container 5 while controlling the flow rate to be constant. In this state, the inside of the vacuum container 5 is at an arbitrarily set degree of vacuum (10 -2 to 10 -6
Torr). On the other hand, the heater 8 is energized,
The material to be plated 1 is maintained at a predetermined temperature (500 to 1000°C). Next, an electron beam is supplied to the evaporation material 2 from the heating device 4, and the evaporation material 2, which is made of titanium (Ti), for example, is melted and vaporized from the interface. Vaporized titanium particles are
The material to be plated advances in one direction. During this process or at the interface of the plated material 1, the Ti particles chemically react with the methane gas particles supplied from the gas supply pipe 7.
It becomes TiC compound particles. A chemical reaction between the vaporized Ti particles and methane gas particles is promoted by the heat supplied from the surface of the plated material 1 or from the plated material 1 maintained at a predetermined temperature near the surface, and eventually a compound is formed. It is formed in the form of a film on the surface of the material to be plated. In addition, since the vaporized titanium particles or TiC compound particles generally have a parabolic vapor distribution, they scatter into the vacuum container 5 other than the surface of the material to be plated 1 and adhere to the surfaces of the components in the vacuum container 5. do.
Therefore, in the conventional reactive vapor deposition apparatus, an anti-adhesion plate is provided inside the vacuum container 5 in order to improve the efficiency of maintenance inside the vacuum container 5. However, the method of preventing deposition of the ejection hole 9 portion of the gas supply pipe 7 of the reactive vapor deposition apparatus is extremely difficult in terms of configuration in order to obtain a desired gas distribution, and a deposition prevention plate is generally not installed. Therefore, due to the adhesion of titanium particles to the ejection hole 9, the diameter of the ejection hole 9 decreases. Therefore, in order to minimize changes in the gas distribution within the vacuum container 5 that depend on changes in the diameter of the ejection holes 9, it is necessary to perform maintenance on the ejection holes 9 every time the process is performed. However, since the adhesive force at the interface between the gas supply pipe 7 including the ejection hole 9 and the adhesion layer on which the titanium particles that have arrived and is deposited is strong, a great deal of effort is required for its maintenance. In particular, the reactive vapor deposition apparatus had a drawback in that maintenance of the ejection hole 9 was difficult.

発明の目的 本発明は、上記従来例の欠点を解消するもの
で、ノズル孔部分およびガス供給管のメンテナン
スを容易にし、かつ安定した動作を得ることの可
能な反応性蒸着装置を提供するものである。
OBJECTS OF THE INVENTION The present invention eliminates the drawbacks of the conventional examples described above, and provides a reactive vapor deposition apparatus that facilitates maintenance of the nozzle hole portion and the gas supply pipe and that is capable of stable operation. be.

発明の構成 上記目的を達成するため本発明の反応性蒸着装
置は、ガス供給装置の表面、特に蒸気粒子が飛来
し、表面上に、前記蒸気粒子が析出する部分をカ
ーボン皮覆することにより、メンテナンス時に、
表面上に蒸気粒子が堆積した付着層を容易に除去
することが可能になるものである。
Composition of the Invention In order to achieve the above object, the reactive vapor deposition apparatus of the present invention covers the surface of the gas supply apparatus, particularly the part where the vapor particles fly and the vapor particles precipitate on the surface, with carbon coating. During maintenance,
This makes it possible to easily remove the adhesion layer of vapor particles deposited on the surface.

実施例の説明 以下本発明の一実施例を第2図、第3図にもと
づいて説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 2 and 3.

なお、従来例と同じ部材については同一符号を
付して説明する。
Note that the same members as in the conventional example will be described with the same reference numerals.

第2図において、1は材質がSKD11の被メツ
キ材、2は冷却器を備えた銅材質のるつぼ、3は
材質がチタンの蒸発材料、4は電子ビームを発生
し、蒸発材料3を加熱して蒸発させるための加熱
源、5は減圧状態を維持可能な真空容器、6は真
空容器5内を真空状態にするための真空ポンプ、
7はアセチレンガスを供給するためのガス供給
管、8は被メツキ材1を加熱するためのヒータで
ある。
In Fig. 2, 1 is a material to be plated of SKD11, 2 is a copper crucible equipped with a cooler, 3 is an evaporation material of titanium, and 4 is an electron beam that generates an electron beam to heat the evaporation material 3. 5 is a vacuum container capable of maintaining a reduced pressure state; 6 is a vacuum pump for bringing the inside of the vacuum container 5 into a vacuum state;
7 is a gas supply pipe for supplying acetylene gas, and 8 is a heater for heating the material 1 to be plated.

