JPS6331526A - Removal of nitrogen oxide in exhaust gas containing arsenic compound - Google Patents

Removal of nitrogen oxide in exhaust gas containing arsenic compound

Info

Publication number
JPS6331526A
JPS6331526A JP61173813A JP17381386A JPS6331526A JP S6331526 A JPS6331526 A JP S6331526A JP 61173813 A JP61173813 A JP 61173813A JP 17381386 A JP17381386 A JP 17381386A JP S6331526 A JPS6331526 A JP S6331526A
Authority
JP
Japan
Prior art keywords
catalyst
arsenic
exhaust gas
manganese
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61173813A
Other languages
Japanese (ja)
Inventor
Makoto Imanari
今成 真
Takeo Koshikawa
越川 武男
Akihiro Yamauchi
章弘 山内
Masayuki Hanada
花田 正幸
Morio Fukuda
盛男 福田
Kiyoshi Nagano
長野 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Mitsubishi Petrochemicals Engineering Co Ltd
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Mitsubishi Petrochemical Co Ltd
Mitsubishi Petrochemicals Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd, Mitsubishi Petrochemical Co Ltd, Mitsubishi Petrochemicals Engineering Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP61173813A priority Critical patent/JPS6331526A/en
Priority to AT87110657T priority patent/ATE75417T1/en
Priority to DE8787110657T priority patent/DE3778611D1/en
Priority to EP87110657A priority patent/EP0257307B1/en
Priority to CA000542955A priority patent/CA1307251C/en
Publication of JPS6331526A publication Critical patent/JPS6331526A/en
Priority to US07/284,764 priority patent/US4952381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To keep high catalytic activity and to reduce the cost of a catalyst, by contacting exhaust gas containing an As-compound and NOx with reducing gas in the presence of a catalyst containing Ti, Mn and As as catalytically active components. CONSTITUTION:A catalyst containing 50-99% of Ti, 1-5% of Mn and 0.01-10% of As in an atomic ratio as catalytically active components is obtained. Ti, Mn and As are contained as oxides or sulfur compounds and supported by a porous carrier or kneaded with a carrier component. NOx is reduced by NH3 in the presence of the catalyst thus obtained. At this time, even when an As-compound such as As2O3 is contained in exhaust gas, the deterioration of the catalyst by the As-compound is suppressed.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は排ガス中の窒素酸化物を除去する方法に関する
。さらに詳しくは、ヒ素化合物を含有する排ガス中の窒
素酸化物を、ヒ素化合物に被毒されずに活性を保持しつ
づける触媒の存在下で、還元して除去する方法に関する
。 [従来の技術] 各種固定発生源排ガス、特にボイラー等各種燃焼炉徘ガ
スに含有される窒素酸化物(以下NOxと云うことがあ
る)を、アンモニアの如き還元性ガスと接触させ還元し
て無害化する方法が知られている。その際に使用する触
媒として種々の触媒が知られているが、触媒の活性、強
度、価格、排ガス中に含まれる硫黄化合物やヒ素化合物
等に対する耐久性などの面で、未解決の問題点を残して
いるものが多い、特に排ガス中にヒ素化合物が含まれる
場合はとんどの触媒が使用中に被毒を受は急速に活性を
失う。 従来、ヒ素化合物は、各種反応に用いる触媒の活性被毒
物質として古(から知られている。 例えば、白金、パラジウム触媒を用いる液相水素添加反
応や、五酸化バナジウム触媒を用いS Ozから無水硫
酸を合成する反応における被毒作用は代表的な例である
。 ヒ素による触媒のこのような被毒作用は排ガス中のNO
xを還元無害化する反応においても上記例と同様に認め
られ、多くの触媒が上記の如く排ガス中にヒ素が存在す
ると急速に活性を失い工業的な見地からも使用に耐えな
い。 石炭や重油等を燃料とするボイラー徘ガスやガラス溶融
炉の排ガス中にヒ素化合物が含まれる場合が多く、特に
、ヒ素の含有量の多い例として欧州産の石炭を燃料とす
るボイラー徘ガスがある。 [発明が解決しようとする問題点] 本発明の目的は、ヒ素化合物を含有する排ガス中の窒素
酸化物を、該ヒ素化合物によって被毒されない触媒の存
在下、還元性ガスと接触させ還元して無害化する方法を
提供することにある。 本発明の他の目的は、ヒ素化合物を含有する排ガスを、
長時間に亘ってその高い触媒活性を維持し且つ安価な触
媒によって処理する方法を提供することにある。 本発明のさらに他の目的および利点は以下の説明から明
らかとなろう。 [問題点を解決するための手段および作用]本発明によ
れば、本発明の上記目的および利点は、ヒ素化合物と窒
素酸化物を含有する排ガスを、チタン、マンガン及びヒ
素を触媒活性成分として含有する触媒の存在下、還元性
ガスと接触させて該排ガス中の窒素酸化物を還元するこ
とを特徴とする排ガス中の窒素酸化物の除去方法によっ
て達成される。 すなわち、本発明者らは、公知の触媒を使用して、石炭
焚ボイラーの排ガスを対象としたNOx除去につき、試
験を実施してみたが活性低下の一因にヒ素化合物による
被毒作用がある事をつきとめ、ヒ素化合物に対するN毒
性触媒を開発すべく研究を開始し、上記本発明に到達し
た。種々の触媒をy4製し、その触t&メ耐毒性の有無
は、後述のヒ素強制劣化試験を実施し劣化試験前後のN
o×除去活性を測定する方法により判定した。 すなわち、本発明者の研究によれば、大多数の触媒が劣
化試験後、大巾な活性低下を引き起す中で、チタン及び
マンガンを活性成分とする触媒はヒ素強制劣化試験によ
っても、初期の活性を失わないばかりかむしろ初期活性
を上回る活性を示すという全く予測できない事実を見い
出し本発明に到達したものである。 本発明に於て用いられる触媒におけるヒ素成分の作用a
mは、現段階に於いては、がならずしも明らかではない
が、大多数の他触媒に対し、昔しい被毒作用を示すヒ素
成分がチタン及びマンガンと共存する場合、被毒物質と
して作用しないばかりかむしろ触媒活性を高めるという
事実から、チタン又はマンガン成分いずれかとの、ある
いはその両者との、相互作用により新たな効果を発現し
ているものと考えられる。 本発明で用いられる触媒は、チタン、マンガン及びヒ素
を活性成分として含有する。 本発明で用いられる触媒は、チタン、マンガン及びヒ素
を、好ましくは酸化物あるいは、含硫黄化合物として含
有する。 また、チタン、マンガン及びヒ素の原子比が好ましくは
百分率で、チタン50%以上99%未満に対して、マン
ガフ1%以上50%未満、より好ましくは、40%以下
、及びヒ素0.01%以上10%未満、より好ましくは
5%以下の比率で含有しているものが有利に用いられる
。しかしながら上記組成範囲は、必ずしも限定されるも
のではなく、上記範囲外の組成でも充分に良好な性能を
発現し得る。 本発明で用いられる触媒は、通常の触W製遺に利用され
る沈殿法や各成分の混練法など常法により製造する事が
出来る。 また、触媒活性成分を多孔質のシリカ、アルミナなどの
担体に担持したり、シリカ、アルミナ、マグネシア、ジ
ルコニア、酸性白土、活性白土、ケイソウ土、などの担
体成分を触媒成分と充分に混練するなどの方法で触媒に
混じて使用することも可能である。 最終的な触媒の成型法としては、通常の押出し成型法、
打錠成型法、転勤造粒法なと用途に応じ任意の成型法を
採用出来る。 本発明で用いられる触媒の特徴は、排ガス中に、ヒ素化
合物が含まれる場合においても、極めて優れた、対ヒ素
Nm性を示し長期にわたって活性を維持する点にある。 上記触媒の出現により、高濃度のヒ素化合物を含む排ガ
スからのNOx除去、例えば、前述した欧州産石炭を燃
料とするボイラーの煙道排ガスからのNOx除去が工業
的にも、極めて有′利な方法として実施し得るようにな
った。 上記触媒を31I製するチタン原料としては、例えば酸
化チタンまたは加熱することにより酸化チタンを生成す
る各種の化合物、たとえばチタン酸、水酸化チタン、硫
酸チタン、塩化チタンなどが使用しうる。 また触媒調製時に汎用される各種のチタン化合物、たと
えば各種のハロゲン化チタン、硫酸チタンなどを水、ア
ンモニア水、力性アルカリ、炭酸アルカリなどで沈殿さ
せて、水酸化物となした後、加熱分解により酸化物とし
て調製したものも好ましく使用できる。 マンガン原料としては、例えば酸化マンガンまたは加熱
することにより酸化マンガンを生成する各種化合物、た
とえば、硝酸マンガン、炭酸マンガン、各種有機酸マン
ガンなどが使用し得る。 また、マンガンの塩類をアルカリで沈殿させ、水酸化物
とし、加熱、酸化して酸化マンガンとしたものも使用で
きる。すなわち、マンガンの酸化物は、調製法により種
々の構造をとり、また酸素含量の異る事が知られている
が、本発明方法で用いられる触媒の1!4製には種々の
調製法により調製した酸化マンガンが、使用できる。 ヒ素原料としては、例えば二酸化ヒ素、五酸化ヒ素、塩
化ヒ素、ヒ素、ヒ酸溶液等が使用し得る。 ヒ素成分の触媒への付与は常法の他に、ヒ素及びヒ素化
合物を加熱昇華あるいは蒸発させ、チタン及びマンガン
成分に後から付与する等の方法も可能である。 本発明方法は、上記触媒の存在下に、ヒ素化合物と窒素
酸化物(NOx)を含有する排ガスを、還元性ガスと接
触させることにより実施される。 還元性ガスとしては、例えば水素、炭化水素、−酸化炭
素、アンモニア等を使用しうる。これらのうち、特にア
ンモニアが好ましく使用される。 また、本発明方法において除去の対象となる窒素酸化物
ニハ、例L+tN O、N 20 itN O21N 
204およびN20.が包含される。 例えばNoをアンモニアで還元する場合の反応は次のと
おりである。 6NO+4NH,→5N2+6H20 還元性がスの使用量は、窒素酸化物を上記の如く中性の
化合物に変換するのに必要とするイし学量論的量からそ
の10倍量程度、′Vftこ1〜3倍1程度の量で使用
される。 排ガスと還元性が大の接触は、好ましく(±100〜5
50℃の温度、より好ましくは200〜5o o ’c
の温度において実施される。 本発明方法は、上記触媒を充填した通路lこ徘がスおよ
び還元性ガスを通じること
[Industrial Application Field] The present invention relates to a method for removing nitrogen oxides from exhaust gas. More specifically, the present invention relates to a method for reducing and removing nitrogen oxides in exhaust gas containing arsenic compounds in the presence of a catalyst that maintains its activity without being poisoned by arsenic compounds. [Prior art] Nitrogen oxides (hereinafter sometimes referred to as NOx) contained in exhaust gas from various fixed sources, especially gases from various combustion