このように構成された反応性蒸着装置につい
て、以下その動作を説明する。まず、真空ポンプ
6により、真空容器5内を8×10-6Torrの真空
度になるように、真空ポンプ6にて真空排気した
後、アセチレンガスをガス供給管7を通じ、真空
容器5内に導入する。次に、加熱源4から発生す
る電子ビームにより、蒸発材料3を溶融させ、さ
らに加熱し、溶融表面よりチタンを粒子状態で蒸
発させる。チタン粒子の蒸発速度は、30Å/secに
なるように、電子ビームの強度を制御している。
The operation of the reactive vapor deposition apparatus configured as described above will be described below. First, the inside of the vacuum container 5 is evacuated by the vacuum pump 6 to a degree of vacuum of 8×10 -6 Torr, and then acetylene gas is introduced into the vacuum container 5 through the gas supply pipe 7. Introduce. Next, the evaporation material 3 is melted and further heated by an electron beam generated from the heating source 4, and titanium is evaporated in the form of particles from the molten surface. The intensity of the electron beam is controlled so that the evaporation rate of titanium particles is 30 Å/sec.

第3図は反応蒸着処理後のガス供給装置を構成
するステンレス製のガス供給管7を示す断面図で
ある。
FIG. 3 is a sectional view showing a stainless steel gas supply pipe 7 constituting the gas supply device after the reactive vapor deposition process.

第3図において9はガス供給装置7に設けられ
た噴出孔であり、10はガス供給管7を被覆した
カーボン層である。カーボン層10は粒径0.5μm
程度のカーボン粉末、エポキシ樹脂、及び溶剤を
混ぜ合せたペースト状のものを塗布することによ
つて10μm〜100μmの厚さに形成した。11はカ
ーボン層10上に堆積したSiC又はTiC等の付着
層である。
In FIG. 3, 9 is an ejection hole provided in the gas supply device 7, and 10 is a carbon layer covering the gas supply pipe 7. The carbon layer 10 has a particle size of 0.5 μm
The film was formed to a thickness of 10 μm to 100 μm by applying a paste mixture of carbon powder, epoxy resin, and solvent. 11 is an adhesion layer of SiC, TiC, etc. deposited on the carbon layer 10.

反応性蒸着装置をこのように構成することによ
り、SiC又はTiC等の付着層11はカーボン層1
0を介して形成されるために、カーボンの特性で
ある潤滑性、胞性、付着層との熱膨張係数の違い
等に起因し、容易にその付着層11をガス供給管
7より剥離することが可能となる。この剥離性を
評価するために径50mmのステンレス板表面にカー
ボン皮覆を行い、その表面に、反応性蒸着層を形
成した試料を準備し、反応性蒸着層の剥離試験を
衝撃試験機により実施した。その結果、剥離衝撃
力は0〜0.03Kg/mm2以内で層状に剥離した。比較
のため、カーボン皮覆のない場合について、実施
したところ、約0.03Kg/mm2では、剥離しなかつた。
By configuring the reactive vapor deposition apparatus in this way, the adhesion layer 11 of SiC or TiC, etc. is replaced by the carbon layer 1.
0, the adhesive layer 11 cannot be easily peeled off from the gas supply pipe 7 due to the characteristics of carbon such as lubricity, cellularity, and a difference in coefficient of thermal expansion from the adhesive layer. It becomes possible. In order to evaluate this releasability, a carbon coating was applied to the surface of a stainless steel plate with a diameter of 50 mm, a sample was prepared with a reactive vapor deposited layer formed on the surface, and a peel test of the reactive vapor deposited layer was conducted using an impact tester. did. As a result, the film was peeled off in layers with a peel impact force of 0 to 0.03 Kg/mm 2 . For comparison, we conducted a test without carbon coating, and no peeling occurred at approximately 0.03 Kg/mm 2 .

発明の効果 以上のように、本発明は、ガス供給装置の表
面、特に蒸気粒子が飛来し、表面上に前記蒸気粒
子が析出する部分をカーボン皮覆することによ
り、表面上に蒸気粒子が堆積した付着層を容易に
剥離除去することが可能であり、反応性蒸着装置
のメンテナンスを大巾に短縮することが可能であ
り、生産性を大巾に向上することができる。
Effects of the Invention As described above, the present invention provides carbon coating on the surface of a gas supply device, particularly the portion where steam particles fly and where the steam particles are deposited on the surface, so that steam particles are deposited on the surface. It is possible to easily peel off and remove the deposited layer, and the maintenance of the reactive vapor deposition apparatus can be greatly shortened, and productivity can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来例である反応性蒸着装置の構成
図、第2図は、本発明の一実施例である反応性蒸
着装置の構成図、第3図は同第2図のガス供給装
置を示す断面図である。 1……被メツキ材、3……蒸発材料、4……加
熱装置、5……真空容器、7……ガス供給管(ガ
ス供給装置)、9……噴出孔、10……カーボン
の皮膜。
Fig. 1 is a block diagram of a conventional reactive vapor deposition apparatus, Fig. 2 is a block diagram of a reactive vapor deposition apparatus which is an embodiment of the present invention, and Fig. 3 is a gas supply apparatus shown in Fig. 2. FIG. DESCRIPTION OF SYMBOLS 1... Material to be plated, 3... Evaporation material, 4... Heating device, 5... Vacuum container, 7... Gas supply pipe (gas supply device), 9... Ejection hole, 10... Carbon film.