furnaces such as boilers, are brought into contact with a reducing gas such as ammonia and reduced to make them harmless. There are known ways to make it. Various catalysts are known for use in this process, but there are still unresolved problems in terms of catalyst activity, strength, price, and durability against sulfur compounds, arsenic compounds, etc. contained in exhaust gas. Especially if the exhaust gas contains arsenic compounds, most catalysts become poisoned during use and rapidly lose their activity. Conventionally, arsenic compounds have been known since ancient times as active poisoning substances for catalysts used in various reactions. A typical example is the poisoning effect in the reaction of synthesizing sulfuric acid. This poisoning effect of the catalyst by arsenic is caused by NO in the exhaust gas.
The same phenomenon as in the above example is observed in the reaction of reducing x to render it harmless, and many catalysts rapidly lose their activity when arsenic is present in the exhaust gas, making them unusable from an industrial standpoint. Arsenic compounds are often contained in boiler gas fueled by coal or heavy oil, and in exhaust gas from glass melting furnaces.An example of a particularly high arsenic content is boiler gas fueled by European coal. be. [Problems to be Solved by the Invention] An object of the present invention is to reduce nitrogen oxides in exhaust gas containing arsenic compounds by contacting them with a reducing gas in the presence of a catalyst that is not poisoned by the arsenic compounds. The purpose is to provide a method to make it harmless. Another object of the present invention is to treat exhaust gas containing arsenic compounds by
It is an object of the present invention to provide a method of treatment using an inexpensive catalyst that maintains high catalytic activity over a long period of time. Further objects and advantages of the present invention will become apparent from the description below. [Means and effects for solving the problems] According to the present invention, the above objects and advantages of the present invention are achieved by converting exhaust gas containing arsenic compounds and nitrogen oxides into a gas containing titanium, manganese and arsenic as catalytically active components. This is achieved by a method for removing nitrogen oxides from exhaust gas, which is characterized by reducing nitrogen oxides in exhaust gas by bringing them into contact with a reducing gas in the presence of a catalyst. That is, the present inventors conducted a test for NOx removal from coal-fired boiler exhaust gas using a known catalyst, but found that one of the reasons for the decrease in activity was the poisoning effect of arsenic compounds. Having found this out, we began research to develop an N-toxic catalyst for arsenic compounds, and arrived at the present invention. Various catalysts were made from Y4, and the presence or absence of their resistance to contact and metal toxicity was determined by conducting the arsenic forced deterioration test described below.
The determination was made by a method of measuring ox removal activity. In other words, according to the research conducted by the present inventors, while the majority of catalysts cause a drastic decrease in activity after a deterioration test, catalysts containing titanium and manganese as active components show initial activity reduction even in arsenic forced deterioration tests. We have arrived at the present invention by discovering the completely unexpected fact that not only does it not lose its activity, but it even exhibits an activity that exceeds its initial activity. Effect of arsenic component in the catalyst used in the present invention a
Although it is not clear at this stage what m is, if arsenic components, which exhibit traditional poisoning effects on most other catalysts, coexist with titanium and manganese, they will act as poisonous substances. From the fact that not only does it not work, but it actually enhances the catalytic activity, it is thought that new effects are expressed through interaction with either the titanium or manganese component, or with both. The catalyst used in the present invention contains titanium, manganese and arsenic as active ingredients. The catalyst used in the present invention contains titanium, manganese and arsenic, preferably as oxides or sulfur-containing compounds. In addition, the atomic ratio of titanium, manganese, and arsenic is preferably 1% or more and less than 50%, more preferably 40% or less, and arsenic 0.01% or more with respect to titanium 50% or more and less than 99%. Those containing less than 10%, more preferably less than 5% are advantageously used. However, the above composition range is not necessarily limited, and even compositions outside the above range can exhibit sufficiently good performance. The catalyst used in the present invention can be produced by a conventional method such as a precipitation method used in the production of conventional catalysts or a method of kneading each component. In addition, the catalyst active component may be supported on a porous carrier such as silica or alumina, or a carrier component such as silica, alumina, magnesia, zirconia, acid clay, activated clay, diatomaceous earth, etc. may be sufficiently kneaded with the catalyst component. It is also possible to use it by mixing it with a catalyst. The final catalyst molding method is the usual extrusion molding method,
Any molding method can be used depending on the application, such as tablet molding method or transfer granulation method. The catalyst used in the present invention is characterized in that it exhibits extremely excellent resistance to arsenic and Nm and maintains its activity over a long period of time even when arsenic compounds are contained in the exhaust gas. With the advent of the above-mentioned catalyst, the removal of NOx from exhaust gas containing high concentrations of arsenic compounds, for example, the removal of NOx from the flue gas of boilers fueled by European coal, has become extremely advantageous from an industrial perspective. Now it can be implemented as a method. As the titanium raw material for producing the above catalyst 31I, for example, titanium oxide or various compounds that produce titanium oxide by heating, such as titanic acid, titanium hydroxide, titanium sulfate, titanium chloride, etc., can be used. In addition, various titanium compounds commonly used in catalyst preparation, such as various titanium halides and titanium sulfates, are precipitated with water, aqueous ammonia, alkali alkali, alkali carbonate, etc. to form hydroxides, and then thermally decomposed. Those prepared as oxides can also be preferably used. As the manganese raw material, for example, manganese oxide or various compounds that produce manganese oxide when heated, such as manganese nitrate, manganese carbonate, various organic manganese acids, etc. can be used. Alternatively, manganese salts may be precipitated with an alkali to form a hydroxide, which is then heated and oxidized to form manganese oxide. In other words, it is known that manganese oxides have various structures depending on the preparation method and also have different oxygen contents. Prepared manganese oxide can be used. As the arsenic raw material, for example, arsenic dioxide, arsenic pentoxide, arsenic chloride, arsenic, arsenic acid solution, etc. can be used. The arsenic component can be applied to the catalyst by not only the usual method but also a method in which arsenic and arsenic compounds are sublimated or evaporated by heating, and then added to the titanium and manganese components. The method of the present invention is carried out by bringing exhaust gas containing arsenic compounds and nitrogen oxides (NOx) into contact with a reducing gas in the presence of the catalyst. As the reducing gas, for example, hydrogen, hydrocarbon, carbon oxide, ammonia, etc. can be used. Among these, ammonia is particularly preferably used. In addition, nitrogen oxides to be removed in the method of the present invention, e.g. L+tN O, N 20 itN O21N
204 and N20. is included. For example, the reaction when No is reduced with ammonia is as follows. 6NO + 4NH, → 5N2 + 6H20 The amount of reducing gas to be used ranges from the stoichiometric amount to about 10 times the stoichiometric amount required to convert nitrogen oxides into neutral compounds as described above, 'Vft It is used in an amount of ~3 times as much. Highly reducing contact with exhaust gas is preferable (±100 to 5
Temperature of 50°C, more preferably 200-5o'c
carried out at a temperature of The method of the present invention is characterized in that the passage filled with the catalyst is passed through the passage and the reducing gas.