Claims (1)

【特許請求の範囲】 1 化合物の皮膜が形成される被メツキ材と、前
記化合物組成の少なくとも一成分である蒸発材料
を蒸気粒子にするための加熱装置と、減圧状態を
維持可能な真空容器と、化合物皮膜組成の少なく
とも一成分を構成元素として有するガスを前記蒸
気粒子と混合する前記真空容器内に設けたガス供
給装置とを備え、カーボンを前記ガス供給装置の
表面に皮覆した反応性蒸着装置。 2 カーボンを、ガス供給装置の少なくとも噴出
口に皮覆した特許請求の範囲第1項記載の反応性
蒸着装置。
[Scope of Claims] 1. A material to be plated on which a compound film is formed, a heating device for turning an evaporation material that is at least one component of the compound composition into vapor particles, and a vacuum container capable of maintaining a reduced pressure state. , a gas supply device provided in the vacuum container for mixing a gas having at least one component of the compound film composition as a constituent element with the vapor particles, and reactive vapor deposition in which carbon is coated on the surface of the gas supply device. Device. 2. The reactive vapor deposition device according to claim 1, wherein at least the ejection port of the gas supply device is coated with carbon.
JP22239282A 1982-12-17 1982-12-17 Reactive vapor deposition device Granted JPS59113172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22239282A JPS59113172A (en) 1982-12-17 1982-12-17 Reactive vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22239282A JPS59113172A (en) 1982-12-17 1982-12-17 Reactive vapor deposition device

Publications (2)

Publication Number Publication Date
JPS59113172A JPS59113172A (en) 1984-06-29
JPS6331549B2 true JPS6331549B2 (en) 1988-06-24

Family

ID=16781643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22239282A Granted JPS59113172A (en) 1982-12-17 1982-12-17 Reactive vapor deposition device

Country Status (1)

Country Link
JP (1) JPS59113172A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775641B2 (en) * 2006-05-23 2011-09-21 株式会社島津製作所 Gas introduction device

Also Published As

Publication number Publication date
JPS59113172A (en) 1984-06-29

Similar Documents

Publication Publication Date Title
AU2002356523A1 (en) Method and apparatus application of metallic alloy coatings
US5505808A (en) Method to produce an inorganic wear layer
WO1995016058A1 (en) Magnetron sputtering apparatus for compound thin films
US3249462A (en) Metal diffusion coating utilizing fluidized bed
JPS61153272A (en) Surface treatment of nylon filled with mineral
EP1504137A1 (en) Method to make nanolaminate thermal barrier coatings
JP3135903B2 (en) Method for manufacturing reflective article
JP3415625B2 (en) Multilayer flash evaporator
JPS6331549B2 (en)
JPH01136962A (en) Coating method
JPH03260054A (en) Cubic bn coated member having superior exfoliation resistance and its production
Fukutomi et al. Effect of substrate temperature control during deposition on the adherence of ion-plated titanium carbide and vanadium carbide films on molybdenum
JP2763239B2 (en) Multi-layer ceramic crucible
JPH0479992B2 (en)
JPS591791B2 (en) Metal carbide film coating method
EP0039774B1 (en) Refractory structure and process for making it
JPH0215161A (en) Formation of titanium carbide film by ion beam sputtering method
JPS61288060A (en) Plasma arc thermal spraying method under reduced pressure
Yumoto et al. Ti-Al, graded Al/AlTi, and Ti-Al-N coatings prepared by supersonic free-jet PVD
JPH05330956A (en) Ti-rare earth element-n ultra-hard compound film and method for forming the film
JP4148403B2 (en) Method for forming carbon film by CVD
JPH0254754A (en) Formation of film having controlled gradient composition
US4436768A (en) Refractory structure and process for the preparation thereof
Schmid et al. High Technology Ceramic Coatings—Current Limitations/Future Needs
JPH0447932A (en) Production of thermal spraying member based on synthetic resin material