【こより有利警二実施される
が、その空間速度(SV)は約s、oo。 〜50,0OOhr″″Iの範囲とするのが望まし〜1
゜圧力は好ましくは大気圧〜10 kg/ Cm”程度
である。 [実施例1 以下に実施例をあげ、本発明をさらに詳述する。 なお、本発明方法で使用する触媒のヒ素化合物に対する
耐毒性能は、以下のようにして測定した。 添付図面の第1図に示すヒ素強制劣化装置によりA S
 203を含んだガスを触媒と接触させ、所定時間経過
後、触媒を取り出す。 ヒ素強制劣化させた触媒及びさせない触媒双方につき、
NOに対する還元活性を測定し活性低下の程度から、A
s20=に対する耐毒性能を判定する。 ヒ素強制劣化装置での触媒処理温度は、触媒が実際にN
Ox還元装置で使用される温度範囲で任意に設定可能で
あり、又、A s 20 )粉末の加熱温度は、所要の
As、O=濃度により任意に設定するが、通常、250
℃から400℃の範囲内で目的とするAszOi濃度が
得られる。 下記の実施例及び比較例におけるヒ素強制劣化は、次の
条件で実施した。 触媒温度:350℃ 時間: 5 hr。 ガス流1:2β/輸in。 ガス組成:As2O,;約50ppm SO2;10001)I)I11 O2;5% N20;10% N2;残 また、Noに対する還元活性評価は、次の条件において
実施した。 反応器:内径20IIIIIlφ石英反応管触媒:20
1 ガス流jt:400 NA /l+r(S V:200
00  I/hr)反応温度:380’C ガス組成: No;10 opp曽 NH3:10100p p○21800111)Ill o2;4% CO2;12% N20;9% N2;残 Noの分析は、ケミルミネッセンス検出法によるN O
/ N Ox分析計(東芝ベックマン株式会社製、95
1型)を使用して反応器導入部及び出口部につきガス中
めNO濃度を測定した。 本発明において示されるNo除去率は、次式により定義
される。 実施例−1 メタチタン酸[T io (OH)21のスラリーを、
TiO2として240g相当とり、これに硝酸マンポン
[Mn(N O3)2 ” 6 H20]86 gをイ
オン交換水200mj!に溶解した液を加え、30分湿
式混練した後、100℃で乾燥した。 この乾燥品を400 ′(:で2時間焼成した後、得ら
れた粉末に1重量%のポリエチレンオキサイド[商品名
アルコックスE−30,明成化学工業株式会社製1と三
酸化ヒ素0.5g及び適量のイオン交換水を加え、湿式
混練し、6a+mφの太さに押出し成型した。 得られた成型品を乾燥後、500°Cで4時間焼成した
。この触媒を用いて、ヒ素に対する耐毒性を見るため、
前述の試験方法に従い、ヒ素強制劣化萌後の触媒につき
、No還元活性を測定した所、下記の結果を得た。 No除去率(%) ヒ素強制劣化前         7061同    
 後               71.3実施例−
2 メタチタン酸のスラリーをTiO2として、240g相
当とり、これに硝酸マンガン172gをイオン交換水3
00mAに溶解した液を加え30分湿式混練した後、1
00 ’Cで乾燥した。 乾燥品を400 ’Cで2時間焼成した後、得られた粉
末に1重量%のポリエチレンオキサイドと、0.3gの
三酸化ヒ素及び適量のイオン交換水を加え湿式混練し6
1φの太さに押出し成型したゆ500°Cで4時間焼成
した後、実施例−1と同様の試験を行い下記の結果を得
た。 No除去率(%) ヒ素強制劣化前          83.2向   
  後                81.7実施
例−3 メタチタン酸のスラリーをTiO2として、240g相
当とり、これに、硝酸マンガン172gをイオン交換水
300m1に溶解した液を加え30分湿式混練した後、
100℃で乾燥した。 乾燥品を400 ’Cで2時間焼成した後、得られた粉
末に1重量%のポリエチレンオキサイドと、適量の水を
加えて、湿式混練し61φの太さに押出し成型した。 500°Cで4時間焼成した後、実施例−1と同様の試
験を行い下記の結果を得た。 No除去率(%) ヒ素強制劣化前          43.5向   
  後                80.3また
、上記ヒ素強制劣化後の触媒について、さらに実施例−
1と同様の試験を行い下記の結果を得た。 No除去率(%) ヒ素強制劣化後          80.3再度の 
 I/            81.1比較例1およ
び2 実m例−1のマンガン成分の代りに、鉄及びコバルトを
含有する触媒を実施例−1の調製法に準する方法で調製
した。 鉄成分としては、硝酸第2鉄[Fe(NO3)!・9H
20】を使用し又コバルト成分としては、硝酸コバルト
[Co(N O3L ・6 H20]を原料とした。 チタンに対する鉄、コバルト及びヒ素の原子比は、実施
例−1のマンガン及びヒ素の場合と同様とした。 この触媒を用いて、実施例−1と同様の試験を行い次の
結果を得た。
[The space velocity (SV) is about s, oo. It is preferable that the range is ~50,0OOhr''I~1
The pressure is preferably from atmospheric pressure to about 10 kg/cm''. [Example 1] The present invention will be explained in further detail with reference to Examples below. The performance was measured as follows: A S
The gas containing 203 is brought into contact with the catalyst, and after a predetermined period of time, the catalyst is taken out. For both catalysts with and without forced arsenic deterioration,
The reducing activity against NO was measured and based on the degree of activity reduction, A
Determine the poison resistance performance against s20=. The catalyst treatment temperature in the arsenic forced aging device is the temperature at which the catalyst actually
It can be set arbitrarily within the temperature range used in the Ox reduction device, and the heating temperature of As20) powder can be arbitrarily set depending on the required As, O = concentration, but usually 250
The desired AszOi concentration can be obtained within the range of 400°C to 400°C. Arsenic forced deterioration in the Examples and Comparative Examples below was carried out under the following conditions. Catalyst temperature: 350°C Time: 5 hr. Gas flow 1:2β/in. Gas composition: As2O; about 50 ppm SO2; 10001) I11 O2; 5% N20; 10% N2; remainder Evaluation of the reduction activity against No was carried out under the following conditions. Reactor: Inner diameter 20IIIlφ quartz reaction tube Catalyst: 20
1 Gas flow jt:400 NA/l+r(SV:200
00 I/hr) Reaction temperature: 380'C Gas composition: No. NO by law
/ NOx analyzer (manufactured by Toshiba Beckman Corporation, 95
The concentration of NO in the gas was measured at the inlet and outlet of the reactor using a reactor (Model 1). The No removal rate shown in the present invention is defined by the following equation. Example-1 A slurry of metatitanic acid [Tio(OH)21]
An amount equivalent to 240 g of TiO2 was taken, and a solution of 86 g of manpon nitrate [Mn(N O3)2''6 H20] dissolved in 200 mj of ion-exchanged water was added to this, wet-kneaded for 30 minutes, and then dried at 100°C. After calcining the dried product for 2 hours at 400°C, the resulting powder was mixed with 1% by weight of polyethylene oxide [trade name Alcox E-30, manufactured by Meisei Chemical Industry Co., Ltd. 1, 0.5g of arsenic trioxide, and an appropriate amount. of ion-exchanged water was added, wet-kneaded, and extruded to a thickness of 6a+mφ.The obtained molded product was dried and then calcined at 500°C for 4 hours.Using this catalyst, the toxicity resistance to arsenic was examined. For,
The No reduction activity of the catalyst after arsenic forced deterioration was measured according to the test method described above, and the following results were obtained. No removal rate (%) Before arsenic forced deterioration Same as 7061
After 71.3 Example-
2 Take 240g of metatitanic acid slurry as TiO2, add 172g of manganese nitrate to it and add 33g of ion-exchanged water.
After adding the solution dissolved in 00 mA and wet kneading for 30 minutes,
Dry at 00'C. After calcining the dried product at 400'C for 2 hours, 1% by weight of polyethylene oxide, 0.3g of arsenic trioxide, and an appropriate amount of ion-exchanged water were added to the resulting powder and wet-kneaded.
After extrusion molding to a thickness of 1φ and baking at 500°C for 4 hours, the same test as in Example 1 was conducted and the following results were obtained. No removal rate (%) Before forced arsenic deterioration 83.2
After 81.7 Example-3 A slurry of metatitanic acid equivalent to 240 g of TiO2 was taken, and a solution of 172 g of manganese nitrate dissolved in 300 ml of ion-exchanged water was added thereto and wet-kneaded for 30 minutes.
It was dried at 100°C. After baking the dried product at 400'C for 2 hours, 1% by weight of polyethylene oxide and an appropriate amount of water were added to the resulting powder, which was wet-kneaded and extruded to a thickness of 61φ. After baking at 500°C for 4 hours, the same test as in Example 1 was conducted and the following results were obtained. No removal rate (%) Before forced arsenic deterioration 43.5
After 80.3 Furthermore, regarding the catalyst after forced arsenic deterioration, Examples--
A test similar to 1 was conducted and the following results were obtained. No removal rate (%) After arsenic forced deterioration 80.3 again
I/81.1 Comparative Examples 1 and 2 Instead of the manganese component in Example-1, a catalyst containing iron and cobalt was prepared by a method similar to the preparation method of Example-1. The iron component is ferric nitrate [Fe(NO3)!・9H
20] and cobalt nitrate [Co(NO3L 6 H20]) was used as the raw material for the cobalt component.The atomic ratios of iron, cobalt, and arsenic to titanium were the same as in the case of manganese and arsenic in Example-1. Using this catalyst, the same test as in Example 1 was conducted and the following results were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面の第1図は、触媒のヒ素強制劣化試験を実施す
る装置の概略説明図である。 手続補正書 昭和61年8月21日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和61年特許顆第173813号 2、発明の名称 3、補正をする者 事件との関係    特許出願人 4、代理人 〒107 電話 585−2256 5、補正命令の日付   (自発) 6、補正の対象 明細書の「発明の詳細な説明」の欄 7、補正の内容 (1) 明細書第7頁15行目の「例えば」のすぐ後に
、「水酸化マンガン」を加入する。 (2)同第7頁20行目の「水酸化物とし、」のすぐ後
に、「そのまま触媒原料とするか、又は」を加入する。 (3)同第9頁3〜7行目の r6NO+4NH3→ 5N  2+ 6H20・・・
・・・・(中略)・・・・・ 度の量で使用される。」を、 r N O十N H3+3A O2→N 2 十M I
(20アンモニアの使用量は、要求される脱硝率により
異るが、一般には、窒素酸化物の0.3〜1.5倍モル
程度が用いられる。」と訂正する。 (4) 同第9頁13行目の[約5 、OOOJを、「
約2.000Jと訂正する。 (5)同第157(の表の比較例2の行の「89゜0」
および「38.3」をそれぞれ「55.IJおよび「3
9.8」と訂正する。 以上
FIG. 1 of the accompanying drawings is a schematic explanatory diagram of an apparatus for conducting an arsenic forced deterioration test of a catalyst. Procedural amendment August 21, 1985 Commissioner of the Patent Office Black 1) Akio Yu 1, Indication of the case Patent No. 173813 of 1988 2, Title of the invention 3, Person making the amendment Relationship to the case Patent applicant 4. Agent 107 Telephone: 585-2256 5. Date of amendment order (voluntary) 6. Column 7 of “Detailed Description of the Invention” of the specification to be amended 7. Contents of the amendment (1) Page 7 of the specification 15 Add "manganese hydroxide" immediately after "for example" in the first line. (2) On page 7, line 20, immediately after "use it as a hydroxide," add "or use it as a catalyst raw material." (3) r6NO+4NH3 → 5N 2+ 6H20... on page 9, lines 3 to 7
...(omitted)... Used in degrees. ”, r N O ten N H3 + 3 A O2 → N 2 ten M I
(The amount of ammonia used varies depending on the required denitrification rate, but in general, about 0.3 to 1.5 times the mole of nitrogen oxide is used.) (4) Same as No. 9. On page 13 line [about 5, OOOJ is changed to "
Corrected to approximately 2,000J. (5) “89°0” in the Comparative Example 2 row of the table No. 157
and “38.3” to “55.IJ” and “38.3” respectively.
9.8” is corrected. that's all

Claims (1)

【特許請求の範囲】[Claims] 1、ヒ素化合物と窒素酸化物を含有する排ガスを、チタ
ン、マンガン及びヒ素を触媒活性成分として含有する触
媒の存在下、還元性ガスと接触させて該排ガス中の窒素
酸化物を還元することを特徴とする、排ガス中の窒素酸
化物の除去方法。
1. Reducing the nitrogen oxides in the exhaust gas by contacting the exhaust gas containing arsenic compounds and nitrogen oxides with a reducing gas in the presence of a catalyst containing titanium, manganese, and arsenic as catalytically active components. Features: A method for removing nitrogen oxides from exhaust gas.
JP61173813A 1986-07-25 1986-07-25 Removal of nitrogen oxide in exhaust gas containing arsenic compound Pending JPS6331526A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61173813A JPS6331526A (en) 1986-07-25 1986-07-25 Removal of nitrogen oxide in exhaust gas containing arsenic compound
AT87110657T ATE75417T1 (en) 1986-07-25 1987-07-23 METHOD TO DENOX NITROUS OXIDES IN EXHAUST GASES.
DE8787110657T DE3778611D1 (en) 1986-07-25 1987-07-23 METHOD OF DENICKING NITROGEN OXIDE IN EXHAUST GAS.
EP87110657A EP0257307B1 (en) 1986-07-25 1987-07-23 A method for denitrizing nitrogen oxides contained in waste gas
CA000542955A CA1307251C (en) 1986-07-25 1987-07-24 Catalyst and a method for denitrizing nitrogen oxides contained in waste gas
US07/284,764 US4952381A (en) 1986-07-25 1988-12-12 Method for denitrizing nitrogen oxides contained in waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61173813A JPS6331526A (en) 1986-07-25 1986-07-25 Removal of nitrogen oxide in exhaust gas containing arsenic compound

Publications (1)

Publication Number Publication Date
JPS6331526A true JPS6331526A (en) 1988-02-10

Family

ID=15967630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173813A Pending JPS6331526A (en) 1986-07-25 1986-07-25 Removal of nitrogen oxide in exhaust gas containing arsenic compound

Country Status (1)

Country Link
JP (1) JPS6331526A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180511A (en) * 1990-11-14 1992-06-26 Nippon Steel Corp Method for refining chromium-containing molten steel by decarburization
CN110721674A (en) * 2019-09-26 2020-01-24 合肥工业大学 Manganese-based montmorillonite low-temperature SCR catalyst and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180511A (en) * 1990-11-14 1992-06-26 Nippon Steel Corp Method for refining chromium-containing molten steel by decarburization
CN110721674A (en) * 2019-09-26 2020-01-24 合肥工业大学 Manganese-based montmorillonite low-temperature SCR catalyst and preparation method thereof

Similar Documents

Publication Publication Date Title
US4003978A (en) Method for treating ammonia-containing gases
US4107272A (en) Process for removing nitrogen oxides using ammonia as a reductant and sulfated metallic catalysts
SU1685256A3 (en) Catalyst for decreasing nitrogen oxide content in flue gases, method of its manufacture and catalytic reduction process
CA1295598C (en) Process for removing nitrogen oxides from exhaust gases
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
AU755129B2 (en) Catalyst based on ferrierite/iron for catalytic reduction of nitrous oxide content in gases, method for obtaining same and application
JPS6214339B2 (en)
US20090022642A1 (en) Treatment method for decomposing perfluorocompound, decomposing catalyst and treatment apparatus
JPS6211892B2 (en)
EP1138379A2 (en) A titanium, molybdenum and vanadium containing catalyst for purification of exhaust gases, preparation and use thereof
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
JPS6331526A (en) Removal of nitrogen oxide in exhaust gas containing arsenic compound
JPS5812057B2 (en) Shiyokubaisosabutsu
JP3325041B2 (en) Decomposition and removal method of nitrous oxide
JPS63147546A (en) Method for removing nitrogen oxide in exhaust gas
JPS6335298B2 (en)
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
JPH08196871A (en) Decomposition of ammonia
KR0157126B1 (en) Detoxification of ammonia-containing exhaust gas
JPS59213442A (en) Preparation of denitration catalyst
JP3270082B2 (en) Decomposition and removal method of nitrous oxide
JP3270080B2 (en) Method for decomposing and removing nitrous oxide
JPS6043170B2 (en) Catalyst for removing nitrogen oxides
JPS6331540A (en) Catalyst for reducing nitrogen oxide in exhaust gas by ammonia
JP2595370B2 (en) Purification method of exhaust gas containing nitrogen oxides